
تعداد نشریات | 21 |
تعداد شمارهها | 641 |
تعداد مقالات | 9,357 |
تعداد مشاهده مقاله | 68,001,467 |
تعداد دریافت فایل اصل مقاله | 27,499,333 |
Effects of defects on axial fatigue strength of steel samples and supports produced by additive manufacturing | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 27 تیر 1404 اصل مقاله (1.53 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.32985.4908 | ||
نویسندگان | ||
Ali Nadaf Fard؛ Abdul Reza Rasti Talab* | ||
Department of Mechanics, Dariun Branch, Islamic Azad University, Dariun, Iran | ||
تاریخ دریافت: 25 دی 1402، تاریخ پذیرش: 09 اردیبهشت 1403 | ||
چکیده | ||
Many materials such as steel, aluminium and titanium alloys can be realised by powder bed solutions, melting subsequently powder layers utilizing laser or electron beam (Laser Beam Melting LBM and Electron Beam Melting EBM). The microstructure is realised by layer-by-layer solidification. Having a high cooling rate cannot be considered isotropic. Therefore, the mechanical properties could be influenced by the building direction. Regarding maraging steel, the study of the influence of the building direction and the heat treatment on the static and axial fatigue strength has been investigated in a previous contribution. A large scatter of the fatigue test results was found because of the presence of detrimental and subsurface defects. This contribution aims to present additional axial fatigue-test results of maraging steel characterized by different build orientations and provide an analysis of the defects observed at the crack initiation area of the fracture surface. | ||
کلیدواژهها | ||
Effects؛ defects؛ fatigue؛ strength؛ supports | ||
مراجع | ||
[1] A. Annarelli, C. Battistella, and F. Nonino, A framework to evaluate the effects of organizational resilience on service quality, Sustainability 12, no. 3 (2020), 958. [2] M.J. Donachie, Titanium: A Technical Guide, ASM International, 2000. [3] J.F. Hair Jr, G.T.M. Hult, C.M. Ringle, M. Sarstedt, N.P. Danks, and S. Ray, Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook, Springer Nature, 2021. [4] R. Koneˇcn´a, G. Nicoletto, L. Bubenko, and S. Fintova, A comparative study of the fatigue behavior of two heat[1]treated nodular cast irons, Eng. Fract. Mech. 108 (2013), 251–262. [5] J.J. Lewandowski and M. Seifi, Metal additive manufacturing: a review of mechanical properties, Ann. Rev. Mater. Res. 46 (2016), no. 1, 151–186. [6] G. Nicoletto, S. Maisano, M. Antolotti, and F. Dall’Aglio, Influence of post fabrication heat treatments on the fatigue behavior of Ti-6Al-4V produced by selective laser melting, Procedia Struct. Integrity 7 (2017), 133–140. [7] D. Suryaningtyas, A. Sudiro, E.A. Troena, and D.W. Irawanto, Organizational as mediating effect of organizational resilience: Culture and organizational performance, Proc. 1st Sampoerna University-AFBE Int. Conf., SU-AFBE 2018, Jakarta, Indonesia, European Alliance for Innovation, 2019. [8] D.D. Woods, Four concepts for resilience and the implications for the future of resilience engineering, Reliab. Engin. Syst. Safety 141 (2015), 5–9. [9] W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Mater. 85 (2015), 74–84. [10] A. Yadollahi and N. Shamsaei, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, Int. J. Fatigue 98 (2017), 14–31. | ||
آمار تعداد مشاهده مقاله: 6 |