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Abstract

The present article deals with a variational method, named the Mountain Pass Theorem. We prove the existence of
nontrivial weak solutions for the problem of the following form

−(α− β
∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ)∆φ(χ)υ + |υ|ψ(χ)−2υ = λ η(χ, υ) χ ∈ Ω,

(α− β
∫
∂Ω

1

φ(χ)
|∇υ|φ(χ)dχ)|∇υ|φ(χ)−2 ∂υ

∂ν
= 0 χ ∈ ∂Ω,

where α ≥ β > 0,∆φ(χ)υ is the φ(χ)-Laplacian operator, Ω is a smooth bounded domain in RN with smooth boundary

∂Ω and ν is the outer unit normal to ∂Ω, φ(χ), ψ(χ) ∈ C(Ω̄) with 1 < φ(χ) < N,φ(χ) < ψ(χ) < φ∗(χ) :=
Nφ(χ)

N − φ(χ)
,

λ > 0 is a real parameter and η(χ, t) ∈ C(Ω̄× R,R).
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1 Introduction

In this article, we consider the following problem
−(α− β

∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ)∆φ(χ)υ + |υ|ψ(χ)−2υ = λ η(χ, υ) χ ∈ Ω,

(α− β
∫
∂Ω

1

φ(χ)
|∇υ|φ(χ)dχ)|∇υ|φ(χ)−2 ∂υ

∂ν
= 0 χ ∈ ∂Ω,

(1.1)

where α ≥ β > 0, ∆φ(χ)υ is the φ(χ)- Laplacian operator, defined as

∆φ(χ)υ := div(|∇υ|φ(χ)−2∇υ) =
N∑
i=1

(|∇υ|φ(χ)−2 ∂υ

∂χi
),
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Ω is a smooth bounded domain in RN with smooth boundary ∂Ω and ν is the outer unit normal to ∂Ω and φ(χ), ψ(χ) ∈

C(Ω̄) with 1 < φ(χ) < N , φ(χ) < ψ(χ) < φ∗(χ) :=
Nφ(χ)

N − φ(χ)
, λ > 0 is a real parameter. We define φ

l
and φs for

convenience as follows: φ
l
:= φ− = infΩ φ(χ) and φs := φ+ = supΩ φ(χ), for all φ(χ) ∈ C(Ω̄) and η(χ, t) ∈ C(Ω̄×R,R)

that, the function η has mentioned in the following sextet conditions.

(η1) : |η(χ, t)| ≤ c(1 + |t|r(χ)−1), ∀(χ, t) ∈ Ω× R where c > 0 and
φ(χ) < r(χ) < φ∗(χ),

(η2) : lim
t→0

η(χ, t)

|t|φ(χ)−2t
= 0,

(η3) : there exist θ ∈
(
ψ
s
,
2φ2

l

φs

)
and T > 0 so that 0 < θℏ(χ, t) ≤ t η(χ, t) for all |t| ≥ T, χ ∈ Ω where ℏ(χ, t) =∫ t

0
η(χ, s)ds.

In addition to the conditions that, given for η, the functions φ(χ), ψ(χ), r(χ) must apply to the following condition,
which we call the (φψr)c-condition:

c < φ
l
< φ(χ) < φs < ψ

l
< ψ(χ) < ψs < 2φ

l
< r

l
< r(χ) < rs < φ∗(χ),

in the above condition, c = 1 or c = 2.

Kirchhoff [29] studied an equation in 1883, marking a turning point in the emergence of a branch of differential
problems known as Kirchhoff-type equations. These equations are used in vibrational physics[28, 31], elastic mechanics
[42], and electrorheological fluids [1].

In recent years, the variable exponent Sobolev space W 1,φ(χ)(Ω) has been very attractive and many writers and
researchers entered the field [2, 4, 5, 6, 7, 12, 17, 18, 22]. Working on problems in such spaces due to their inhomogeneity
and nonlinearity has always been related to difficulties, which have made work in this field more attractive (see
[11, 13, 26]). One of the instructive and very useful theorems in solving such problems is the Sobolev embedding [20].

In the way of proving our theorem, as well as inequalities, and other useful theorems such as Hölder and Poincaré’s
inequality, will benefit from this theorem very useful. The Sobolev embedding theorem has greatly blurred the dividing
borders of Sobolev spaces and Lp spaces.

Recently, nonlocal problems have been a very interesting subject. The interest in p(x)-Kirchhoff type problems
arises from their ability to model a wide range of physical phenomena where nonlocal effects and heterogeneous media
are involved (see [3, 8, 9, 10, 16, 19, 24, 25, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41]). These problems are particularly
relevant in areas such as elasticity theory, quantum mechanics, and fluid dynamics, where the properties of the material
or medium may change from point to point. In the present work, we generally bring up a Kirchhoff problem containing
the φ(χ)-Laplacian operator, which contains the expression (α− β

∫
Ω
|∇υ|pdχ).

Now we state the main result:

Theorem 1.1. Suppose that (φψr)1-condition and (η1) − (η3) hold, so our problem has at least a nontrivial weak
solution, for each λ > 0.

2 Preliminary Results

In this section, we recall some important definitions and essential characteristics of the generalized Lebesgue-
Sobolev spaces Lφ(χ)(Ω) and W 1,φ(χ)(Ω) where Ω ⊂ RN is an open set. In this regard, we refer the readers to the
book of Musielak [33] and the papers [15, 14, 35]. Set C+(Ω̄) := {h : h ∈ C(Ω̄), h(χ) > 1 for all χ ∈ Ω̄}. For each
φ(χ) ∈ C+(Ω̄) denote

Lφ(χ)(Ω) =

{
υ : a measurable real-valued function such that

∫
Ω

|υ(χ)|φ(χ)dχ <∞
}

which is the definition of variable exponent Lebesgue space, that by mentioned the norm ( so-called Luxemburg norm)
are reflexive and separable Banach spaces

∥υ∥φ(χ) := inf

{
µ > 0;

∫
Ω

∣∣∣∣υ(χ)µ
∣∣∣∣φ(χ) dχ ≤ 1

}
.

These spaces are similar to classical Lebesgue spaces in many aspects:
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a) if 0 < |Ω| < ∞ and φ1(χ), φ2(χ) are variable exponents so that φ1(χ) ≤ φ2(χ) a.e. χ ∈ Ω then there is a
continuous embedding

Lφ2(χ)(Ω) ↪→ Lφ1(χ)(Ω),

b) the Hölder inequality holds, if Lφ
′(χ)(Ω) is a conjugate of Lφ(χ)(Ω), where

1

φ(χ)
+

1

φ′(χ)
= 1, we have

∣∣∣∣∫
Ω

υv dχ

∣∣∣∣ ≤ ( 1

φ
l

+
1

φ′
i

)
∥υ∥φ(χ)∥v∥φ′(χ), ∀υ ∈ Lφ(χ)(Ω), ∀v ∈ Lφ

′(χ)(Ω).

Modular plays an essential role in manipulating the Lφ(χ) spaces and defined by the following relation, ρφ(χ) :

Lφ(χ) → R;
ρφ(χ)(υ) =

∫
Ω

|υ|φ(χ)dχ.

Proposition 2.1 ([21]). If υ, υn ∈ Lφ(χ)(Ω) and φs < +∞, then the following relations hold

1. ∥υ∥φ(χ) > 1 ⇒ ∥υ∥φlφ(χ) < ρφ(χ)(υ) ≤ ∥υ∥φsφ(χ);

2. ∥υ∥φ(χ) < 1 ⇒ ∥υ∥φsφ(χ) < ρφ(χ)(υ) ≤ ∥υ∥φlφ(χ);

3. ∥υ∥φ(χ) < 1(respectively,= 1;> 1) ⇐⇒ ρφ(χ)(υ) < 1(respectively,= 1;> 1);

4. ∥υn∥φ(χ) → 0(respectively,→ +∞) ⇐⇒ ρφ(χ)(υ) = 0 (respectively,→ +∞);

5. lim
n→∞

∥υn − υ∥φ(χ) = 0 ⇐⇒ lim
n→∞

ρφ(χ)(υn − υ) = 0;

6. For υ ̸= 0, ∥υ∥φ(χ) = λ ⇐⇒ ρ
(υ
λ

)
= 1.

Definition 2.2 ([20]). Let Ω ⊂ RN . The Sobolev space with variable exponent W 1,φ(χ)(Ω) is defined as

W 1,φ(χ)(Ω) := {υ : Ω → R : υ ∈ Lφ(χ)(Ω), |∇υ| ∈ Lφ(χ)(Ω)},

endowed with the following norm

|||υ||| := ∥υ∥W 1,φ(χ)(Ω) = ∥υ∥φ(χ) + ∥∇υ∥φ(χ)

or equivalently

|||υ||| = inf

{
µ > 0,

∫
Ω

(
|υ
µ
|φ(χ) + |∇υ

µ
|φ(χ)

)
dχ ≤ 1

}
.

Denote by W
1,φ(χ)
0 (Ω) the closure of C∞

0 (Ω) in W 1,φ(χ)(Ω). As we know, ∥∇υ(χ)∥φ(χ) is an equivalent norm in

W
1,φ(χ)
0 (Ω).

Proposition 2.3 (Poincare inequality [20]). There exists a positive constant c so that

∥υ∥φ(χ) ≤ c∥∇υ∥φ(χ), ∀υ ∈W
1,φ(χ)
0 (Ω). (2.1)

Proposition 2.4 (Sobolev embedding [20]). If φ(χ), ψ(χ) ∈ C+(Ω̄) and 1 ≤ ψ(χ) ≤ φ∗(χ) for each χ ∈ Ω̄, then
there exists a continuous embedding

W 1,φ(χ)(Ω) ↪→ Lψ(χ)(Ω). (2.2)

If 1 < ψ(χ) < φ∗(χ), the continuous embedding is compact.

In the sequel, we denote by X =W 1,φ(χ)(Ω);X∗ = (W 1,φ(χ)(Ω))∗, the dual space; ⟨·, ·⟩, the dual pair.
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Proposition 2.5 ([20]). Let

J(υ) =

∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ, ∀υ ∈ X,

then J(υ) ∈ C1(X,R) and the derivative operator J ′ of J is

⟨J ′(υ), ϑ⟩ =
∫
Ω

|∇υ|φ(χ)−2∇υ∇ϑdχ, ∀υ, ϑ ∈ X,

and the following relations hold:

1. J is a convex functional.

2. J ′ : X → X∗ is a strictly monotone operator and bounded homeomorphism.

3. J ′ is a mapping of type (S+), it means, υn ⇀ υ (weakly) and limn→+∞ sup⟨J ′(υ), υn − υ⟩ ≤ 0, imply υn → υ
(strongly) in X.

Definition 2.6. υ ∈ X is a weak solution of problem (1.1), if(
α− β

∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ

)∫
Ω

|∇υ|φ(χ)−2∇υ∇ϑdχ+

∫
Ω

|υ|ψ(χ)−2υϑdχ

= λ

∫
Ω

η(χ, υ)ϑdχ, ∀ϑ ∈ X.

The energy functional related to our problem, Jλ : X → R such that

Jλ(υ) = α

∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ

)2

+

∫
Ω

1

ψ(χ)
|υ|ψ(χ)dχ− λ

∫
Ω

ℏ(χ, υ)dχ, ∀υ ∈ X, (2.3)

which is also well defind and of class C1 in (X,R).

Now we define J ′
λ as the derivative operator of Jλ in the weak sense, by the following formula,

⟨J ′
λ(υ), ϑ⟩ = (α− β

∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ)

∫
Ω

|∇υ|φ(χ)−2∇υ∇ϑdχ+

∫
Ω

|υ|ψ(χ)−2υϑdχ− λ

∫
Ω

η(χ, υ)ϑdχ, (2.4)

for all υ, ϑ ∈ X. A critical point of Jλ is clearly a weak solution of our problem.

Definition 2.7. If Jλ ∈ C1(X,R) and c ∈ R, Jλ ensures the Palais-Smale condition at level c ((PS)c in short), if for
each {υn} ⊂ X satisfying Jλ(υn) → c and J ′

λ(υn) → 0 as n→ ∞ has a convergent subsequence.

3 Proof of main results

Lemma 3.1. Suppose that the conditions (η1)− (η3) are true, then the functional Jλ holds in the (PS)c condition.

Proof . First, we consider the boundary condition for {υn}, let {υn} ⊂ X be a (PS)c sequence related to the Jλ, so
that,

Jλ(υn) → c and J ′
λ(υn) → 0, as n→ ∞. (3.1)

From (3.1) and (η3), we have for n large enough,

c+ |||υn||| ≥θJλ(υn)− ⟨J ′
λ(υn), υn⟩

≥θ

(
α

∫
Ω

1

φ(χ)
|∇υn|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|∇υn|φ(χ)dχ

)2

+

∫
Ω

1

ψ(χ)
|υn|ψ(χ)dχ− λ

∫
Ω

ℏ(χ, υn)dχ

)

−
([
α− β

∫
Ω

1

φ(χ)
|∇υn|φ(χ)dχ

] ∫
Ω

|∇υn|φ(χ)dχ+

∫
Ω

|υn|ψ(χ)dχ− λ

∫
Ω

η(χ, υn)υndχ

)
≥α

(
θ

φs
− 1

)∫
Ω

|∇υn|φ(χ)dχ+ β

(
−θ
2φ2

l

+
1

φs

)(∫
Ω

|∇υn|φ(χ)dχ
)2

+

(
θ

ψ
s

− 1

)∫
Ω

|υn|ψ(χ)dχ− c1λ

∫
Ω

dχ.
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By Poincare inequality, we have

c+ |||υn||| ≥ α

(
θ

φs
− 1

)
|||υn|||φl + β

(
−θ
2φ2

l

+
1

φs

)
|||υn|||2φl − c1λ|Ω|.

By dividing the previous inequality sides on the positive value |||υn|||φl and considering (η3) and since φ
l
< 2φ

l
,

we can infer that {υn} is bounded in X, then

υn ⇀ υ in X, (3.2)

by Sobolev embedding (2.2), we have

X ↪→ Ls(χ)(Ω), for 1 ≤ s(χ) < φ∗(χ), (3.3)

is compact. From (3.2) and (3.3) we can infer that

υn ⇀ υ in X, υn → υ in Ls(χ)(Ω), υn(χ) → υ(χ), a.e. in Ω. (3.4)

By Hölder’s inequality and (3.4) we have

|
∫
Ω

|υn|ψ(χ)−2υn(υn − υ)dχ| ≤
∫
Ω

|υn|ψ(χ)−1|υn − υ|dχ ≤ ∥|υn|ψ(χ)−1∥ ψ(χ)
ψ(χ)−1

∥υn − υ∥ψ(χ) → 0 as n→ ∞,

thus ∫
Ω

|υn|ψ(χ)−2υn(υn − υ)dχ→ 0, as n→ ∞. (3.5)

By (η1) and (η2), we have that for each ε ∈ (0, 1), there is cε > 0 so that

|η(χ, υn)| ≤ ε|υn|φ(χ)−1 + cε|υn|r(χ)−1. (3.6)

By Sobolev embedding (2.2) and Hölder’s inequality and (3.6), we have∣∣∣∣∫
Ω

η(χ, υn)(υn − υ)dχ

∣∣∣∣ ≤ ∫
Ω

(ε|υn|φ(χ)−1|υn − υ|+ cε|υn|r(χ)−1|υn − υ|)dχ

≤ ε∥|υn|φ(χ)−1∥ φ(χ)
φ(χ)−1

∥υn − υ∥φ(χ) + cεε∥|υn|r(χ)−1∥ r(χ)
r(χ)−1

∥υn − υ∥r(χ) → 0,

as n→ ∞. Therefore ∫
Ω

η(χ, υn)(υn − υ)dχ→ 0, as n→ ∞. (3.7)

From (3.1) we have ⟨J ′
λ(υn), υn − υ⟩ → 0, as n→ ∞, so we can infer that(

α− β

∫
Ω

1

φ(χ)
|∇υn|φ(χ)dχ

)∫
Ω

|∇υn|φ(χ)−2∇υn(∇υn −∇υ)dχ+

∫
Ω

|υn|ψ(χ)−2υn(υn − υ)dχ

− λ

∫
Ω

η(χ, υn)(υn − υ)dχ→ 0. (3.8)

From (3.5) and (3.7) and (3.8), we can write(
α− β

∫
Ω

1

φ(χ)
|∇υn|φ(χ)dχ

)∫
Ω

|∇υn|φ(χ)−2∇υn(∇υn −∇υ)dχ→ 0, as n→ ∞. (3.9)

Since {υn} is bounded in X, therefore, it is necessary for the following positive sequence to converge to a non-
negative value such as υp, which means,∫

Ω

1

φ(χ)
|∇υn|φ(χ)dχ→ υp ≥ 0, as n→ ∞.
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Similar to the proof of Lemma 3.1 in [23], we have the sequence

{
α− β

∫
Ω

1

φ(χ)
|∇υn|φ(χ)dχ

}
is bounded, when

n is large enough, so, it follows from (3.9) that∫
Ω

|∇υn|φ(χ)−2∇υn(∇υn −∇υ)dχ→ 0.

So by the (S+) property ( see lemma 2.5 ), |||υn||| → |||υ||| strongly in X, that means Jλ ensures the (PS)c-
condition. □

Lemma 3.2. Assume that η ensures (η1)−(η3), then the functional Jλ ensures the Mountain pass geometry, it means,

(A) there exist a > 0 and R > 0 such that Jλ(υ) ≥ a > 0, for each υ ∈ X so that |||υ||| = R.
(B) there exists e ∈ X with |||e||| > R such that Jλ(e) < 0.

Proof . By conditions (η1) and (η2), we can infer that for each ε > 0 there exists cε > 0 such that

|ℏ(χ, υ)| ≤ ε

φ(χ)
|υ|φ(χ) + cε

r(χ)
|υ|r(χ). (3.10)

Let υ ∈ X be such that |||υ||| = R ∈ (0, 1). Using (2.3), (3.10), Poincare inequality and Proposition 2.1, we have

Jλ(υ) =α

∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ

)2

+

∫
Ω

1

ψ(χ)
|υ|ψ(χ)dχ− λ

∫
Ω

ℏ(χ, υ)dχ

≥α
∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ

)2

− λε

∫
Ω

|υ|φ(χ)

φ(χ)
dχ− λcε

∫
Ω

|υ|r(χ)

r(χ)
dχ

≥
(
α− λε

c1

)∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|∇υ|φ(χ)dχ

)2

− λc2cε
r
l

∫
Ω

|∇υ|r(χ)dχ

≥ 1

φs

(
α− λε

c1

)
ρφ(χ)(∇υ)−

β

2φ2
l

(ρφ(χ)(∇υ))2 −
λc2cε
r
l

ρr(χ)(∇υ)

≥ 1

φs

(
α− λε

c1

)
|||υ|||φs − β

2φ2
l

|||υ|||2φl − λc2cε
r
l

|||υ|||rl ,

where c1 and c2 are Sobolev embedding constants. Now, let 0 < ε <
1

λ
αc1. Considering (φψr)c-condition, we deduce

that

Jλ(υ) ≥
(

1

φs
(α− λε

c1
)− β

2φ2
l

|||υ|||2φl−φs − λc2cε
r
l

|||υ|||rl−φs
)
|||υ|||φs .

By selecting R adequately small ( i.e. R is such that
1

φs
(α− λε

c1
)− β

2φ2
l

R2φ
l
−φs − λc2cε

r
l

Rrl−φs > 0), so that

Jλ(υ) ≥ Rφs
(

1

φs
(α− λε

c1
)− β

2φ2
l

R2φ
l
−φs − λc2cε

r
l

Rrl−φs
)

=: a > 0.

Therefore there is a > 0 so that for each υ ∈ X with |||υ||| = R we have Jλ(υ) ≥ a > 0. Also, by (η3), we can infer
that

∀T > 0, ∃cT > 0; ℏ(χ, υ) ≥ T |υ|θ − cT , ∀(χ, υ) ∈ Ω× R. (3.11)

Let ϑ ∈ C∞
0 (Ω), ϑ > 0 and m > 1. By (3.11) we have

Jλ(mϑ) =α

∫
Ω

1

φ(χ)
|m∇ϑ|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|m∇ϑ|φ(χ)dχ

)2

+

∫
Ω

1

ψ(χ)
|mϑ|ψ(χ)dχ− λ

∫
Ω

ℏ(x,mϑ)dχ

≤α
∫
Ω

1

φ(χ)
|m∇ϑ|φ(χ)dχ− β

2

(∫
Ω

1

φ(χ)
|m∇ϑ|φ(χ)dχ

)2

+

∫
Ω

1

ψ(χ)
|mϑ|ψ(χ)dχ− λ

∫
Ω

(T |mϑ|θ − cT )dχ,

≤am
φs

φ
l

∫
Ω

|∇ϑ|φ(χ)dχ− bm2φ
l

2φ2
s

(∫
Ω

|∇ϑ|φ(χ)dχ
)2

+
mψs

ψl

∫
Ω

|ϑ|ψ(χ)dχ− λTmθ

∫
Ω

|ϑ|θdχ+ cT |Ω|.

Since φs < ψ
s
< θ, we obtain Jλ(mϑ) → −∞ as m → +∞, then for m > 1 large enough, by selecting e = mϑ so

that ||e|| > R and Jλ(e) < 0.
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Proof of Theorem 1.1

By Lemmas 3.1 and 3.2 and Jλ ensures, Jλ(0) = 0 and the Mountain pass theorem (see [37]), thus our problem
has at least a nontrivial weak solution. □
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