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 The aim of this research work is to characterize the tensile strength of ABS-Cu and ABS-Al 

composites of different proportions of percentage compositions, as well as the incorporation 

of surfactant material. For the analysis carried out in the present study, the k-Nearest 

Neighboring (kNN) classification algorithm is used in order to predict the tensile strength of 

the various compositions of the ABS-Al and ABS-Cu composites. Real data was not used to 

train the model due to the time-consuming process; instead, they resorted to synthetic data 

for the classification model, and for the tensile strength data, they were trained and predicted 

with better results. The kNN classification algorithm of the ABS-Cu predicted the k-value 

accuracy to be 80% for k=1 and k=2, and 85% for k=3 and k=5. Similarly, the prediction 

accuracy for the ABS-Al composition yielded the same results: As the value of k is increased, 

the required percentage of samples is 80% for k=1 and k=2, 85% for k=3, and 90% for k=5, 

respectively. The kNN classification algorithm model was also successful in predicting tensile 

strength, with a recall of more than 80% and an F1 score of 90-95%. A higher quantity of 

copper and aluminium is said to have the ability to improve the tensile strength of the 

specimens. 
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1. Introduction 

Sophisticated production materials are 
essential in today’s manufacturing environment 
to sustain a competitive advantage for companies 
in the global arena. Polymer matrix composites, 
more particularly, have emerged as the most 
favoured materials compared to metals and 
alloys because of their enhanced characteristics 
[1]. Specific interest is drawn to the Acrylonitrile 
Butadiene Styrene (ABS) composites enhanced 

with copper and aluminium particles due to their 
improved mechanical properties. These 
composites have quite a large prospect for 
different industrial uses where strength and 
durability are required [2]. Another important 
factor is the ingredient known as surfactants, 
which enable enhanced distribution of metal 
particles in the polymer matrix and thus affect 
the mechanical characteristics of the final 
material [3]. Earlier literature suggests that 
composites containing ABS bring about property 
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improvements. Different researchers have 
employed some of the machine learning methods 
in the exploration of predicting various 
properties of these polymer composites. Gong et 
al. (2022) discussed the improvement of the 
mechanical properties of ABS products using a 
combined technology of Additive Manufacturing 
(AM) and Injection Molding (IM). Results from 
the experiment showed that samples with a 
hybrid microstructure were stronger than parts 
that were made of only AM, and the strongest 
samples were almost as strong as IM parts [4]. 
The blend of ABS and organically modified 
montmorillonite nano clay was studied by 
Shishavan et al. (2014), where the compatibilizer 
used was polymethylmethacrylate (PMMA). They 
studied the relationship between nanoclay 
content, melt temperature, holding pressure, and 
time in tensile strength and hardness using 
Taguchi experiments. These findings show that 
the addition of PMMA has a pronounced effect on 
the dispersion of nanoclay and the fluidity of the 
material, with 2% of nanoclay providing the 
maximum tensile strength and hardness of 4% 
[5]. Mohammed et al. (2023) investigated and 
concluded that SVM, DT, RF, kNN, and ANN are 
from the viewpoint of the accuracy of SVM for the 
prediction of the tribological properties of the 
UHMWPE/SiC composites [6]. Esmaeili and Rizvi 
(2023) proved that ensemble learning models 
are better than ANNs at predicting stress-strain 
curves of polymer composites [7]. Jain et al. 
(2024) used the tribological properties of 
MWCNT-reinforced PMMA nanocomposites and 
found that the GBM predictions were most 
accurate [8]. Kurt and Oduncuoglu (2015) used 
applied load, sliding speed, composite 
reinforcement type, and weight percentage to 
create an ANN for modelling the dry sliding wear 
behaviour of ultrahigh molecular weight 
polyethylene composites. A model was developed 
that was able to accurately predict the volume 
loss, with the two most critical influencing factors 
for the wear profile determined to be the applied 
load and the sliding speed [9]. Aliyu et al. (2019) 
applied the Taguchi method for the improvement 
of tribological features of UHMWPE 
nanocomposites containing SiC nanopowder. 
Optimization tests predicted in ANOVA and 
regression models the level of process 
parameters where friction and specific wear rate 
were at their minimums; these values were 
proved by means of validation tests [10]. 
Abdellah et al. (2018) studied the impact of Short 
Basalt Fiber (SBF) on the ABS polymer 
composites and their characteristics produced 
through the injection molding process. 
Characterization data established that tensile 
strength was enhanced up to 5 wt% SBF, while 
the reduction in area was reduced with up to 

2wt% SBF; investigations showed that hardness 
was enhanced at higher loading of SBF. The 
impact strength reduced in general while wear 
resistance increased with higher SBF content 
[11]. Bulanda et al. (2023) investigated the 
application of PC/ABS polymer composites in, for 
instance, 3D printing through melted extrusion 
modelling. A silica-alumina, bentonite modified 
with quaternary ammonium salt, and a 
combination of lignin and silicon dioxide were 
incorporated into the matrix. According to the 
obtained results, it was established that the 
modification of fillers had a considerable impact 
on the processing and functional characteristics 
of the composites [12]. Amena et al. (2022) 
synthesize chemically modified spent coffee husk 
with high-density polyethylene materials with 
enhanced mechanical characteristics for 
industrial use [13]. Raza et al. (2020) also 
researched the development of thermally 
reduced graphene oxide/ABS composites and 
discovered that the inclusion of 0.2wt% graphene 
oxide provided better tensile properties than that 
of graphite, which, however, reduced as the filler 
content increased. Another research study shows 
that the use of this two-step mixing method led to 
an enhancement of the dope dispersion of the 
graphene oxide in the ABS matrix [14]. Rasana et 
al. (2021) studied the preparation of thermally 
reduced graphene oxide/ABC composites; the 
result observed that the tensile properties were 
increased by adding 0.2wt% graphene oxide 
compared to graphite, although the composite 
property is decreased when the filler amount is 
increased. Graphene oxide also increased the 
glass transition temperature of ABS with no effect 
on thermal stability [15]. Triantou et al. (2019) 
examined the effects of graphene on 
ABS/polycarbonate (PC) and ABS/polypropylene 
(PP) blends, reporting that graphene reduced the 
melt flow index and affected thermal degradation 
but improved the Young's modulus, particularly 
in ABS/PP blends [16]. Joynal Abedin et al. (2021) 
found that incorporating graphene oxide and 
maleated styrene-ethylene/butylene-styrene 
(SEBS-g-MAH) into ABS/talc composites 
significantly enhanced their tensile, flexural, and 
modulus properties while maintaining 
comparable impact strength to pure ABS. The 
additives also improved thermal stability and 
interfacial adhesion, making the composites 
more suitable for various applications [17]. Jatti 
et al. (2024) investigated the impact of copper 
powder on the wear properties of ABS-Cu 
composites. They determined that wear loss 
decreased with a composition of 23% ABS, 70% 
Cu, and 7% surfactant. Machine learning models 
described the wear behaviour well and showed 
that the invention may be used to create more 
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suitable composite materials for particular wear 
behaviours in industrial applications [18]. 

A vast number of prior works have considered 
the mechanical properties of ABS-based 
composites, but relatively few works have 
considered machine learning approaches for 
predicting the properties as a function of the 
composition. [19-24]. The increased awareness 
of the devastating effects of synthetically 
developed materials on nature has resulted in the 
development of eco-friendly and sustainable 
materials [25-30]. Despite a large body of work 
on the mechanical properties of ABS composites, 
mainly tensile strength, very little work exists as 
a predictive model for understanding the effect of 
changing the composition of filler material 
(copper and aluminium) on the tensile strength 
of these composites. Furthermore, studies based 
on real-world experimental data tend to be slow 
and resource-intensive efforts. This research gap 
is to be addressed by utilizing synthetic data that 
can potentially be used to train the KNN model 
more quickly at a lower cost with equally good 
predictions. This study uniquely addresses the 
research gap in predictive modeling by exploring 
how variations in filler material composition, 
specifically copper and aluminium, influence the 
tensile strength of ABS composites. By employing 
synthetic data to train a K-Nearest Neighbors 
(KNN) model, the study offers a faster and more 
cost-effective alternative to traditional methods 
that rely on real-world experimental data. This 
approach not only enhances the efficiency of 
material property prediction but also provides 
valuable insights into optimizing composite 
formulations without the need for extensive and 
costly experimental procedures. 

This research aimed to characterize the 
tensile strength of ABS-Cu and ABS-Al 
composites with varying proportions and 
surfactant material while employing the kNN 
classification algorithm to predict tensile 
strength. Addressing a gap in predictive 
modeling, the study explored how changes in 
filler material composition (copper and 
aluminium) influence the mechanical properties 
of ABS composites. By utilizing synthetic data, the 
research sought to train the kNN model more 
quickly and cost-effectively than relying on real-
world experimental data. The study aimed to 
enhance material properties by accurately 
estimating tensile strength through machine 
learning and surfactant use, ultimately 
contributing to academic literature and 
supporting the future large-scale production of 
high-performance ABS-metal composites. 

Using machine learning to estimate the tensile 
strength of the developed ABS-Cu and ABS-Al 
composites and the use of surfactants, this work 
provides a multifaceted interdisciplinary 

solution to improving the properties of the 
materials. The goal of this study is to find out the 
tensile strength of ABS-Cu and ABS-Al composite 
materials that have different amounts of copper 
and aluminium in them, as well as to see how 
adding a surfactant material makes them 
stronger. Specifically, the purpose of this study is 
to predict their tensile strength via the k-nearest 
neighbor classification algorithm. This new body 
of research has the objective of enriching the 
academic and scientific literature and being 
useful for future large-scale production. 

2. Materials and Methods 

2.1. Materials Used  

The production of high-performance material 
ABS-metal composites is attributed to the use of 
ABS, Cu, Al, and surfactant materials. The choice 
of source and characteristics directly impacts the 
quality and functionality of the final composite. 
Specific weight percentages of ABS, metallic 
powders (99.9% pure), and surfactant 
(noninphinoethoxylate) are utilized for each 
primary substance, as detailed in Tables 1 & 2. In 
this case, the total material weight is assumed to 
be 250 grams. The weight percentage of copper 
must be maintained with a minimum variation of 
20% to ensure accurate molding and improve the 
mechanical properties of the composite. 
Surfactants reduce surface tension and prevent 
agglomeration, enhancing the dispersion of metal 
particles within the ABS matrix. By forming a 
compatible interface, they promote adhesion 
between the matrix and fillers, improving stress 
transmission and the overall performance of the 
composite. The outcomes are better mechanical 
qualities and a more uniform distribution.  

2.2. Fabrication of Composites 

ABS was obtained from Sigma-Aldrich, a 
leading supplier of high-quality industrial ABS. 
This material has a density of approximately 1.04 
g/cm³, a tensile strength of approximately 40 
MPa, and excellent impact resistance, ductility, 
and toughness. It can be processed at 
temperatures up to 240°C. Sigma-Aldrich also 
provided pure copper powder with a density of 
8.96 g/cm³. Copper is ideal for conductive 
composites due to its high electrical conductivity 
and low thermal conductivity, with a tensile 
strength of about 210 MPa. Aluminium powder, 
obtained from Sigma-Aldrich, has a density of 
2.70 g/cm³, a thermal conductivity of ~237 
W/m·K, and a tensile strength of about 90 MPa. A 
non-ionic surfactant was acquired from Sigma-
Aldrich to enhance the mechanical and thermal 
properties of the composite by promoting the 
dispersion of metal particles within the polymer 
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matrix. The surfactant's compatibility with both 
the metal particles and ABS ensures strong 
interfacial bonding, a key factor in its selection. 
To assess the impact of metal composite 
materials on mechanical properties, four distinct 
compositions of the primary material and 
metallic powder were prepared based on weight 
percentages. A surfactant was included to 
enhance covalent bonding and flowability 
between the ABS and the metallic powders, 
specifically copper and aluminium. Copper and 
aluminium powders served as reinforcement 
materials in this study. Figures 1(a) and (b) 
illustrate the ABS-Cu and ABS-Al composites, 
respectively. The copper and aluminium 
powders, sourced from the market, had a particle 
size of approximately 50 μm. Specific percentages 
by weight of each main material, metallic 
powders, and the surfactant were utilized to 
achieve optimal mechanical properties 
concerning the strength of the composite 
material. In this study, a total material weight of 
250 grams was considered 100%. To obtain 
accurate and optimal results in molding and 
enhancing the mechanical properties of the 
composite material, the percentage by weight of 
copper must be maintained with at least a 20% 
difference. A vertical hand-operated injection 
molding machine, as shown in Figure 1 (c), was 
used to fabricate the metallic composites. In the 
present study, ABS-Cu composites comprised 
65% ABS, 30% copper, and 5% surfactant; 44% 
ABS, 50% copper, and 6% surfactant; and 23% 
ABS, 70% copper, and 7% surfactant. Similarly, 
ABS-Al composites included 65% ABS, 30% 
aluminium, and 5% surfactant; 44% ABS, 50% 
aluminium, and 6% surfactant; and 23% ABS, 
70% aluminium, and 7% surfactant. Figure 2 
displays the integrated experimental and 
machine learning framework for material 
analysis. 

 
Fig. 1. (a) ABS-Cu tensile specimen, (b) ABS-Al tensile 

specimen, and (c) Vertical hand-operated injection moulding 
machine  

2.3. Testing Method 

This study's use of synthetic data facilitated a 
more comprehensive exploration of the research 
subject and enabled the development and 
validation of models under various scenarios, 
without the need for an impractically large 
amount of real experimental data. When 
obtaining sufficient real data proved challenging 
or costly, synthetic data production was 
employed to complement or substitute for the 
real experimental data. To establish variability in 
the data, the original data was contaminated with 
allowed random Gaussian noise, thus producing 
synthetic but realistic data. The data was created 
using MATLAB code in which controlled random 
noise was added to the original data. The 
synthetic data introduces the variability through 
this controlled noise to reflect the variability 
obtained in authentic experimental data. This 
approach made it possible to conduct empirical 
and theoretical tests and validation of models or 
theories within environments that are carefully 
controlled [31]. The synthetic data was produced 
with the help of a data perturbation technique 
that shifts the privacy of some individuals in the 
dataset and, thus, maintains the dataset's 
usefulness for analyses. This data was therefore 
produced by making slight modifications to the 
numbers to be close to the actual experimental 
data, all with the aid of a MATLAB program, 
meaning the synthetically generated data was 
almost similar to the actual experimental data 
since tiny changes were made in the decimal 
places of the data. The repeatability test was 
conducted on three samples. The ABS-Cu 
composites' tensile strength measurements had a 
standard deviation of 2.35, which is about 6.3% 
of the mean value of 37.2434. This is just about 
adequate for research purposes. Although it 
reduces variability in its performance, for mass 
production or critical applications, the need to 
reduce this variability is important to get more 
consistent performance. Because of the higher 
variability present in the data, a standard 
deviation of 4.72 for the ABS-Al composite, that 
is, approximately 29.6 percent of the mean tensile 
strength, would also be acceptable for research 
purposes. This variability should be reduced, as 
with the ABS-Cu composite, for more consistent 
and reliable material properties in mass 
production or high-stakes applications. Coded as 
1 were the tensile strength values greater than 
the mean, while those below the tensile strength 
average were coded as 0. In this study, synthetic 
data generation is carried out via a perturbation-
based method that can be implemented via 
MATLAB code, which can be found on MATLAB 
File Exchange using GitHub. This approach makes 
use of fixed parameters and algorithms, 
sometimes with, sometimes without, seeding 
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random numbers so that they always produce the 
same results when the program is run. A 
deterministic setup ensures reproducible and 
controlled experiments by producing the same 
result on each program execution. The 
perturbation approach aims to introduce random 
noise or variations to the sample, simulating a 
different experiment with slight variability [32]. 
From here, this process starts with a base dataset, 
which can be a minimal set of real data or a set 
imagined with given constants. Thereafter, noise 
is used within some range by altering the main 
parameters involved in the process; the material, 
pressure, or temperature is changed to let some 
noise in. This continues in a way that produces a 
set of n synthetic data points that covers an 
additional area of the experimental space. It is 
crucial to use this approach in order to extend the 
possibilities of the study and analyze the 
circumstances that cannot be met in real life; 
however, it would allow us to test the models and 
conclusions produced. It shall be noted that 
synthetic data generation has its limitations, 
which lie in the fact that generating real-world 
data, particularly for the generation of natural 
language text or images, becomes highly complex 
and requires more complicated techniques. 
However, synthetic data generative models often 
concentrate on common trends and patterns, 
ignoring nuances or anomalies that likely exist in 
the real data. Lastly, if the synthetic data is not 
appropriately secured, there is a risk of 
inadvertently revealing private or sensitive 
information, as the synthetic data is usually 
created on top of real-world datasets. However, 
to overcome these limitations, generators are 
expected to generate data with diversity and 
variety so that the data resembles the real-world 
complexities. To keep them current with real-
world data, this study monitored and updated 
synthetic datasets. 

 

 
Fig.2. Flowchart outlining the experimental methodology 

3. Machine Learning 

In this work, the kNN classification algorithm 
was used to evaluate various material 

compositions and perform tensile tests on the 
prepared samples. Based on experimental data, 
synthetic data were produced utilizing a data 
generation algorithm in MATLAB to perform a 
deeper analysis of tensile strength via 
classification. For better analysis, confusion 
matrices and the AUC-ROC graphs were also 
plotted. Classification is a type of supervised 
machine learning algorithm in which the 
program learns from certain datasets or 
observations in order to assign new observations 
into well-defined classes or groups. In this study, 
any tensile strength value greater than the 
average was classified as 1, and any value below 
the average received a classification of 0, 
essentially splitting the sample data into two. 

Here, the kNN classification algorithm was 
used; the method calculates the distances of the 
average tensile strength value to each of the 
samples. This algorithm incorporates several 
hyperparameters [33]:  

1. The number of neighbors, by which the 
quantity of the nearest neighbors used for 
classification of each point from the target data 
set is defined. 

2. The distance measure serves as the 
distance metric for determining the distance 
between two points. 

3. Distance weight that is specified by 
equality or by inverse, that is, distances between 
a pair of object points and the center point are 
either equal or inversely ratioed? 

4. The study examines hyperparameter 
tuning and distance metrics in the k-Nearest 
Neighbors (kNN) algorithm for classifying ABS-
Cu and ABS-Al composites. Using cross-validation 
to balance bias and variance, the study tested k 
values of 1, 2, 3, and 5, finding that higher k values 
improved accuracy. For the ABS-Cu composite, 
accuracies were 80% for k = 1 and 2, 85% for k = 
3, and 90% for k = 5, with a similar trend for ABS-
Al. The study employed Euclidean distance as the 
distance metric, using cross-validation to 
minimize validation error. Ultimately, the 
optimal configuration for the kNN model was k = 
5 with Euclidean distance, achieving the highest 
classification accuracy for both composites. 

The results of the confusion matrix in 
predicting the model were obtained with the help 
of the metrics module from the sklearn library in 
Python. In order to make accurate predictions, 
the dataset was partitioned into 80% training 
and 20% testing. The confusion matrix provides 
information about the true positive (TP), true 
negatives (TN), false positives (FP), and false 
negatives (FN) values, which give correct and 
incorrect predictions. In this study, k values of 1, 
2, 3, and 5 were used to acquire a variety of 
classification results, and the AUC-ROC curve was 
used for measurement. The AUC score for the 
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model is higher than 0.5, which means it has good 
performance as it can distinguish between the 
classes depending on feature distance. 

For estimating tensile strength in hybrid 
polymer composite data, the kNN classification 
algorithm was used because this algorithm is 
very sensitive to complex and subtle local 
structures [34]. The kNN classification algorithm 
is therefore useful in predicting tensile strength 
since it avails itself of how local areas in the 
distribution of the independent variables affect 
tensile strength. This capability is more relevant 
to hybrid polymer composites since their 
mechanical properties may be highly sensitive to 
localized influences from the constituents. For 
these reasons, the kNN classification algorithm is 
also ideal when model interpretability and 
usability are paramount. In tensile strength 
estimation, it provides a robust, non-parametric 
approach that works well with a range of data 
sources without the need for much parameter 
fine-tuning. This is advantageous because the 
relationship that exists in between the input 
features and the output may be intricate in some 
ways. Lastly, the tensile strength in hybrid 
polymer composites tends to be governed by 
non-linear synergistic, antagonistic, or additive 
components. Especially when the data set size is 
small to medium, which is frequently the case 
when conducting material science research, this 
kind of model is ideal for capturing such non-
linear relationships. The algorithm is thus ideal 
for estimating tensile strength in hybrid polymer 
composites because its operation does not 
depend on the availability of a preconceived 
model of the local details [35]. 

This makes it a good fit for studying such 
properties, as their relations are often non-linear 
and coupled. Moreover, the kNN classification 
algorithm structure tied to simple majority 
voting among surrounding start points also 
shields it from over-learning, provided it is well 
calibrated (for example, by defining the right 
value for variable k). This research aimed at 
improving the kNN classification algorithm in 
order to decrease instances of overfitting in the 
system as well as to provide the model with 
additional strengths. For the elements, as it was 
mentioned before, the choice of the value of k in 
the optimization function was tuned through the 
process of cross-validation, which allows 
minimizing both bias and variance. Feature 
normalization attempted to contribute the same 
degree of importance to the distance metric, 
while dimensionality reduction also helped 
combat and rectify the problem of the curse of 
dimensionality. Those areas include data 
cleaning, whereby noise and outliers are 
removed in order to improve the overall distance 
calculations. And for the ridge, they increased 

training data exposure so it generalized well with 
unseen data. Such collective endeavors proposed 
earlier have involved the pursuit of further 
refinements to the kNN model in terms of 
accuracy, stability, and the model’s capacity to 
generalize to new data. It has some limitations 
notwithstanding; its computational cost poses a 
possibility to limit the tensile strength dataset 
because each new data point has to be assigned a 
distance to all other data points. Additionally, the 
distances computed in this method are sensitive 
to noise or irrelevant features in the data, which 
can undermine the distance calculations and 
accurate prediction thereof. Although for many 
applications, Random Forest and Support Vector 
Machines, or any other model from the area of 
supervised learning, would be the best choice. 
The kNN classification algorithm can be superior 
in certain conditions; for instance, if the 
dimensionality of the data is low, simplicity of the 
model is preferred, and computational speed is 
not decisive. However, by removing the 
overfitting problem using different methods such 
as cross-validation, normalization of features, 
reductions of dimensions, and data 
preprocessing, kNN can cycle with fairly high 
efficiency and high stability, which makes the 
kNN classification algorithm a reasonable 
selection in some cases. In light of these 
considerations, this research chose to implement 
the kNN model. 

In this study, the normalization technique, 
Min-Max scaling, was selected as part of the 
preprocessing step in order to solve the problem 
of feature scaling that is well known to affect the 
kNN classification algorithm. This process scales 
and translates all the features to the range of [0, 
1] so that all features are given equal importance 
for the distance calculations. The normalization 
formula used is given in equation (1): 

𝑋𝑛𝑜𝑟𝑚 =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
                   (1) 

 
Where Xmax and Xmin refer to the maximum and 

minimum range and values of a feature, 
respectively. This helps avoid a situation where 
one feature controls the distance measurement, 
since features are usually measured on different 
scales, improving the efficiency of the kNN model 
and ensuring stable and reliable results for 
different data distributions. This study used 
MATLAB to generate synthetic data by adding 
random Gaussian noise to the original dataset, 
aiming to introduce variability that mimics real-
world experimental conditions. However, this 
method has limitations, including 
oversimplification of complex data distributions, 
omission of critical anomalies and nuances, 
potential privacy risks, and bias in model 
training, which may impair the generalizability of 
the findings to real-world data. To address these 
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issues, the researchers should conduct 
comparative analyses of the distributions of 
synthetic and real data using statistical tests or 
visualizations, discuss the potential biases 
introduced by the Gaussian noise in their kNN 
classification results, explore more advanced 
data generation techniques to better capture the 
representation of the data, and perform 
sensitivity analysis to evaluate model 
performance across different synthetic data 
distributions and noise levels, thereby enhancing 
the robustness of their overall approach. 

4. Results and Discussion 

The ABS polymer matrix provides the 
fundamental framework and adaptability for the 
composite. ABS is renowned for its good ductility 
and toughness, helping to prevent abrupt 
fracture by enabling the composite to absorb and 
disperse energy under tensile stress. As the ABS 
content decreases, the composite becomes less 
ductile but more rigid. Conversely, a higher ABS 
content often increases the ductility and 
hardness of the composite. The surfactant aids in 
the uniform dispersion of copper particles 
throughout the ABS matrix, ensuring an even 
distribution of loads when the composite 
experiences tensile stress. Proper application of 
the surfactant improves dispersion and 
strengthens interfacial bonding, resulting in 
increased tensile strength [36]. Copper used in 
this composite serves as reinforcement, 
dramatically improving the mechanical 
properties due to its inherent strength and 
stiffness. The result revealed that ABS-Cu 
composition with ABS of 65.05% and Cu 30% and 
with 5% surfactant material, provided the 
highest tensile strength of 41.057 N/mm² (Figure 
2(a)). This result shows clearly that tensile 
strength declines as the percentage composition 
of copper rises above this exact element. In 
general, the incorporation of copper particles 
increases the benefit of extra load capacity under 
tensile stress. Increased levels of copper can 
increase the tensile strength of the composite, 
although if the copper levels are too high, this can 
cause problems of poor matrix distribution and a 
weakened interfacial bonding to reduce the 
tensile strength [37]. This tends to agree with the 
finding highlighted above that more emphasis 
needs to be laid on determining the right 
proportion of the ABS polymer, copper 
reinforcement, and surfactant to obtain the right 
tensile properties of the polymer composite. It is 
noted that improving the uniform dispersion of 
reinforcement materials, such as copper and 
aluminium, in the ABS matrix significantly 
enhances tensile strength. 
Noninphinoethoxylate, the surfactant, ensures 
the uniform dispersion of these particles, thereby 

distributing the load evenly under tensile stress. 
This process keeps the particles from sticking 
together badly and making the composites less 
strong. Additionally, it improves the bonding at 
the point where the ABS polymer meets the metal 
particles. This makes it easier to control the 
transfer of stress and makes the composite less 
likely to deform. In addition, the surfactant 
enhances the material integrity of the whole by 
enhancing the homogeneity of the mixture, 
thereby enhancing tensile strength. 
Consequently, stronger, more durable 
composites capable of handling higher 
mechanical loads in various mechanical 
applications are obtained. The ABS-Al composite 
containing 64.85% ABS, 30.10% Al, and 4.92% 
surfactant material possessed the highest tensile 
strength of 27.95 N/mm². This shows that the 
tensile strength is reducing as the percentage of 
aluminium in the polymer matrix increases. The 
composite’s reinforcing phase, which is 
constituted by aluminium particles, gives the 
composite material higher levels of strength and 
stiffness. Aluminium improves the composite’s 
ability to carry increased tensile loads due to a 
better strength-to-weight ratio. As indicated in 
the previous sections, the degree of aluminium 
dispersion and concentration also determines the 
total tensile strength. Typically, composites with 
a higher aluminium content are stronger, but an 
excessive aluminium concentration without a 
balanced matrix material can lead to brittleness 
[38]. The hybrid polymer composites containing 
copper as the reinforcement exhibited higher 
tensile strength compared to those with 
aluminium reinforcement. 

The heatmap illustrates the correlation 
between the percentage compositions of ABS, 
copper, and surfactant material and their impact 
on the tensile strength of the ABS-Cu composite 
(Figure 3(a)). The analysis indicates that the ABS 
composition has a significant effect on tensile 
strength, while the influence of the surfactant 
material (noninphinoethoxylate) is relatively 
minor, as confirmed by the F-test (Figure 3(b)). In 
contrast, for the ABS-Al composition, the 
surfactant material has a substantial impact on 
tensile strength, followed by the percentages of 
ABS and copper, as shown in the F-test results 
and heatmap correlation matrices in Figures 4(a) 
and 4(b). The surfactant has a relatively minor 
impact on the tensile strength of pure ABS. 
However, its influence becomes substantially 
more significant in ABS-aluminium and ABS-
copper composites. This is likely due to the 
surfactant's ability to modify the interaction 
between the polymer matrix and the metal 
particles, facilitating enhanced dispersion, 
adhesion, and overall material integrity. In the 
ABS-Al and ABS-Copper compositions, the 
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surfactant aids in achieving more homogeneous 
mixtures, which directly contributes to improved 
mechanical properties, including tensile strength. 
This assertion is supported by the statistical 
significance observed in the relevant analyses, 
such as the F-test and heatmap correlation 
matrices. The kNN regression models for various 
values of 'k' demonstrated greater accuracy 
compared to other classification models, such as 
the support vector classifier, decision tree 
classifier, and logistic regression. Therefore, the 
kNN classification algorithm model was chosen 
as the preferred method. 

ABS-Cu and ABS-Al composites offer 
improved tensile strength and rigidity compared 
to pure ABS. Figure 5 shows the results of the 
tensile test on different ABS-Cu compositions: (a) 
ABS 65% + copper 60%, (b) ABS 44% + copper 
50%, and (c) ABS 23% + copper 70%. Similarly, 
Figure 6 shows the results of the tensile test on 
different ABS-Al compositions: (a) ABS 65% + 
aluminium 30%, (b) ABS 44% + aluminium 50%, 
and (c) ABS 23% + aluminium 70%. These 
composites provide better thermal management 
due to the metallic fillers. ABS-Cu, in particular, 
adds electrical conductivity, which can be useful 
for certain electronic applications. However, 
production is more expensive due to the cost of 
metal fillers and additional processing 
requirements. 
Non-metallic fillers, that is, non-metal fillers, also 
reduce the weight of the composite compared to 
metal-filled composites. However, environmental 
interaction may lead to the oxidation of metals, 
compromising the long-term stability of the 
structure [39]. In total, both ABS-Cu and ABS-Al 
composites exhibit better mechanical and 
thermal properties than the base polymer, 
although they are more expensive, and the Cu-
filled material is vulnerable to corrosion. This 
reduced the bias of the model for the kNN 
classification algorithm, especially due to its 
sensitivity to training data sets, which increased 
the reliability when identifying the performance 
of the models using K-Fold Cross-Validation. In 
this approach, the model was trained and 
validated based on a different split of the data for 
each fold, whereas in the previous approach, the 
data was split into an equal number of folds [40, 
41]. This method was more informative than the 
previous one because it presented the model 
accuracy on the different test data sets, which 
trained the model with different test divisions as 
compared to the train-test division. 

4.1. Hyperparameter Tuning 

Some of the parameters included are k, the 
number of nearest neighbours to include in the 
final model; the distance function; and the 
function used to weight the nearest neighbours’ 

points. The number k of neighbours is crucial—if 
set too small, the model becomes overly sensitive 
to noise; if set too large, the model may overlook 
important patterns. The graph plots the accuracy 
or error rate of the model against the different k 
components of cross-validation to select the 
perfect k [42]. The implementation of the 
selected distance function, which increases with 
dimensionality, is also a crucial consideration. 
Different metrics are tried, and cross-validation 
is used to find out which one of them gives the 
least validation error. Moreover, the kNN 
classification algorithm permits a degree of 
flexibility in neighbour contribution, where 
higher degrees of distance are likely to have a 
minor influence from the neighbouring samples. 
The ability of cross-validation can also be 
employed in order to compare the impacts of the 
distance-based weighting scheme and the 
uniform weighting scheme on the model. 

4.2. Mitigating Overfitting 

Nonetheless, there are different measures taken 

in the kNN classification algorithm in order to 

reduce the issue of overfitting. First, choosing the 

variable k is crucial, as a higher k value reduces 

variance and overfitting but simultaneously 

increases bias if set at k > 1. Furthermore, feature 

scaling is crucial because the kNN classification 

algorithm depends on the scaling of the features; 

standardizing or normalizing all the features will 

minimize the likelihood of overfitting because 

one feature will not dominate the distance 

measurements. Last, regarding the high 

dimensionality of data, to reduce this course, 

which is likely to cause overfitting, Principal 

Component Analysis (PCA) or feature selection 

can be used to limit the overall number of 

features through which the model tends to focus 

[43]. 

4.3. Model Evaluation Metrics 

While measuring the accuracy of a model to solve 

classification problems, it is crucial to not only 

use the basic evaluation criteria, such as 

precision rate, recall rate, or F1 rate, but also to 

use a confusion matrix in order to recognize the 

kind of mistakes that a model makes during 

classification. It does so in a way that yields more 

subtle information than simply the measure of 

accuracy. When it comes to two-class 

classification problems, the ROC curve must be 

plotted and the AUC calculated as well. The ROC 

curve specifically tracks the true positive rate 

compared to the false positive rate for different 

thresholds of the model, thereby improving its 
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comprehension of the model’s ability to classify 

between two classes [44]. 

 

Fig.3. (a) ABS-Cu composition heatmap 

 
Fig.3. (b) F-test for ABS-Cu selection 

 

Fig. 4. (a) ABS-Al composition heatmap 

 

Fig.4 .(b) F-test for ABS-Al selection 

 

Fig. 5. (a) ABS-Cu (65% ABS + 60% Copper) after the tensile 
test, (b) ABS-Cu (44% ABS + 50% Copper) after the tensile 

test, and (c) ABS-Cu (23% ABS + 70% Copper) after the 
tensile test  

 

Fig. 6. (a) ABS-Al (65% ABS + 30% aluminium) after the 
tensile test, (b) ABS-Al (44% ABS + 50% aluminium) after 

the tensile test, and (c) ABS-Al (23% ABS + 70% aluminium) 
after the tensile test 

4.4. Classification of Machine Learning: ABS-
Cu 

In this study, the kNN classification algorithm 

was employed to predict the tensile strength of 

the ABS-Cu composite material, demonstrating 

promising results with varying values of k. The 
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kNN classification algorithm model achieved 

accuracies of 80%, 80%, 85%, and 90% for k 

values of 1, 2, 3, and 5, respectively, as shown in 

Figures 6(a)-(d). These conclusions indicate that 

the quality of the model increases with the 

number of neighbors, adding to the attraction of 

smoother and more generalized approximations 

[45]. The kNN classification algorithm involves 

finding the length of the straight line between a 

given test data point and its neighbors in the data 

set, and classifying any given test data point to the 

tensile strength category by finding the mean of 

the nearest neighbor’s tensile strength. To 

identify the classification boundary for this 

system, the average tensile strength of the ABS-

Cu composition was defined to be 37.01 N/mm²; 

any composition that had a tensile strength above 

this value was assigned a value of true positive 

(indicated as 1); any composition below this 

value was assigned a value of true negatives 

(indicated as 0). The classification of each 

prediction is evaluated using a confusion matrix, 

which helps identify the four possible outcomes: 

FN (false negatives) are in the bottom-left 

quadrant, TP (true positives) are in the bottom-

right quadrant, TN (true negatives) are in the top-

left quadrant, and FP (false positives) are in the 

top-right quadrant. The aforementioned 

confusion matrix analysis demonstrates the 

model's overall comprehension, particularly in 

predicting the classification categories of the 

collected products. A model with a reasonably 

adequate predictive power is evident from the 

confusion matrix of the ABS-Cu composite with a 

‘k’ value of 1, shown in Figure 7 (a). It 

demonstrates high accuracy in correctly 

classifying instances as both "True" (TP: 7) and 

"False" (TN: 9). However, the model exhibits 

some misclassification with a few instances 

incorrectly predicted as "True" when they were 

actually "False" (FP: 1) and vice versa (FN: 3). 

Considering the confusion matrix, the best model 

with the k value of 2 has a very high accuracy 

(Figure 7 (b)). It does so with rather excellent 

accuracy, as evidenced by the high TP and TN 

values above.  

Notably, there are no false positives (FP: 0), 

meaning the model never incorrectly predicted 

an instance as "True" when it was actually 

"False". However, there are a few false negatives 

(FN: 4), indicating that the model misclassified 

some instances as "False" when they were 

actually "True". Overall, the model with k = 2 

demonstrates a high level of accuracy and a 

strong ability to correctly classify instances, 

particularly in avoiding false positives. Based on 

the confusion matrix, the model with a k value of 

3 exhibits a very good performance (Figure 7 (c)). 

It correctly identifies most of the instances, as 

indicated by the high TP and TN values. While 

there are a few misclassifications (FP: 1 and FN: 

2), the model demonstrates a strong ability to 

correctly classify instances. This suggests that a k 

value of 3 might be a suitable choice for this 

particular model and dataset, as it balances 

accuracy with a low number of misclassifications. 

Based on the confusion matrix, the model with a 

k value of 5 exhibits excellent performance 

(Figure 7 (d)). It correctly identifies most of the 

instances, as indicated by the high TP and TN 

values. Notably, there are no false positives (FP: 

0), meaning the model never incorrectly 

predicted an instance as "True" when it was 

actually "False". While there are a few false 

negatives (FN: 2), indicating that the model 

misclassified some instances as "False" when 

they were actually "True", the overall 

performance is strong. The confusion matrix 

analysis reveals that the kNN classification 

algorithm models with k values of 2, 3, and 5 

exhibit strong predictive performance for the 

ABS-Cu composite. The k = 2 model demonstrates 

excellent accuracy, with high true positive and 

true negative rates and no false positives. The k = 

3 model also shows very good performance, 

correctly identifying most instances. The k = 5 

model exhibits excellent overall performance, 

with high accuracy and no false positives, though 

a few false negatives. These results suggest that k 

values of 2, 3, or 5 may be suitable choices for this 

dataset, as they provide a balance of high 

accuracy and low misclassification.  

Table 3 shows the classification report where the 

precision and recall values for tensile strength 

predictions consistently exceeded 0.80, 

confirming the model’s high degree of accuracy in 

predictions. Precision shows the share of true 

positives returned among all positive predictions, 

while recall describes how precise the model is 

when it predicts the true positives among all 

actual positive cases. Both metrics over 0.80 

mean a highly effective model, which suppresses 

false positives and captures most of the true 

positive cases. This indicator further strengthens 

its reliability in predicting the tensile strength of 

the ABS-Cu material as the model's overall 

accuracy remains consistent at 80% or higher. 

The tensile strength of the ABS-Cu material was 

estimated using the model, and its accuracy 

increased to 80% or more. The performance of 
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the model supports its reliability in the tensile 

strength of the estimated ABS-Cu material. The 

AUC-ROC curve of 0.7285 enhances the outlook 

for the classifier, specifically for the kNN 

classifier. This performance measure is used in 

the context of model assessment, where the 

closer to one is used to imply better diagnosis of 

a given classification model. An AUC ROC of the 

value 0.7285 indicates that the kNN classification 

algorithm model is capable of providing 

dependable distinction between the true positive 

and true negative classifications to predict the 

tensile strength of ABS-Cu. Further shown in 

Figure 7 (e) is the AUC-ROC worktable, exhibiting 

a good balance of sensitivity and specificity in the 

preferred model to give away [46]. Therefore, the 

kNN classification algorithm in this study showed 

high and stable predictive accuracy for the 

predictions of the tensile strength of the ABS-Cu 

composite material. Network generalization 

ability is good, and for different k values, the 

model is stable and reliable. K=5 is the best 

determination of accuracy, reaching 90% [47]. 

Therefore, the observed high prediction accuracy 

with relatively high precision, recall, AUC-ROC, 

and the confusion comparison attests to the fact 

that the kNN classification algorithm has 

correctly captured most of the underlying 

features of the tensile strength identification in 

similar composites, thus affording a powerful 

tool for trending future composite studies. 

 

Fig. 7. (a) ABS-Cu confusion matrix for k value of 1 

 

Fig. 7. (b) ABS-Cu confusion matrix for k value of 2 

 

Fig. 7. (c) ABS-Cu confusion matrix for k value of 3 

 

Fig. 7. (d) ABS-Cu confusion matrix for k value of 5 
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Fig. 7. (e) AUC vs ROC curve for ABS-Cu 

4.5. Classification of Machine learning: ABS-Al 

The kNN classification algorithm was also 

employed in this study to predict the tensile 

strength of the ABS-Al composite material. The k-

fold cross-validation results for both the ABS-Cu 

and ABS-Al models are presented in Figure 8. 

Similar to the results for the ABS-Cu composition, 

the kNN classification algorithm model 

demonstrated promising performance across 

various values of k, achieving classification 

accuracies of 80%, 80%, 85%, and 90% for k=1, 

2, 3, and 5, respectively, as illustrated in Figures 

9 (a)-(d). The confusion matrix for the ABS-Al 

composite with a k value of 1 demonstrates a 

relatively satisfactory model performance. The 

model correctly identifies a majority of instances 

as both "True" (TP: 7) and "False" (TN: 9), 

indicating high accuracy (Figure 9 (a)). However, 

there are instances where the model misclassifies 

data, with some instances incorrectly predicted 

as "True" when they were actually "False" (FP: 1) 

and vice versa (FN: 3). These misclassifications 

suggest potential areas for improvement through 

further model tuning and parameter 

optimization. Based on the confusion matrix, the 

model with a k value of 2 exhibits excellent 

performance. It correctly identifies most of the 

instances, as indicated by the high TP and TN 

values. Notably, there are no false positives (FP: 

0), meaning the model never incorrectly 

predicted an instance as "True" when it was 

actually "False". However, there are a few false 

negatives (FN: 3), indicating that the model 

misclassified some instances as "False" when 

they were actually "True" (Figure 8 (b)). Overall, 

the model with k = 2 demonstrates a high level of 

accuracy and a strong ability to correctly classify 

instances, particularly in avoiding false positives. 

Based on the confusion matrix, the model with a 

k value of 3 exhibits excellent performance. It 

correctly identifies most of the instances, as 

indicated by the high TP and TN values (Figure 

8(c)). Notably, there are no false positives (FP: 0), 

meaning the model never incorrectly predicted 

an instance as "True" when it was actually 

"False". While there are a few false negatives (FN: 

3), indicating that the model misclassified some 

instances as "False" when they were actually 

"True", the overall performance is strong. This 

suggests that a k value of 3 might be a suitable 

choice for this particular model and dataset, as it 

balances accuracy with a low number of 

misclassifications and demonstrates a high level 

of reliability in avoiding false positives. Based on 

the confusion matrix, the model with a k value of 

5 exhibits excellent performance. It correctly 

identifies most of the instances, as indicated by 

the high TP and TN values. Notably, there are no 

false positives (FP: 0), meaning the model never 

incorrectly predicted an instance as "True" when 

it was actually "False". While there are a few false 

negatives (FN: 3), indicating that the model 

misclassified some instances as "False" when 

they were actually "True", the overall 

performance is strong (Figure 9(d)). This result 

suggests that a k value of 5 might be a suitable 

choice for this particular model and dataset, as it 

balances accuracy with a low number of 

misclassifications and demonstrates a high level 

of reliability in avoiding false positives. The 

confusion matrix analysis reveals that the kNN 

models with k values of 2, 3, and 5 exhibit strong 

predictive performance for the ABS-Al 

composite. 

The k = 2 model is equally accurate, with very 

high true positive and true negative rates and no 

false positives. With the k = 3 model, excellent 

performance with most of the instances being 

correctly identified without producing any false 

positives, but a small number of false negatives. 

For the k = 5 model, the overall performance is 

high, with accuracy (90%) and zero false 

positives, but a few false negatives. The results 

indicate that k values of 2, 3, or 5 might be 

appropriate choices for this dataset since they 

produce high accuracy at the lowest 

misclassification rates. This higher performance 

with larger k values is probably due to better 

generalization of the model, which yields less 

impact from outliers or data noise that would 

lead to more reliable predictions [48]. The kNN 

classification algorithm works by computing the 

Euclidean distance between a test data point and 
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its nearest neighbors. Consequently, it classifies 

the test data point based on whether its tensile 

strength is above or below the average tensile 

strength of its nearest neighbors. For the case of 

ABS-Al, the classified process was to determine if 

the tensile strength of a given sample was above 

or below the tensile strength average. True 

positives were labelled as the predictions higher 

than the average tensile strength, and false 

positives were for predictions below. This binary 

classification is evaluated through a confusion 

matrix, which helps identify the four quadrants: 

true negatives, false negatives, true positives, and 

false positives. The detailed class report includes 

all these key evaluation metrics, such as 

precision, recall, F1 score, and support, as shown 

in Table 4. For the tensile strength predictions for 

the ABS-Al composition, the precision and recall 

values were both very high, greater than 0.80, 

which indicates that the model is very good at 

flagging true positives and not flagging false 

positives. Precision refers to the ratio of correctly 

predicted positives to total predicted positives, 

and recall represents the percentage of positives 

that the model accurately identifies. These 

metrics suggest that the kNN model is both 

accurate and can be relied upon to predict the 

tensile strength of the ABS-Al composite. 

Moreover, a further confirmation of the balanced 

performance of the model is also proven by the 

F1 score, which combines precision and recall in 

a single measure [49]. It can be concluded that the 

ABS-Al composition exhibits good model 

performance with the AUC-ROC value of 0.8662. 

The AUC-ROC curve is also important when 

comparing the accuracy of a classifier; the closer 

to 1 the value of AUC-ROC, the higher the 

classifier’s diagnostic accuracy. This value tells 

that the model is capable of distinguishing 

between positive and negative true outcomes. 

The AUC-ROC value, which is highly significant as 

depicted in Figure 9 (e), strengthens the 

comprehension of a high level of confidence in 

the tensile strength of ABS-Al as predicted by the 

kNN classifier. Consequently, the kNN 

classification algorithm tested consistently and 

predictably high-performance rates in estimating 

the tensile strength of the ABS-Al composite. Both 

data sets yield a high accuracy rate of up to 90% 

at k = 5, which shows that the prediction quality 

of the model is quite good, as evident from the 

high values of precision = 0.93, recall = 0.92, and 

F1 score = 0.92. The following AUC-ROC value, 

equal to 0.8662, supports the fact that the model 

is of high accuracy and can predict the tensile 

strength in the composition of ABS-Al. These 

results described here show that the kNN 

classification algorithm is promising for 

predicting the tensile strength of composite 

materials and may be applied to other material 

science investigations where similar phenomena 

are observed. 

 

Fig. 8. k-fold cross-validation (a) ABS-Cu and (b) ABS-Al  

 

Fig. 9. (a) ABS-Al confusion matrix for k value of 1 
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Fig. 9. (b) ABS-Al confusion matrix for k value of 2 

 

Fig. 9. (c) ABS-Al confusion matrix for k=3 

 

Fig. 9. (d) ABS-Al confusion matrix for k=5 

 

Fig.9. (e) AUC vs ROC curve for ABS-Al 

4.6. Microstructural observation 

In this section, the microstructural features of the 

ABS-Cu and ABS-Al composites were analyzed 

using SEM for the optimized parameters. In the 

case of the ABS-Cu composite, the optimized 

combination identified is 65.05% ABS+30% 

Cu+5% surfactant material. In the case of the 

ABS-Al composite, the optimized combination 

identified is 64.85% ABS+30.10% Al+4.92% 

surfactant material. SEM analysis of injection-

molded ABS-Cu composite shows that Cu 

particles aid efficient stress transfer and help 

improve the load-bearing capacity, leading to 

optimum tensile strength (Figure 10 (a)). 

Furthermore, the design of the clean particle-

matrix interface also facilitates effective stress 

transmission and reduces the chance of 

debonding or voids that may lead to the 

weakening of the composite. Nevertheless, ABS 

matrix cellular morphology characterized by 

indications of crystallization has a two-sided 

effect: it enhances stiffness, but at the cost of 

ductility and tensile strength. The composite in 

this way presents impressive tensile strength, but 

more evaluations of the matrix morphology 

dependence are necessary. Once the optimal 

copper particle content in the ABS matrix is 

exceeded, the tensile strength can be diminished 

for a variety of reasons. At higher Cu particle 

concentrations, Cu particles can agglomerate, 

which disrupts the Cu dispersion and also results 

in localized stress concentrations that weaken 

the composite. Moreover, the excess Cu content 

decreases the load-bearing capacity of the ABS 

matrix, resulting in a loss of structural integrity. 

Further, particle packing is greater, leading to 

poor interfacial bonding between the particle and 

matrix, resulting in voids or debonding in the 

composite and thus weakening it. Moreover, 

while Cu particles strengthen the composites, this 

also enhances brittleness, reducing the capability 

of the matrix to take in energy and, therefore, 

making it more likely to crack or fracture in the 

development and thus decreasing the overall 

strength in tension. In the same way, an SEM 

analysis of the injected ABS–Al composite shows 

that the Al particles are evenly distributed within 

the ABS matrix (Figure 10 (b)). This makes the 

load-bearing capacity and stress transfer higher, 

which means that the composite has a high 

tensile strength. The absence of a clean particle-

matrix interface also indicates minimal voids or 

debonding and enables stress transfer. The 

cellular morphology of the ABS matrix 

(spherulitic growth) is characterized by mixed 

influence, as it can enhance stiffness but does 

decrease ductility and reduce the overall tensile 

strength. Several factors exist that can diminish 

the tensile strength when increasing the 
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aluminium particle content of the ABS matrix 

above an optimal level. Agglomeration of 

particles at higher concentrations causes 

disruption in the homogeneous particle 

distribution to localize stress concentrations in 

the composite, reducing the strength of the 

material. Furthermore, with excessive Al loading, 

the loading continuity and load-bearing capacity 

of the ABS matrix can be reduced, and 

consequently, the overall tensile strength of the 

composite can decline. Additionally, increased 

particle addition can cause bonding issues at the 

particle–matrix interface, resulting in voids or 

debonding. In addition, because additional Al 

content helps increase the stiffness of the 

composite, there is a risk of severely reducing the 

tensile strength such that the composite is prone 

to cracking and failure under tensile stress. 

 

Fig. 10. SEM image of (a) ABS-Cu and (b) ABS-Al composites 
fabricated from optimized parameter combinations 

4.7.  Confirmation Test 

The tensile strength results for ABS-Cu and ABS-

Al composites are shown in Table 5, with kNN 

classification algorithm predicted values 

alongside the actual experimental results. 

Similarly, for both the composites, it can be seen 

that the kNN model has a fairly good accuracy, 

where the predicted values seem to be in close 

agreement with the experimental measurements. 

Nonetheless, the prediction error for the ABS-Cu 

composite is slightly smaller (2.94%) compared 

to the ABS-Al composite (3.99%). These results 

indicate that the kNN model can be a useful tool 

for predicting the tensile strength of these 

composites and thus a potential application of 

this method for material design and optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 1. Tensile strength observation for ABS-Cu composites 

S.No. 
ABS - Acrylonitrile 
Butadiene Styrene (%) 

Cu - Copper (%) Surfactant 
Material (%) 

Tensile 
Strength 
(N/mm2) 

1 43.98 49.95 6.01 35.74 
2 23.01 69.90 6.91 37.98 
3 64.98 29.91 5.02 35.84 
4 65.05 30 5 41.057 
… … … … … 
100 44.04 50.05 5.89 35.60 

 

Table 2. Tensile strength observation for ABS-Al composites 

S.No. 
ABS - Acrylonitrile 

Butadiene Styrene (%) 

Al - Aluminium (%) Surfactant 
Material (%) 

Tensile 
Strength 

(N/mm2) 
1 43.98 49.90 6.18 10.76 
2 22.85 69.94 7.09 10.60 
3 65.02 30.03 5.06 19.52 
4 64.85 30.10 4.92 27.95 
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… … … … … 
100 43.95 49.97 5.89 10.85 

 

Table 3. Classification report for ABS-Cu 

Classifier Precision 
Re call 

F1 score Support 

1 1.0 0.800 0.890 10 
0 0. 830 1 0.910 10 

Accuracy NIL NIL 0.900 20 
Macro 

Average 
0.920 0.900 0.900 20 

Weight 
Average 

0.920 0.900 0.900 20 

Table 4. Classification report ABS-Al 

Classifier Precision 
Re call 

F1 score Support 

1 1.0 0.70 0.82 10 
0 0.770 1 0.87 10 

Accuracy NIL NIL 0.85 20 
Macro in 
Average 

0.88 0.85 0.85 20 

Weight in 
Average 

0.88 0.85 0.85 20 

Table 5. Confirmatory test results of composites 

Composite Optimized parameters 
Tensile strength (N/mm2)  Error 

(%) kNN Experimental 
ABS – Cu 

Composite 
65.05% ABS+30% Cu+5% 

surfactant material   
41.057 42.301 2.94 

ABS – Al 
Composite 

64.85% ABS+30.10% 
Al+4.92% surfactant 

material 
27.95 29.115 3.99 

 

5. Conclusions 

This work examined the influence of various 
combinations of ABS, aluminium, and copper on 
the tensile strength of the developed ABS-Cu and 
ABS-Al composites. The following is the summary 
of the key findings of the study. 

• The tensile strength of the composites 
recycled from ABS, copper, and surfactants was ∼ 
30%, while the same from ABS, aluminium, and 
surfactants was ∼ 75%. 

• The tensile strength predictions were 
made using the machine learning classification 
techniques, and the confusion matrix obtained 
had nearly 100% true positive, true negative, 
false positive, and false negative. 

• The study’s major findings demonstrate 
the efficacy of the K-Nearest Neighbors (KNN) 
classification algorithm in predicting the tensile 
strength of ABS composites with high accuracy. 
For ABS-Cu composites, prediction accuracy was 
80% for k=1 and k=2, improving to 85% for k=3 
and k=5, while ABS-Al composites showed 
similar trends with accuracies of 80% for k=1 and 
k=2, 85% for k=3, and reaching 90% for k=5. The 
KNN model achieved a recall of over 80% and an 
F1 score between 90-95%, indicating robust 

predictive performance. The optimal 
composition for ABS-Cu was identified as 65.05% 
ABS, 30% Cu, and 5% surfactant, yielding the 
highest tensile strength of 41.057 N/mm2, 
whereas the ABS-Al composite with 64.85% ABS, 
30.10% Al, and 4.92% surfactant achieved a 
tensile strength of 27.95 N/mm2. Overall, the 
KNN model exhibited strong accuracy, with 
prediction errors of 2.94% for ABS-Cu and 3.99% 
for ABS-Al, closely aligning with experimental 
results and confirming the model’s reliability in 
predicting composite material properties. 

• The findings from this study 
demonstrate that surfactants significantly 
improve the dispersion of metal particles and the 
adhesion between the matrix and fillers, leading 
to composites with superior mechanical 
properties. These hybrid ABS composites could 
be used for connector terminals. 

• The research concludes that composites 
made of ABS with higher proportions of copper 
or aluminium substantially increase their tensile 
strength and hence contribute to the 
development of tougher ABS-based composites 
for engineering use. ABS-Cu and ABS-Al 
composites offer enhanced tensile strength, 
making them ideal for applications requiring high 



 

17 

tensile force resistance. ABS-Cu composites also 
provide electrical conductivity, beneficial for 
electronic uses. Potential applications include the 
automotive, aerospace, and electronics 
industries. Specifically, ABS-Cu can be used in 
electrical connectors, conductive elements, and 
electromagnetic interference shielding, while 
ABS-Al is suitable for lightweight structural 
components and heat sinks. However, before 
industrial adoption, additional mechanical 
properties such as fatigue strength, impact 
resistance, hardness, wear resistance, and 
flexural strength need to be studied. 

• Future investigations will compare the 
results with other models, such as Support Vector 
Machines, Decision Trees, and Random Forest, to 
provide a more comprehensive analysis. 
Additionally, it would be valuable to study the 
long-term performance of ABS-Cu and ABS-Al 
composites, including the effects of aging and 
environmental factors like moisture or UV 
exposure on tensile strength, by conducting 
accelerated aging tests and measuring tensile 
strength over time. 

Nomenclature 

 

kNN k-Nearest Neighbouring 

ABS Acrylonitrile Butadiene Styrene  

AM Additive Manufacturing  

IM Injection Moulding 

PMMA polymethylmethacrylate 
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