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Abstract

Nonlinear regression models find extensive applications across various scientific disciplines. It is crucial to accurately fit
the optimal nonlinear model while taking into account the biases inherent in the Bayesian optimal design. By utilizing
the Dirichlet process as a prior, we present a Bayesian optimal design. The Dirichlet process serves as a fundamental
tool in the exploration of Nonparametric Bayesian inference, offering multiple representations that are well-suited
for application. This research paper introduces a novel one-parameter model, referred to as the ”Unit-Exponential
distribution”, specifically designed for the unit interval. Additionally, we employ a representation to approximate
the D-optimality criterion, considering the Dirichlet process as a functional tool. Through this approach, we aim to
identify a Nonparametric Bayesian optimal design.
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1 Introduction

Within the realm of experimental design, the concept of optimal design refers to a specific category of designs
that are classified based on certain statistical criteria. It is widely acknowledged that a well-designed experiment
can significantly enhance the accuracy of statistical analyses. Consequently, numerous researchers have devoted their
efforts to developing optimal designs for nonlinear regression models. Experimental design plays a pivotal role in
scientific research domains, including but not limited to biomedicine and pharmacokinetics. Its application in these
fields enables researchers to conduct rigorous investigations and yield valuable insights.

Optimal designs are sought using optimality criteria, typically based on the information matrix. Until 1959,
research primarily focused on linear models, where the models were linear concerning the parameters. However, in
nonlinear models, the presence of unknown parameters introduced complexities in the design problem, as the optimality
criteria depended on these unknown parameters [3]. To address this challenge, researchers proposed various solutions,
including local optimal designs [1], sequential optimal designs, minimax optimal designs, Bayesian optimal designs
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[15]and pseudo-Bayesian designs [14]. Chernoff [9] introduced the concept of local optimality, which involves specifying
fixed values for the unknown parameters and optimizing a function of the information matrix to determine the design
for these specified parameter values. This approach aimed to overcome the difficulties associated with the dependence
of the design problem on unknown parameters in nonlinear models.

The selection of unknown parameters in local designs is typically obtained from previous studies or experiments
specifically conducted for this purpose. The effectiveness of local designs heavily relies on the appropriate selection of
these parameters. However, a significant challenge arises when the investigated problem lacks robustness concerning
weak parameter estimation. To address this, an alternative approach for local optimal designs involves utilizing a prior
distribution for the unknown parameters instead of relying solely on an initial guess. In the Bayesian method, the first
step is to represent the available information in the form of a probability distribution for the model parameter, known
as the prior distribution. A Bayesian optimal design aims to maximize the relevant optimality criterion over this prior
distribution. Nevertheless, it is crucial to acknowledge that the selection of the prior distribution within the Bayesian
framework can be problematic and may potentially lead to erroneous results. The choice of the prior distribution
is subjective, relying on the researcher’s beliefs, and it significantly influences the final outcome. Unfortunately,
the Bayesian approach lacks a definitive method for selecting the prior distribution. Numerous researchers have
investigated the effect of the prior distribution on determining design points in various types of optimal designs. For
instance, Chaloner and Lorentz [7], Chaloner and Duncan [6], Burghaus and Dette [5], Chaloner and Vardinelli [8],
Pronzato and Walter [16], Mukhopadhyay and Haines [14], Dette and Ngobauer [10], Fedorov [11], and Firth and
Hinde [13] have contributed extensively to this field. Chapter 18 of Atkinson et al.’s book [2] provides further reading
on this topic. Moreover, in situations where there is insufficient evidence from previous studies on the topic of interest,
specifying an appropriate prior distribution becomes challenging. In such cases, subjective or noninformative prior
distributions are used, incorporating all available information regarding the uncertainty of the parameter values. For
more information, refer to Burghaus and Dette [5].

This research paper presents the introduction of a novel one-parameter model, referred to as the UE distribution,
specifically designed for the unit interval in section 2. In Section 3, the optimal design for nonlinear models is derived.
In the fourth section, the nonparametric Bayesian D-optimal design, the Dirichlet process and the Polya Urn Scheme
are introduced. Finally, Section 5 concludes the paper with some closing remarks.

2 The Unit-Exponential distribution

The exponential distribution is continuous distribution in statistics and probability theory. If Y ∼ Exp(θ), then

using the transformation X=
Y

1 + Y
we have a new distribution with support on the unit-interval that the CDF and

the PDF of the resulting distribution are respectively:

F (x | θ) = 1− Exp(
−θx
1− x

); 0 ≤ x < 1, θ > 0, (2.1)

f(x | θ) = θ

(1− x)2
Exp(

−θx
1− x

); 0 ≤ x < 1, θ > 0. (2.2)

The Hazard Rate Function (HRF) of this distribution is as follows:

h(x | θ) = f(x | θ)
1− F (x | θ)

=
θ

(1− x)2
; 0 ≤ x < 1, θ > 0. (2.3)

In the following figure, the PDF and the HRF of this distribution are plotted for different values of the parameter
θ. Acording to this figurs, it can be seen that the HRF is increasing in 0 ≤ x < 1,.

3 Optimal Design for Nonlinear Models

In the context of nonlinear experimental design, a common issue arises where the relationship between the response
variable y and the independent variable x is given by the equation y = η(x,θ)+ ϵ where x ∈ χ ⊆ R and y is a response
variable and θ ∈ Θ is the unknown parameter vector and ϵ is a normally distributed residual value with mean 0 and
known variance σ2 > 0. For simplicity, we assume σ2 = 1 in this problem. If η(x,θ) is differentiable with respect to
θ then, the information matrix at a given point x can be represented as follows:
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Figure 1: Plot of density function (left) and hrf (right)

I(ξ,θ) =
∂

∂θ
η(x,θ)

∂

∂θT
η(x,θ). (3.1)

There exist several optimality criteria used to obtain the optimal design, including D-optimality and A-optimality.
These criteria are functions of the information matrix and can be expressed as follows:

ΨD(ξ,θ) = − log(det(M(ξ,θ))),

and
ΨA(ξ,θ) = tr(M−1(ξ;θ)),

where ξ denotes a design with two components; the first component represents specific values from the design space
χ and the second component corresponds to the weights assigned to these values, so that design ξ can be defined as
follows:

ξ =

{
x1 x2 . . . xℓ
w1 w2 . . . wℓ

}
∈ Ξ, (3.2)

where Ξ={ξ | 0 ≤ wj ≤ 1 ;
ℓ∑

j=1

wj = 1 , x ∈ χ}, [14]. When considering a discrete probability measure ξ with finite

support, the information function of ξ can be expressed as follows [3]:

M(ξ,θ) =

ℓ∑
j=1

wjI(xj ,θ). (3.3)

Because of the dependence of the information matrix M(ξ,θ) on the unknown parameter θ, one approach to
address this issue is to employ the Bayesian method and incorporate a prior distribution for the parameter vector.
The Bayesian D-optimality criterion can be formulated as follows:

ΨΠ(ξ) = E(ψ(ξ;θ)) =

∫
Θ

ψ(ξ;θ)dΠ(θ) =

∫
Θ

− log(det(M(ξ,θ)))dΠ(θ), (3.4)

where Π represents the prior distribution for θ and the Bayesian D-optimal design is attained by minimizing (3.4).
According to Dette and Neugebauer [10], in the general case of optimal designs which can include designs with two
and more points, if the support of the prior distribution has n points, then the maximum number of Bayesian optimal

design points is given by n

p(p+ 1)

2 . Hence, in the specific scenario of nonlinear models with one parameter (p = 1),
this implies that the support of the Bayesian optimal design does not contain more points than the support of the
prior distribution.
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In certain situations, specifying a prior distribution on the parameter space Θ can be challenging for the experi-
menter. In such cases, an alternative approach is to consider an unknown prior distribution Π for the parameter θ. In
this condition, Π is treated as a parameter itself. Consequently, equation (3.4) becomes a random functional, and it
becomes necessary to determine its distribution or approximation. From a Bayesian perspective, we construct a prior
distribution on the space of all distribution functions to address this issue. Ferguson [12] introduced the concept of
the Dirichlet process in this context, and in section 4.1, an overview of the Dirichlet process will be provided.

4 Nonparametric Bayesian D-optimal design

Now suppose we have the following regression model:

E(y|x) = η(x,θ) =
θ

(1− x)2
exp(

−θx
1− x

), 0 ≤ x < 1, θ > 0. (4.1)

In this section, we introduce the nonparametric Bayesian optimal design. In the nonparametric Bayesian framework,
it is assumed that θ | P ∼ P , where P is a random probability distribution and P ∼ Π. The general method of
constructing a random measure is to start with the stochastic processes. Ferguson [12] formulated the requirements
which must be imposed on a prior distribution and proposed a class of prior distributions, named Dirichlet processes.
One of the main arguments for using the Dirichlet distribution in practical applications is based on the fact that this
distribution is a good approximation of many parametric probability distributions. Below, we define the Dirichlet
process.

4.1 Dirichlet Process (DP)

To have a random distribution G distributed according to a Dirichlet process (DP), its marginal distributions must
follow a Dirichlet distribution. Specifically, let H be a distribution over Θ and α be a positive real number. For any
finite measurable partition A1, A2, ..., Ar of Θ the vector (G(A1), G(A2), ..., G(Ar)) is random since G is random. We
say G is Dirichlet process distributed with base distribution H and concentration parameter α, written G ∼ DP(α,H),
if the following conditions hold:

(G(A1), G(A2), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar)), (4.2)

for every finite measurable partition A1, A2, ..., Ar ofΘ. The parameters ofH and α play intuitive roles in the definition
of the DP. The base distribution H represents the mean of the Dirichlet process, such that for any measurable set A⊂
Θ we have E[G(A)] = H(A). On the other hand, the concentration parameter α can be viewed as an inverse variance:
V [G(A)]=H(A)(1 − H(A))/(α +1). The larger α is, the smaller the variance, and the DP will concentrate more of
its mass around the mean. The concentration parameter is also referred to as the strength parameter, referring to
the strength of the prior when using the DP as a nonparametric prior in Bayesian nonparametric models. It can be
interpreted as the amount of mass or sample size associated with the observations. It is worth noting that α and H
only appear as their product in the definition of the Dirichlet process (equation 4.2). Consequently, some authors
treat H̃=α H, as the same as the single (positive measure) parameter of the DP, writing DP( H̃ ) instead of DP(α,H).
This parametrization can be notationally convenient, but it loses the distinct roles α and H play in describing the DP.

As the concentration parameter α increases, the mass of the DP becomes more concentrated around its mean.
Consequently, when α approaches infinity (α → ∞ ), G(A) approaches H(A) for any measurable set A, indicating
weak or pointwise convergence of G to H. However, it’s important to note that this does not imply a direct convergence
of G to H as a whole. In fact, as we will explore later, samples drawn from a DP will typically be discrete distributions
with probability one, even if the base distribution H is smooth. Therefore, G and H may not be absolutely continuous
with respect to each other. Despite this, some authors still utilize the DP as a nonparametric extension of a parametric
model represented byH. However, if the desire is to maintain smoothness, it is possible to extend the DP by convolving
G with kernels, resulting in a random distribution with a density function.

An alternative definition of the Dirichlet process is proposed by Ferguson [12] that defines a random probability
measure which is a Dirichlet process on (Θ, B(Θ)), as:

P (.) =

∞∑
i=1

piδθi(.), (4.3)
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where θi (i > 1) be a sequence of i.i.d. random variables with common distribution Q, δθi represents a probability
measure that is degenerate at θ where δθi=1 if θi ∈ A and 0 otherwise, and p,i s are the random weights satisfying pi¿0

and
∞∑
i=1

pi=1. The random distribution P is discrete with probability one. Several authors have proposed alternative

series representations of the Dirichlet process. Bondesson [4], Sethuraman [17], and Zarepour and Al Labadi [18] are
among those who have contributed to this area. A method of producing samples from the Dirichlet process is to
use the Polya urn process that in the upcoming section, we will discuss about it. Then the nonparametric Bayesian
D-optimal design for the UE model is discussed.

4.2 Polya Urn Scheme

The Polya Urn Scheme was used by Blackwell and McQueen (1973) to demonstrate the existence of the Dirichlet
process. The method of producing a sample of the Dirichlet process is to use a Polya Urn Scheme [5]. Consider a
Polya urn with a(χ) balls of which a(i) are of color i ; i = 1, 2, ..., k. For the moment, assume that a(i)’s are whole
numbers or 0. Draw balls at random from the urn, replacing each ball drawn by two balls of the same colour. Let
Xi = j if the i The ball is of colour j. Then:

P (X1 = j) =
a(j)

a(χ)
, (4.4)

P (X2 = j | X1) =
a(j) + δX1(j)

a(χ) + 1
, (4.5)

and in general

P (Xn+1 = j | X1, X2, ..., Xn) =

a(j) +
n∑
1
δXi

(j)

a(χ) + n
. (4.6)

That n is the number of extracted balls and δXi
(j) is equal to one if Xi = j, otherwise it is equal to zero.

4.3 Nonparametric Bayesian D-optimal design for UE model

Now let’s consider the regression model (4.1), Therefore, the Bayesian D-optimality criterion, denoted as ΨΠ(ξ)
can be expressed as follows:

ΨΠ(ξ) = E(ψ(ξ;θ)) =

∫
Θ

ψ(ξ; θ)dΠ(θ) =

∫
Θ

− log(

ℓ∑
j=1

wj [exp(
−θxj
1− xj

)(
1

(1− xj)2
− θxj

(1− xj)3
)]2)dΠ(θ) (4.7)

where Π is the prior distribution for θ. The Bayesian D-optimal design is attained by minimizing equation (4.7). In

the nonparametric Bayesian framework, we consider P ∼ DP(α,P0) and its collective representation as P (.) =
∞∑
i=1

pi

δθi(.). In this context, the optimality criterion can be expressed as follows:

ΨΠ(ξ) =

∞∑
i=1

pi(− log(

ℓ∑
j=1

wj [exp(
−θixj
1− xj

)(
1

(1− xj)2
− θixj

(1− xj)3
)]2)). (4.8)

Chernoff [9] demonstrated that when searching for a local optimal design, there exists an optimal design where
all the mass is concentrated at a single point within the design’s support. Caratheodory’s theorem also confirms the
existence of a one-point optimal design. However, when employing the Bayesian optimality criterion, a more complex
situation arises. Brice and Dette showed that with a uniform prior distribution, as the support of the prior distribution
increases, the number of optimal design points for the single-parameter model also increases. Challoner suggested that
if the researcher aims to obtain a one-point optimal design, it is advisable to consider a small support for the uniform
prior distribution. The same principle applies to nonparametric Bayesian designs. In this case, assuming a uniform
distribution over the interval [1, B] as the basic distribution, the one-point optimal design can be achieved.

Equation (4.7) is a stochastic function of the Dirichlet process. According to Ferguson’s definition of the Dirichlet
process, the calculation (4.8) is not easily possible, so to solve this problem in obtaining the optimal nonparametric
Bayesian criterion, methods such as the stick breaking process are used to approximate this criterion. Another method
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has been presented by Zarepour and Ellabadi [18] whose simulation speed and accuracy is much higher than the stick
breaking process.

Since the weights produced by the stick breaking process don’t follow a decreasing trend, therefore, the Dirichlet
process can be simulated in a way where the weights are produced in a decreasing manner. The reason for this is that
the speed of reaching the cutting point increases. Zarepour and Ellabadi presented a finite collective representation
of the Dirichlet process in order to generate data from the Dirichlet process, which almost certainly converges to the
Ferguson collective representation that we present below, and the weights produced from this method are uniformly
descending, while the weights produced by the stick-breaking method are randomly descending. Ferguson showed that
the Dirichlet process with parameters (α, P0) can be presented using the following series representation:

PFerg.
n (.) =

∞∑
i=1

N−1(Γi)
∞∑
i=1

N−1(Γi)
δθi(.),

where

N(x) = α

∫ ∞

x

exp(−t)
t

dt, x > 0. (4.9)

is the Levy measure of a Gamma(α, 1) random variable and δθi(.) denotes the Dirac measure. Now, in this section,
we present the finite sum representation of the Dirichlet process presented by Zarepour and Ellabadi [18]. Let Xn be

a random variable with distribution Gamma(
α

n
,1) and with survival and quantile function, respectively as follows:

Gn(x) = P (Xn > x) =

∫ ∞

x

1

Γ(
α

n
)
exp(−t)t

α

n
−1
dt,

G−1
n (y) = inf{x : Gn(x) ≤ y}, 0 < y < 1.

According to the dominated convergence theorem, n → ∞, we have:

nGn(x)→ N(x).

Notice that the left hand side of the above quantitative is a sequence of monotone functions converging to a
monotone function. We have:

G−1
n (x/n)→ N−1(y).

Zarepour and Ellabadi showed that for each Ei ∼ exp(1), i = 1, 2, ..., n and for each θi ∼ P0, that Γi=E1 + E2 +
· · ·+ Ei the obtained approximation almost certainly converges to Ferguson’s collective representation; that’s mean:

PNew.
n (.) =

n∑
i=1

G−1
n (

Γi

Γn+1
)

n∑
i=1

G−1
n (

Γi

Γn+1
)
δθi(.) → PFerg.(.) =

∞∑
i=1

N−1(Γi)
∞∑
i=1

N−1(Γi)
δθi(.), (4.10)

where n is as follows:

n = inf

m :

G−1
m (

Γm

Γm+1
)

m∑
i=1

G−1
m (

Γi

Γm+1
)
< ϵ

 . (4.11)

It is important to emphasize that unlike in the previously discussed truncation approximations, the weights:

pi =

G−1
n (

Γi

Γn+1
)

n∑
i=1

G−1
n (

Γi

Γn+1
)
, (4.12)
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decrease monotonically for any fixed positive integer n, which leads to the fact that the speed of simulation and its
accuracy are much higher than the stick breaking process. In the following, a nonparametric Bayesian optimal design
is obtained for different selections of Dirichlet process parameters. For this purpose, at first, we generate pi from
(4.12). We obtain n from (4.11) and generate Ei ∼ Exp(1), i = 1, 2, . . . , n, and let Γi=E1+E2+ ...+Ei. We calculate

G−1
n (

Γi

Γn+1
), i = 1, 2, . . . , n from the equation G−1

n (y)= inf{x : Gn(x) < y}, and generate θi from Base measure P0.

Finally, we evaluate the functional:

ΨP (ξ) =

∞∑
i=1

pi[− log(det(M(ξ, θi)))],

and obtain ξ∗ from the following equation:
ξ∗ = argminΨP (ξ).

Now, in this section, we consider the Polya Urn Scheme as the base measure in DP. We get the results by using
a nonlinear optimization programming with R package Rsolnp. For a better understanding of the effect of the α
parameter, we tabulate the results for four different values of α=1, 5, 10, 50, in Tables 1-4. We also fixed ϵ=10−10.
Without loss of generality, we consider a bounded design space χ=[0, 1].

Tables 1-4 represent the results when the concentration parameter and uncertainty in the base measure increase.
According to the results, when the value of α increases, the support points in the points design do not significantly
change. The weight of the minimum point increases rapidly, and the smallest point will have the most weight. This
weight almost increases or remains fixed by increasing the concentration parameter. Also, for a three-point design,
the minimum support point has the greatest weight. In addition, in the range under investigation, the results show
that we don’t have a three-point design for µ = 5, σ = 2, and in fact, it converts to a design with fewer points.
This observation is clearer for a larger concentration parameter. But, by increasing the parameter space, optimal two
three-point designs are obtained.

Table 1: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=1.
First row: support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00039 0.23748 − − −

w 0.99738 0.00262 − − −
µ = 50, σ = 30 x 0.03358 0.18865 0.038036 0.18630 0.29563

w 0.97085 0.02915 0.949231 0.050768 0.0000001
µ = 150, σ = 90 x 0.01520 0.19838 0.01595 0.19625 0.29908

w 0.99393 0.00607 0.98983 0.00813 0.00204
µ = 1000, σ = 500 x 0.002302 0.19991 0.00275 0.20004 0.29995

w 0.999998 0.000002 0.999999 0.0000006 0.0000005

Table 2: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=5.
First row: support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00068 0.22791 − − −

w 0.99734 0.00266 − − −
µ = 50, σ = 30 x 0.03373 0.18516 0.03688 0.17411 0.28843

w 0.96606 0.03394 0.91814 0.07302 0.00884
µ = 150, σ = 90 x 0.01457 0.19748 0.14979 0.19533 0.29895

w 0.99192 0.00808 0.9979605 0.0020304 0.0000001
µ = 1000, σ = 500 x 0.002169 0.19994 0.00245 0.19965 0.29999

w 0.999999 0.000001 0.9999908 0.0000001 0.0000001

Now, if we assume the mean of the base distribution to be constant and increase the variance, it can be seen that
in the two-point designs, the smallest point has the most weight. The results related to this case have been presented
in Table 5.

5 Concluding Remarks And Future Works

Nonlinear regression models are widely used in various scientific fields, and the Bayesian method is commonly
employed to obtain optimal designs in such models. However, one of the challenges in the Bayesian framework is the
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Table 3: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=10.
First row: support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00031 0.23268 − − −

w 0.99735 0.00265 − − −
µ = 50, σ = 30 x 0.03269 0.17711 0.03922 0.17145 0.29027

w 0.94385 0.05615 0.92004 0.07552 0.00444
µ = 150, σ = 90 x 0.01361 0.19819 0.01601 0.19434 0.29891

w 0.99798 0.00202 0.9879202 0.0120707 0.0000001
µ = 1000, σ = 500 x 0.00226 0.20000 0.00251 0.19948 0.29997

w 0.999992 0.0000008 0.9979901 0.0020004 0.0000005

Table 4: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=50.
First row: support points; second row: weights.

Parameters Design Two points Three points
µ = 5, σ = 2 x 0.00119 0.21958 − − −

w 0.98904 0.01096 − − −
µ = 50, σ = 30 x 0.03164 0.18099 0.03504 0.16948 0.29022

w 0.96095 0.03905 0.91685 0.07641 0.00674
µ = 150, σ = 90 x 0.01236 0.19683 0.14969 0.19641 0.29876

w 0.99596 0.00404 0.9979801 0.0020107 0.0000002
µ = 1000, σ = 500 x 0.00221 0.19988 0.002462 0.19979 0.29999

w 0.9999999 0.00000001 0.9999908 0.0000006 0.0000006

Table 5: Nonparametric Bayesian D-optimal designs with truncated normal base distribution and concentration parameter when α=1.
First row: support points; second row: weights.

Parameters Design Two points Three points
µ = 50, σ = 30 x 0.03342 0.18889 0.03342 0.19076 0.29333

w 0.97926 0.02074 0.96545 0.03227 0.00228
µ = 50, σ = 90 x 0.02209 0.19534 0.02491 0.19477 0.29463

w 0.98720 0.01280 0.98060 0.1939609 0.0000001
µ = 50, σ = 500 x 0.00567 0.20004 0.008246 0.19944 0.29863

w 0.99797 0.00203 0.9979821 0.0020104 0.0000005

subjective selection of the prior distribution, which can potentially lead to incorrect results. The choice of the prior
distribution is often based on the researcher’s beliefs, and it strongly influences the final outcome. Unfortunately, the
Bayesian approach lacks a systematic method for selecting the prior distribution. To overcome these limitations and
reduce reliance on restrictive parametric assumptions, nonparametric Bayesian methods are pursued. In this study,
we consider the prior distribution as an unknown parameter and utilize the Dirichlet process to derive nonparametric
Bayesian D-optimal designs. Specifically, we focus on a nonlinear model with one parameter, namely the Unit-
Exponential distribution. We investigate the Bayesian D-optimal design for the unit exponential regression model
(equation 4.1) using a truncated normal prior distribution, examining various parameter values. By adopting a
nonparametric Bayesian approach and utilizing the Dirichlet process, we aim to address the challenges associated with
selecting the prior distribution in Bayesian optimal design construction. This allows us to account for uncertainty and
mitigate the impact of restrictive parametric assumptions, providing more flexible and robust designs for nonlinear
regression models.

In this study, we focus on utilizing the Polya Urn Scheme as the base distribution in the Dirichlet process. To
better understand the influence of the concentration parameter α, we present the results in tables for four different
values of α=1, 5, 10, 50. These tables provide valuable insights into the nonparametric Bayesian optimal designs,
showcasing the distribution of weights and support points. By analyzing the results for different values of α, we
can better understand the impact of this parameter on the design outcomes. This approach allows us to explore
and evaluate the performance of the nonparametric Bayesian optimal designs under varying levels of concentration
parameter α.

In the investigated range, the results reveal interesting findings. For small parameter values, there are no three-
point designs observed. However, by increasing uncertainty in the base measure, another optimal point is obtained
with a very small weight, resulting in a design where the smallest point has the highest weight.

Moreover, as the uncertainty in the base measure and the concentration parameter in the Dirichlet process increase,
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the support points in the two-point designs do not undergo significant changes. The weight of the smallest point
increases rapidly, and it becomes the point with the highest weight. This weight tends to either increase or remain
relatively stable with an increase in the concentration parameter.

It is important to note that this approach can be applied to other optimality criteria and various models with two
or more parameters. For example, nonparametric Bayesian optimal designs using the A- or E-optimality criterion for
the nonlinear model discussed in this paper, along with a Dirichlet process prior, hold potential for further research.
We hope to report new results in this area in the near future.
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