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This study investigates the phenomenon of superarrival in Gaussian wave packets propagating 
through a nonlinear fractional medium under the influence of a triangular potential barrier. The time-
dependent fractional Schrödinger equation is numerically solved using the Split-Step Finite 
Difference method to analyze the wave packet dynamics and transmission behavior in detail. The 
magnitude of superarrival is quantified and examined across a broad range of physical parameters, 
including the fractional order, nonlinearity strength, dispersion coefficient, wave packet width, initial 
velocity, and potential asymmetry. Results reveal that superarrival is significantly enhanced in 
fractional and weakly nonlinear regimes and is highly sensitive to the degree of potential asymmetry. 
The observed behavior reflects the interplay between nonlocality and nonlinearity, characteristic of 
complex and engineered materials. These insights contribute to a deeper understanding of early 
arrival phenomena in wave dynamics and may provide theoretical support for controlling energy or 
information transport in next-generation devices. Potential applications include quantum control, 
signal processing in photonic systems, and the design of metamaterials with tailored transmission 
properties at ultrafast or subwavelength scales. 
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1. Introduction 
Fractional calculus is a branch of mathematical analysis 

concerned with integrals and derivatives of arbitrary (non-
integer) order. This intriguing field has found extensive 
applications in modeling complex physical systems and 
processes where traditional calculus falls short. Various 
fractional differential equations have emerged, including 
the fractional wave equations for compressional and shear 
waves [1], fractional Kelvin–Voigt models [2], nonlinear 
acoustic wave equations [3], fractional Gross–Pitaevskii 
equations [4], fractional convection-diffusion equations [5], 
time-fractional Klein–Gordon equations [6], coupled 
nonlinear Schrödinger equations [7], and anisotropic 
nonlocal nonlinear fractional Schrödinger equations [8]. 

These equations have been used to model diverse 
phenomena, such as calcium sparks in cardiac myocytes [9], 
Bose-Einstein condensation [10], anomalous heat transport 

[11], and nonlinear spin dynamics in Heisenberg 
ferromagnets with conformable time-fractional derivatives 
[12]. 

Among these, the nonrelativistic fractional Schrödinger 
equation, which incorporates non-integer order derivatives 
in space or time, has garnered considerable attention. It has 
found applications in a wide range of scientific domains, 
including nuclear probability and flux densities [13], 
nonlinear optics and quantum dots [14–16], 
thermodynamics [17], cluster dynamics [10], quantum 
decoherence [18], superfluidity [19], and parity-time (PT) 
symmetric systems [20-22]. Additionally, it has been used 
to describe phenomena such as Anderson localization of 
light [23], diffraction-free beams [24], and condensed 
matter systems [25]. 

In particular, the optical properties governed by the 
fractional Schrödinger equation have attracted significant 
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interest. Researchers have investigated beam propagation 
in various structured media, including honeycomb lattices 
[26], finite-energy and ring Airy beams [27, 28], dual Airy 
beams [29], optical Bloch oscillations and Zener tunneling 
[30], and Hermite-Gaussian solitons [31]. Other optical 
phenomena studied include wave collapse and self-focusing 
[32], gap and vortex solitons [33, 34], and beam self-
splitting [35]. 

A particularly intriguing quantum mechanical 
phenomenon, superarrival, occurs during the transmission 
or reflection of a wave packet interacting with a time-
dependent potential barrier. When the barrier's height is 
dynamically increased or decreased, a time interval may 
emerge during which the reflection (or transmission) 
probability exceeds that of a static barrier. This 
phenomenon implies that the existence of a perturbation in 
the potential can lead to superarrival occurrence in the 
system. Despite its fundamental nature, superarrival has 
received limited attention, with only a few studies 
addressing it [8, 23, 24, 29, 36-38]. 

In the study of the superarrival phenomenon within 
fractional media, triangular potential barriers play a 
particularly important role due to their influence on 
electron reflection, transmission, and tunneling [39, 40]. 
These concepts are key processes in devices such as 
planner-doped barrier transistors [41] and field emission 
sources [40]. These barriers help determine current 
transport limits and enhance tunneling efficiency, especially 
when optimized with antireflection coatings. Their dual 
effect, which facilitates quantum processes while 
introducing potential reflective losses, makes their study 
essential for the design and optimization of advanced 
quantum and optoelectronic systems.  

Triangular quantum barriers were therefore chosen for 
this study based on their superior capacity to capture the 
nuanced dynamics of quantum tunneling in realistic, non-
ideal environments. Compared to traditional rectangular 
barriers, triangular profiles offer significantly higher 
tunneling rates, up to three times greater in multibarrier 
configurations [42], and demonstrate excellent consistency 
between analytical models and numerical solutions [43]. 
Their geometry also strongly influences resonant tunneling 
behavior, as the barrier’s slope and height directly shape 
resonant energy levels and transmission characteristics 
[44]. These barriers are also central to phenomena such as 
Klein tunneling in graphene [45] and quantum reflection in 
doped semiconductor devices [46], reinforcing their 
applicability to nanoscale and high-speed device design. 
Importantly, the transport features observed in these 
systems can guide the development of wave-based 
metamaterials, where engineered potential landscapes, 
such as effective triangular profiles, are employed to 
manipulate transmission, delay, and localization. In contrast 
to the simplicity of rectangular barriers, triangular 
potentials offer a more realistic and versatile platform for 
investigating transport phenomena in fractional and 
nonlinear media, making them especially well-suited for 
this study. 

While prior studies on superarrival have primarily 
focused on time-dependent rectangular or idealized 
potential barriers in standard quantum systems, they rarely 
explore the impact of fractional-order dynamics or 

nonlinear interactions. Moreover, the role of potential 
asymmetry, especially in triangular barriers, remains 
underexamined. This study distinguishes itself by 
investigating superarrival in a nonlinear, space-fractional 
regime, using triangular barriers to capture realistic 
tunneling dynamics and asymmetry effects. By doing so, it 
reveals new insights into the interplay between nonlocality, 
nonlinearity, and geometry in quantum transport, which 
have not been addressed in earlier works. 

To solve the fractional Schrödinger equation and explore 
such phenomena, a variety of analytical and numerical 
methods have been employed. These include He’s semi-
inverse method [47], the Adomian decomposition method 
[48], (G'/G)-expansion [49], Φ6-model expansion [50], 
Crank–Nicolson Fourier spectral methods [51], linearly 
implicit conservative schemes [52], finite element methods 
[53], the homotopy analysis method [54], and split-step 
techniques [55-58]. 

The Split-Step Finite Difference (SSFD) method was 
chosen for this study due to its proven stability and 
efficiency in solving time-dependent fractional and 
nonlinear Schrödinger equations [59–61]. This method 
allows for the effective decoupling of linear and nonlinear 
terms [62], enabling accurate simulation of complex wave 
dynamics in media with nonlocal and nonlinear 
characteristics. Unlike other numerical schemes that may 
suffer from instability or require intensive computational 
resources for fractional operators, the SSFD method 
provides a balanced approach that ensures both numerical 
accuracy and computational feasibility for a wide range of 
parameter regimes [63]. 

In this manuscript, we investigate the superarrival 
phenomenon of a Gaussian wavepacket in a fractional 
quantum medium, focusing on its interaction with a 
triangular potential barrier. By employing the space-
fractional Schrödinger equation, we aim to reveal how 
dynamic perturbations in such barriers affect wavepacket 
reflection and transmission. This work not only advances 
the theoretical understanding of superarrival in fractional 
and nonlinear media but also has direct implications for 
metamaterial-based wave control. The demonstrated ability 
to manipulate transmission timing and amplitude through 
barrier asymmetry, fractional order, and nonlinearity 
suggests new strategies for designing metamaterials with 
tunable wave propagation characteristics. For example, 
photonic or phononic metamaterials can be engineered 
with graded or triangular-index profiles and nonlinear 
components to replicate the enhanced transmission and 
early arrival effects observed here. Such configurations 
could be employed in applications like ultrafast optical 
switching, subwavelength signal routing, or programmable 
delay lines in integrated wave-based devices. 

2.  Formalism 

The fractional Schrödinger equation governing the 
dynamics in a fractional medium is expressed as follows: 

𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥, 𝑡𝑡) =  �−𝜅𝜅 𝜕𝜕𝛼𝛼

𝜕𝜕|𝑥𝑥|𝛼𝛼
+ 𝛾𝛾|𝜓𝜓(𝑥𝑥, 𝑡𝑡)|2 + 𝑉𝑉(𝑥𝑥)� 𝜓𝜓(𝑥𝑥, 𝑡𝑡)     (1) 

where 1 < 𝛼𝛼 ≤ 2 denotes the Lévy index or the order of the 
fractional derivative, which is defined as: 
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𝜕𝜕𝛼𝛼

𝜕𝜕|𝑥𝑥|𝛼𝛼 𝜓𝜓
(𝑥𝑥, 𝑡𝑡)

=
1

2 cos �𝛼𝛼𝛼𝛼2 � Γ(2 − 𝛼𝛼)

𝑑𝑑2

𝑑𝑑𝑥𝑥2
� |−𝜉𝜉|1−𝛼𝛼
∞

−∞

𝜓𝜓(𝜉𝜉, 𝑡𝑡)𝑑𝑑𝑑𝑑 (2) 

where Γ is the gamma function. 

In this formulation, the term 𝛾𝛾|𝜓𝜓(𝑥𝑥, 𝑡𝑡)|2 represents the 
nonlinear coulomb interaction, with 𝛾𝛾 representing its 
strength. The dispersion coefficient 𝜅𝜅 = ℏ2

2𝑚𝑚∗ determines the 
contribution of the kinetic energy. The external potential 
(𝑉𝑉(𝑥𝑥)) is modeled as a “triangular potential barrier” in the 
system, given by: 
𝑉𝑉(𝑥𝑥)  = 𝑉𝑉0(−1 +  

𝑠𝑠𝑠𝑠
𝑎𝑎

) (3) 

where 0 ≤ 𝑠𝑠 ≤ 1 controls the slope of the potential. The 
slope of 𝑠𝑠 = 0 corresponds to a flat barrier, while 𝑠𝑠 = 1 
defines a “diagonal barrier”. Besides, the width of the 
potential is assumed to be 2𝑎𝑎, and 𝑉𝑉0 represents the height 
of the potential, indicating its strength.    

As the initial condition, a Gaussian wave packet is 
considered at time 𝑡𝑡 = 0: 

𝜓𝜓(𝑥𝑥, 𝑡𝑡 = 0) = exp �−
(𝑥𝑥 − 𝑥𝑥0)2

𝜎𝜎
+ 𝑖𝑖𝑖𝑖𝑖𝑖� (4) 

where, 𝑥𝑥0, 𝜎𝜎, and 𝑘𝑘 denote the initial position, spatial width, 
and wave number of the wave packet, respectively. In order 
to study the time evolution of the Gaussian wave packet, 
𝜓𝜓(𝑥𝑥, 𝑡𝑡 > 0), Eq. (1) is solved numerically using the Split-
Step Finite Difference (SSFD) method. This numerical 
scheme, developed for the standard Schrödinger equation 
[64], has been extended to solve fractional Schrödinger 
equation [65]. 

The transmission coefficient of the Gaussian wave 
packet is computed as:  

𝑇𝑇 = � 𝑑𝑑𝑑𝑑 |𝜓𝜓(𝑥𝑥, 𝑡𝑡)|2
+∞

𝑎𝑎

 (5) 

The main purpose of this study is to evaluate the 
magnitude of the superarrival of a Gaussian wave packet 
interacting with a triangular potential barrier. The analysis 
focuses on the influence of parameters including wave 
packet width 𝜎𝜎, fractional order 𝛼𝛼, nonlinear strength 𝛾𝛾, 
and dispersion coefficient 𝜅𝜅, on the superarrival 
phenomenon.  Following the methodology introduced by 
Bandyopadhyay [66], the time-dependent transmission 
coefficients for both the perturbed potential, 𝑇𝑇𝑝𝑝(𝑡𝑡), and free 
propagation, 𝑇𝑇𝑠𝑠(𝑡𝑡), are plotted. The intersection of these 
curves defines a characteristic time interval Δ𝑡𝑡 = 𝑡𝑡𝑐𝑐 − 𝑡𝑡𝑑𝑑, 
during which the perturbed transmission exceeds the free 
propagation counterpart. 

The integrated transmission within this interval is given 
by: 

𝐼𝐼𝑝𝑝 =  � 𝑑𝑑𝑑𝑑 𝑇𝑇𝑝𝑝(𝑡𝑡)
Δ𝑡𝑡

  (6-a) 

𝐼𝐼𝑠𝑠 =  � 𝑑𝑑𝑑𝑑 𝑇𝑇𝑠𝑠(𝑡𝑡)
Δ𝑡𝑡

 (6-b) 

The superarrival coefficient 𝜂𝜂, quantifying the 
enhancement, is then defined as: 

𝜂𝜂 =  
𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑠𝑠
𝐼𝐼𝑠𝑠

 (7) 

3. Results and Discussion 
In this study, we investigated the superarrival 

phenomenon exhibited by a Gaussian wave packet 
propagating through a nonlinear fractional medium 
containing a triangular potential barrier. The time-
dependent fractional Schrödinger equation (Eq. (1)) was 
numerically solved using the Split-Step Finite Difference 
(SSFD) method to obtain the evaluation of the wave packet. 
The transmission coefficient was then evaluated as a 
function of time to quantify the extent of wave packet 
transmission across the potential barrier. Subsequently, 
the superarrival magnitude was computed using Eq. (7), 
and the influence of key physical parameters including the 
fractional order, nonlinearity strength, dispersion 
coefficient, wave packet width, initial velocity of the wave 
packet, and potential symmetry on the superarrival 
behavior was explored. For computational convenience, 
the Planck constant (ℏ) and the particle mass (m) were set 
to unity, thereby the system was simplified into a 
dimensionless framework.  

Two distinct configurations were considered. A 
triangular potential barrier with a fixed height V_0=0.7 and 
a total width of 2a=100 was employed. In the first scenario, 
the Gaussian wave packet which is initialized at an 
appropriate distance from the barrier, propagated toward 
the sloped side of the potential barrier. In the second 
scenario, the wave packet approached the flat side of the 
potential barrier. By comparing the results obtained from 
these two configurations, the influence of potential 
symmetry on the superarrival phenomenon was explicitly 
investigated. To illustrate the schematic representation of 
the two scenarios discussed above, Figure 1 presents the 
corresponding configurations. 

To explore the effect of the potential gradient, the slope 
parameter 𝑠𝑠 was varied in 10 discrete steps: 𝑠𝑠 =
0, 0.1, 0.2, … , 1. For clearer visualization, the resulting 
superarrival magnitudes were plotted as a function of the 
10𝑠𝑠 across all simulations.   

At first, preliminary simulations were conducted to 
examine the impact of varying initial wave packet velocities 
on the superarrival magnitude. These simulations allowed 
us to identify an optimal initial velocity at which the 
superarrival effect was most pronounced. Although the 
corresponding results are not presented graphically for the 
sake of conciseness, the analysis led to the selection of a 
wave packet with an initial velocity 𝑣𝑣 = 1.5 for all 
subsequent simulations. Thereafter, the effects of the 
dispersion coefficient, nonlinearity strength, Lévy index, 
and wave packet width on the superarrival phenomenon 
were compared for the two aforementioned configurations. 



202                                                                M. Sabzevar / Progress in Physics of Applied Materials 5 (2025) 199-207 

Figure 2 presents the superarrival coefficient as a 
function of the Gaussian wave packet width for the case 
where the wave packet tunneled through the sloped side of 
the triangular potential barrier. To isolate the effect of 
wave packet width on the superarrival magnitude, the 
dispersion coefficient was fixed at 𝜅𝜅 = 0.5, the medium was 
considered fully fractional with 𝛼𝛼 = 1.01, and nonlinearity 

was excluded by setting 𝛾𝛾 = 0. As shown in Figure 2, the 
superarrival magnitude increases with increasing wave 
packet width. Based on this observation, a wave packet 
with a width of 𝜎𝜎 = 100 was selected for subsequent 
simulations aimed at investigating the influence of other 
physical parameters on the superarrival phenomenon. 

 
Fig. 1. A schematic illustration of the initial configuration assumed in the simulation. Panel (A) shows a Gaussian wave packet propagating toward the 
sloped side of the triangular potential barrier. Panel (B) shows the same configuration as in panel (A) but with the wave packet propagating toward the 
flat side of the potential barrier. In both panels, the arrow indicates the direction of wave packet propagation. 

To explore the effect of the potential gradient, the slope 
parameter 𝑠𝑠 was varied in 10 discrete steps: 𝑠𝑠 =
0, 0.1, 0.2, … , 1. For clearer visualization, the resulting 
superarrival magnitudes were plotted as a function of the 
10𝑠𝑠 across all simulations.   

At first, preliminary simulations were conducted to 
examine the impact of varying initial wave packet velocities 
on the superarrival magnitude. These simulations allowed 
us to identify an optimal initial velocity at which the 
superarrival effect was most pronounced. Although the 
corresponding results are not presented graphically for the 
sake of conciseness, the analysis led to the selection of a 
wave packet with an initial velocity 𝑣𝑣 = 1.5 for all 
subsequent simulations. Thereafter, the effects of the 
dispersion coefficient, nonlinearity strength, Lévy index, 
and wave packet width on the superarrival phenomenon 
were compared for the two aforementioned configurations. 

Figure 2 presents the superarrival coefficient as a 
function of the Gaussian wave packet width for the case 
where the wave packet tunneled through the sloped side of 
the triangular potential barrier. To isolate the effect of 
wave packet width on the superarrival magnitude, the 
dispersion coefficient was fixed at 𝜅𝜅 = 0.5, the medium was 
considered fully fractional with 𝛼𝛼 = 1.01, and nonlinearity 
was excluded by setting 𝛾𝛾 = 0. As shown in Figure 2, the 
superarrival magnitude increases with increasing wave 
packet width. Based on this observation, a wave packet 
with a width of 𝜎𝜎 = 100 was selected for subsequent 
simulations aimed at investigating the influence of other 
physical parameters on the superarrival phenomenon. 

 
Fig. 2. Superarrival magnitude as a function of the potential slope for wave 
packets with different widths (𝜎𝜎). 

To more clearly illustrate the effect of the dispersion 
coefficient on the superarrival phenomenon, Figure 3 
presents the relevant results. Panel (A) illustrates the 
variation of the superarrival magnitude as a function of the 
potential slope parameter for a Gaussian wave packet 
incident on the sloped side of the potential barrier. Multiple 
dispersion coefficients are considered that are represented 
by curves with different colors and symbols. Panel (B) 
presents the corresponding results for a Gaussian wave 
packet approaching the flat side of the barrier. In both 
cases, the medium was assumed to be fully fractional      
(𝛼𝛼 = 1.01) and linear (𝛾𝛾 = 0). 

From panels (A) and (B) of Figure 3, it is evident that both 
configurations exhibit a similar trend in superarrival 
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variation with increasing dispersion coefficient. In the 
system with dispersion coefficient 𝜅𝜅 = 0.5, the superarrival 
curve shows a peak near 𝑠𝑠 = 0.2, and then with decreasing 
the potential slope, the superarrival gradually reduces. 
Moreover, an increase in the dispersion coefficient results 
in a monotonic reduction of the superarrival magnitude 
across the entire slope range. This behavior can be 
attributed to the fact that a larger dispersion coefficient 
leads to a faster spatial spreading of the wave packet during 
propagation. As a result, the wave packet undergoes a 
broader and more diffuse interaction with the potential 
barrier, which increases the overall transmission time. 
Consequently, the coherence required for the emergence of 
the superarrival effect diminishes, resulting in a decrease 
in its magnitude. Additionally, a comparison between 
panels (A) and (B) reveals that, under identical conditions, 
the superarrival effect is generally more pronounced when 
the wave packet propagates toward the sloped side of the 
barrier compared to the flat side. These results suggest that 
potential asymmetry played a significant role in enhancing 
the superarrival phenomenon.   

As previously discussed, according to Figure 3, for 𝜅𝜅 > 1.0, 
the superarrival exhibits a linear dependence on the 
potential slope. Therefore, 𝜅𝜅 = 1.0 was fixed for the 
remainder of the simulations. 

 
Fig. 3. Superarrival magnitude as a function of the potential slope for media 
with different dispersion coefficients through which the wave packet 
propagates. Panel A corresponds to the case in which the wave packet 
approaches the sloped side of the potential barrier, while panel B is related 
to the case in which the wave packet approaches the flat side of the potential 
barrier. In both panels 𝛼𝛼 = 1.01 and 𝛾𝛾 = 0. 

Next, the influence of the fractional parameter α on the 
superarrival behavior of the wave packet was investigated 
for the two previously discussed scenarios. Figure 4 
illustrates the variation of the superarrival coefficient η as 
a function of the potential slope. The curves corresponding 
to different Lévy indices are distinguished by lines with 
varying colors and symbols. Panel (A) presents the case 

where the wave packet traverses the sloped side of the 
potential, whereas, panel (B) corresponds to the 
propagation through the flat side. 

As shown in Figure 4, for γ = 0 and 𝜅𝜅 = 1.0, a decrease 
in the Lévy parameter leads to an enhancement of the 
superarrival effect. Specifically, in the standard 
Schrödinger regime (α = 2.0), the superarrival 
phenomenon is not observed, whereas, in a fully fractional 
medium (𝛼𝛼 = 1.01), the superarrival magnitude reaches its 
maximum value. This behavior can be attributed to the 
increased localization of the wave packet in fractional 
systems with smaller Lévy parameters. It allows wave 
packets to propagate more effectively through the system 
and facilitate the occurrence of superarrival. 

It is also noteworthy that when the wave packet 
encounters the flat side of the potential barrier in a medium 
with a fractional coefficient greater than 1.3, the 
superarrival phenomenon is suppressed. This result 
further highlights the role of potential symmetry in 
inhibiting the occurrence of superarrival in the system. 

 
Fig. 4. Superarrival magnitude as a function of the potential slope for 
media with different fractional orders through which the wave packet 
propagates. Panel A corresponds to the case in which the wave packet 
approaches the sloped side of the potential barrier, while panel B is 
related to the case in which the wave packet approaches the flat side of 
the potential barrier. In both panels 𝜅𝜅 = 1 and 𝛾𝛾 = 0. 

Here, the effect of system nonlinearity on the 
superarrival of Gaussian wave packets propagating 
through the triangular potential barrier was studied. Panel 
(A) of Figure 5 presents the variation of the superarrival 
coefficient (η) as a function of the potential slope 
parameter (s) for a wave packet incident on the sloped side 
of the potential, under different nonlinearity strengths. 

Panel (B) displays analogous results for a wave packet 
incident on the flat side of the potential barrier. Curves 
corresponding to different nonlinear coefficients (γ) are 
distinguished by varying colors and symbols. 
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Fig. 5. Superarrival magnitude as a function of the potential slope for 
media with different nonlinearity through which the wave packet 
propagates. Panel A corresponds to the case in which the wave packet 
approaches the sloped side of the potential barrier, while panel B is 
related to the case in which the wave packet approaches the flat side of 
the potential barrier. In both panels 𝛼𝛼 = 1.01 and 𝜅𝜅 = 1. 

As observed, the superarrival magnitude exhibits 
fluctuations as the nonlinearity of the system changes. A 
comparison between panels (A) and (B) reveals that 
superarrival associated with wave packets encountering 
the sloped side of the potential is generally more 
pronounced than that observed for those encountering the 
flat side. Specifically, in the linear regime (γ = 0), the 
superarrival for a completely flat potential (s = 0) is 
approximately 5 and decreases linearly to about 4 as the 
slope parameter increases. When the nonlinearity 
parameter increases to γ = 0.2, the superarrival magnitude 
rises sharply to approximately 15, before decreasing to 
around 10 as the slope increases. As the nonlinearity 
strength continues to increase beyond this point, η 
gradually decreases and eventually vanishes. 

For a wave packet incident on the flat side of the 
potential barrier, the superarrival similarly fluctuates with 
increasing nonlinearity, although with lower overall 
magnitudes compared to the sloped side case. Consistent 
with the observations in Figure 4, Figure 5 clearly 
demonstrates that the symmetry of the potential can 
suppress the superarrival phenomenon. It is also 
noteworthy that, in this case, the maximum superarrival 
magnitude is observed for a system with a nonlinear 
coefficient around γ = 0.4. 

4. Conclusions 

In this study, a detailed investigation into the 
superarrival phenomenon exhibited by Gaussian wave 
packets propagating through a nonlinear fractional 
medium characterized by a triangular potential barrier has 

been conducted. By numerically solving the time-
dependent fractional Schrödinger equation using the Split-
Step Finite Difference (SSFD) method, the transmission 
dynamics have been examined and the superarrival 
magnitude under varying physical conditions and 
configurations has been evaluated. 

The results reveal that the superarrival effect is highly 
sensitive to several key system parameters, including the 
fractional order of the medium, the nonlinearity strength, 
the dispersion coefficient, the wave packet width, and the 
initial velocity of the wave packet. Furthermore, the 
symmetry and slope of the potential barrier were found to 
significantly influence the occurrence of superarrival. 
Specifically, asymmetry in the potential, introduced 
through a sloped barrier, was shown to enhance the 
superarrival effect, whereas symmetry, represented by the 
flat side, tended to suppress it. 

An increase in the wave packet width led to a more 
pronounced superarrival effect, suggesting that broader 
wave packets maintain coherence more effectively during 
propagation. Conversely, higher dispersion coefficients 
reduced the magnitude of superarrival, which is attributed 
to the rapid spatial spreading of the wave packet that 
diminishes coherence and increases transmission time. 
The fractional nature of the medium, quantified by the Lévy 
index, also played a critical role.  

A decrease in the Lévy parameter, corresponding to a 
more fractional regime, enhanced the superarrival effect 
due to increased localization and more efficient 
propagation dynamics. Notably, in the standard quantum 
mechanical regime (α = 2.0), the superarrival phenomenon 
was not observed, highlighting the unique contributions of 
fractional dynamics. 

The presence of nonlinearity introduced a non-
monotonic dependence in the superarrival behavior. A 
moderate level of nonlinearity significantly enhances the 
superarrival magnitude, whereas further increases lead to 
its gradual suppression. This behavior indicates the 
existence of an optimal nonlinear regime in which 
superarrival is maximized. Additionally, comparisons 
between scenarios where the wave packet. Furthermore, 
the symmetry and slope of the potential barrier were found 
to significantly influence the occurrence of superarrival. 
Specifically, asymmetry in the potential, introduced 
through a sloped barrier, was shown to enhance the 
superarrival effect, whereas symmetry, represented by the 
flat side, tended to suppress it. 

An increase in the wave packet width led to a more 
pronounced superarrival effect, suggesting that broader 
wave packets maintain coherence more effectively during 
propagation. Conversely, higher dispersion coefficients 
reduced the magnitude of superarrival, which is attributed 
to the rapid spatial spreading of the wave packet that 
diminishes coherence and increases transmission time. 
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The fractional nature of the medium, quantified by the Lévy 
index, also played a critical role. A decrease in the Lévy 
parameter, corresponding to a more fractional regime, 
enhanced the superarrival effect due to increased 
localization and more efficient propagation dynamics. 
Notably, in the standard quantum mechanical regime (α = 
2.0), the superarrival phenomenon was not observed, 
highlighting the unique contributions of fractional 
dynamics. 

The presence of nonlinearity introduced a non-
monotonic dependence in the superarrival behavior. A 
moderate level of nonlinearity significantly enhances the 
superarrival magnitude, whereas further increases lead to 
its gradual suppression. This behavior indicates the 
existence of an optimal nonlinear regime in which 
superarrival is maximized. Additionally, comparisons 
between scenarios where the wave packet encountered the 
sloped versus the flat side of the potential barrier 
consistently showed that the superarrival magnitude was 
greater in the asymmetric (sloped) case, underscoring the 
critical influence of potential symmetry on the effect. 

Overall, the findings of this study provide valuable 
insights into the interplay between fractional dynamics, 
nonlinearity, and potential asymmetry in governing early 
transmission phenomena in quantum systems. These 
results contribute to a deeper theoretical understanding of 
superarrival and may inform future investigations into 
quantum control, wave packet engineering, and transport 
phenomena in complex media. 
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