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Abstract

Let A be the class of analytic functions f in the open unit disk U = {z : |z| < 1} with the normalization conditions
f(0) = 0, f ′(0) = 1. If f(z) = z +

∑∞
n=2 anz

n and δ > 0 are given, then the Tδ-neighborhood of the function f is
defined as

TNδ(f) =

{
g(z) = z +

∞∑
n=2

bnz
n ∈ A :

∞∑
n=2

Tn |an − bn| ≤ δ

}
,

where T = {Tn}∞n=2 is a sequence of positive numbers. In the present paper we investigate some problems concerning

Tδ−neighborhoods of analytic functions with T =
{

n2

3nn!

}∞

n=2
. One of the considered problems is to find a number

δ∗T (A,B) such that
δ∗T (A,B) = inf {δ > 0 : B ⊂ TNδ(f) for all f ∈ A} ,

where the sets A,B ∈ A are given.
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1 Introduction

Let A be the class of analytic functions f in the open unit disk U = {z : |z| < 1} of the form f(z) = z+
∑∞

n=2 anz
n

with the normalization conditions f(0) = 0, f ′(0) = 1. Given a sequence T = {Tn}∞n=2 consisting of positive numbers,
the Tδ−neighborhood (δ > 0) of the function f is defined as

TNδ(f) =

{
g(z) = z +

∞∑
n=2

bnz
n ∈ A :

∞∑
n=2

Tn |an − bn| ≤ δ

}
.

If T = {n}∞n=2 then Tδ−neighborhood becomes the δ−neighborhood Nδ(f) introduced by St. Ruscheweyh [13]. He
proved that if f ∈ C then N1/4(f) ∈ S∗, where C,S∗ denote the well known classes of convex and starlike functions,
respectively. In this way he generalized the earlier result that N1(z) ∈ S∗. Some results of this type one can find
in [8, 9, 10, 17]. The Tδ−neighborhood was introduced in [15], where the authors considered the problem of finding
a sufficient condition f ∈ A that implies the existence of TNδ(f) being contained in a given subclass. U. Bednarz
and J. Sokó l considered and investigated Tδ−neighborhood for various subclasses of analytic functions [18, 19]. Also
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a certain class of analytic functions was described by S. Shams et al by T =
{

2−nn−2
}∞
n=2

, see [16]. The convolution

or Hadamard product of the functions f and g of the form f(z) = z +
∑∞

n=2 anz
n and g(z) = z +

∑∞
n=2 is defined by

f(z) ∗ g(z) = z +

∞∑
n=2

anbnz
n.

An interesting problem of stability of convolution on certain classes by using the δ− neighborhoods was considered
in [11, 12]. For work on this problem see also the papers [4, 5, 6]. Let S denote the subclass of A of functions univalent
in U. Let us consider the following sequence of nonnegative reals

T =

{
n2

3nn!

}∞

n=2

. (1.1)

In this paper we will use the above sequence to obtain the results about Tδ−neighbor- hoods. The motivation of
choice the sequence (1.1) is the convergence of the series

∑∞
n=2 Tn |an − bn| for |an| ≤ n, |bn| ≤ n, notice that Since

∞∑
n=0

n2xn

3nn!
=

3x + x2

32
ex/3,

∞∑
n=0

n3xn

3nn!
=

9x + 9x2 + x3

33
ex/3,

∞∑
n=0

n4xn

3nn!
=

27x + 63x2 + 18x3 + x4

34
ex/3,

so we have

∞∑
n=0

n2

3nn!
=

4

9
e1/3, (1.2)

∞∑
n=0

n3

3nn!
=

19

27
e1/3, (1.3)

∞∑
n=0

n4

3nn!
=

109

81
e1/3. (1.4)

Definition 1.1. [2] Let us consider the functions f that are meromorphic and univalent in U, holomorphic at 0 and
have the expansion f(z) = z +

∑∞
n=2 anz

n If, in addition, the complement of f(U) with respect to C is convex, then
f is called a concave univalent function. The class of all concave functions is denoted by Co.

It is well known [1], that if f ∈ Co, then |an| ≥ 1 for all n > 1 and equality holds if and only if f(z) = z
1−µz , |µ| = 1

(see [1, 3]). The authors in [2] considered the class Co(p) ∈ Co consisting of all concave functions that have a pole at
the point p and are analytic in |z| < |p|. They proved that if f ∈ Co(1), then∣∣∣∣an − n + 1

2

∣∣∣∣ ≤ n− 1

2
for n ≥ 2 (1.5)

and equality holds only for the function fθ defined by

fθ(z) =
2z − (1 − eiθ)z2

2(1 − z)2
, |z| < 1.

It is well known that if f ∈ Co(1), then the complement of f(U) can be represented as the union of a set of mutually
disjoint half-lines (the end point of one half-line can lie on the another half-line), so f(U) is a linearly accessible domain
in the strict sense, see [8, 17]. The authors in [7] also showed that Co(1) ⊂ K, where K is the set of close to-convex
functions.
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2 Main result

Throughout this section T will always be the sequence given by (1.1) unless otherwise stated.

Theorem 2.1. If f(z) = z +
∑∞

n=2 anz
n, g(z) = z +

∑∞
n=2 bnz

n and |an| ≤ n, |bn| ≤ n, n = 2, 3, 4, · · · , then

g ∈ TN{
38
27 e

1
3 − 2

3

}(f), where T is given in (1.1), The number 38
27e

1
3 − 2

3 = 1.297 · · · is the best possible.

Proof . By (1.1) and (1.3), We have

∞∑
n=2

Tn |an − bn| =

∞∑
n=2

2n3

3nn!
= 2((

19

27
)e1/3 − 1

3
) =

38

27
e1/3 − 2

3
= 1.297 · · · .

For the functions

f(z) = z +

∞∑
n=2

anz
n = z +

∞∑
n=2

nzn, g(z) = z +

∞∑
n=2

bnz
n = z −

∞∑
n=2

nzn

we have
∞∑

n=2

Tn |an − bn| = 2

∞∑
n=2

n3

3nn!
= 2((

19

27
)e1/3 − 1

3
) = 1.297 · · · .

□

It is well known that if S,S∗, C and K denote the well-known classes of univalent, starlike, convex and close-to-
convex functions respectively then C ⊂ S∗ ⊂ K ⊂ S and if f ∈ S∗ then |an| ≤ n while if f ∈ C then |an| ≤ 1. As a
direct application of Theorem 2.1 we obtain Tδ−neighborhood information for S∗ and K.

Corollary 2.2. If f belongs to one of the classes S∗,S, then

S ⊂ TN
( 38
27 )e

1
3 − 2

3

(f),

where T is given in (1.1).

The constant 38
27e

1
3 − 2

3 = 1.297 · · · seems not to be the best possible. An interesting open problem is to find the
smallest constant σ such that for each f ∈ S

S ⊂ TNσ(f),

where T is given in (1.1). For the Koebe function f(z) = z
(1−z)2 and g(z) = −f(−z), we have f, g ∈ S and

f(z) = z +

∞∑
n=2

anz
n = z +

∞∑
n=2

nzn,

g(z) = z +

∞∑
n=2

bnz
n = z +

∞∑
n=2

(−1)n−1nzn

so
∞∑

n=2

Tn |an − bn| = 2

∞∑
n=1

(2n)3

3(2n)(2n)!
= 2(

19

54
e1/3 − 1

54
e−1/3) = 0.9556 · · · .

Therefore, the number σ can not be smaller than 0.9556 · · · . We conjecture that σ = 0.9556 · · · . The result will
change if we consider the class of convex functions C.

Corollary 2.3. Let f ∈ C. Then S ⊂ TNβ(f) with β = 31
27e

1/3 − 2
3 = 0.9357 · · · .
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Proof . If f(z) = z +
∑∞

n=2 anz
n, then |an| ≤ 1, n ≥ 2. Thus if g(z) = z +

∑∞
n=2 bnz

n ∈ S, then by (1.2) and (1.3),
we have

∞∑
n=2

Tn |an − bn| ≤
∞∑

n=2

n2n + 1

3nn!

=

∞∑
n=2

n3

3nn!
+

∞∑
n=2

n2

3nn!

=
19

27
e1/3 − 1

3
+

4

9
e1/3 − 1

3

=
31

27
e1/3 − 2

3
= 0.9357 · · ·
= β. (2.1)

□

In a similar way as in Corollary 2.2, the constant β = 31
27e

1/3 − 2
3 = 0.9357 · · · given in Corollary 2.3 is also not

sharp but if the class S is replaced by the much larger class of normalized analytic function f such that |an(f)| ≤ n
for n ≥ 2, then β becomes sharp. The best possible constant in the case f ∈ S is not known. We conjecture that the
sharp constant is attained by the functions

f(z) = z +

∞∑
n=2

anz
n =

z

(1 − z)2
= z +

∞∑
n=2

nzn,

g(z) = z +

∞∑
n=2

bnz
n =

z

1 + z
= z +

∞∑
n=2

(−1)n−1zn.

It is clear that f ∈ S and g ∈ C. Moreover,

∞∑
n=2

Tn |an − bn| =

∞∑
n=2

n− (−1)n−1

3nn!
n2

=

∞∑
n=2

n + 1

3nn!
n2 −

∞∑
n=2

1 + (−1)n−1

3nn!
n2

=

∞∑
n=2

n3

3nn!
+

∞∑
n=2

n2

3nn!
− 2

∞∑
n=1

(2n + 1)2

3(2n+1)(2n + 1)!

=
31

27
e1/3 − 2

3
− 2

9
(2e1/3 + e−1/3)

= 0.1562 · · · . (2.2)

Therefore, the smallest constant β such that S ∈ TNβ(f) for each f ∈ C lies between 0.1562 · · · and 0.9357 · · · .
We conjecture that it is the first number.

Theorem 2.4. Let f, g1, g2 be of the form

f(z) = z +

∞∑
n=2

anz
n, g1(z) = z +

∞∑
n=2

cnz
n, g2(z) = z +

∞∑
n=2

dnz
n,

where |an| ≤ n, |cn| ≤ n, |dn| ≤ n, n = 2, 3, · · · .Then

g1 ∗ g2 ∈ TN{ 148
81 e1/3− 2

3}(f).

The number 148
81 e1/3 − 2

3 is the best possible.
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Proof . Since

(g1 ∗ g2)(z) = z +

∞∑
n=2

cndnz
n,

we have
∞∑

n=2

n2

3nn!
|cndn − an| ≤

∞∑
n=2

n2

3nn!
(n2 + n)

=
109

81
e1/3 − 1

3
+

19

27
e1/3 − 1

3

=
166

81
e1/3 − 2

3
= 2.1934 · · · . (2.3)

The functions

f(z) = z −
∞∑

n=2

nzn, g1(z) = g2(z) = z +

∞∑
n=2

nzn

show that the number 166
81 e1/3 − 2

3 = 2.1934 · · · is the best possible. Therefore the proof is completed. □

Definition 2.5. [7] Let A and B be arbitrary subset of the A, and let T be a sequence of positive number, then
δ∗T (A,B) is defined by

δ∗T (A,B) = inf {δ > 0 : B ⊂ TNδ(f) for all f ∈ A} .

Let us denote

T (f, g) =

∞∑
n=2

Tn |an − bn| . (2.4)

Therefore, we can write

δ∗T (A,B) = inf {δ : T (f, g) < δ for allf ∈ A, g ∈ B}
= sup {T (f, g) : f ∈ A, g ∈ B} ,

where the condition T (f, g) < δ means that the series T (f, g) is convergent and its sum is less than δ. Therefore,
we see that δ∗T (A,B) = δ∗T (B,A), and we will say that δ∗T (A,B) is the T−factor with respect to the classes A and
B. Making use of the above definition, Corollary 2.2 and the consideration below Corollary 2.2, we can state next
corollary, where T = {Tn}∞n=2 is again of the form (1.1).

Corollary 2.6. The T−factor with respect to the classes S and S satisfies the following inequality

0.9556 · · · ≤ δ∗T (S,S) ≤ 1.297 · · · . (2.5)

It is well known that the Koebe function and all its rotations belong to each of the classes S,S∗ and K (univalent,
starlike and close-to-convex functions respectively), then Corollary 2.6 follows the next corollary.

Corollary 2.7. Let A and B be one of the classes S,S∗ or K. Then

0.9556 · · · ≤ δ∗T (A,B) ≤ 1.297 · · · . (2.6)

In the same way as above, we can express Corollary 2.3 in terms T -factor. It is done in the next result.

Corollary 2.8. The T− factor with respect to the classes C of convex functions and S satisfies the following inequality

0.1562 · · · ≤ δ∗T (C,S) ≤ 0.9357 · · · .

Remark 2.9. Now we consider the “central” function with respect to coefficient in the class Co(1) which is denoted
by fc(z) and defined by

fc(z) =
1

2

{
z

1 − z
+

z

(1 − z)2

}
= z +

∞∑
n=2

n + 1

2
zn, |z| < 1.

In [7] the authors showed that fc ∈ Co(1).
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Theorem 2.10. The following inclusion relation holds

Co(1) ∈ TNδ(fc),

where δ = 1
2 ( 7

27e
1/3) = 0.1809 · · ·

Proof . Suppose that f(z) = z +
∑∞

n=2 anz
n ∈ Co(1), then from (1.2) and (1.3), we obtain

∞∑
n=2

Tn

∣∣∣∣an − n + 1

2

∣∣∣∣ ≤ ∞∑
n=2

Tn

∣∣∣∣n− 1

2

∣∣∣∣
=

1

2

∞∑
n=2

(n− 1)n2

3nn!

=
1

2

[ ∞∑
n=2

n3

3nn!
−

∞∑
n=2

n2

3nn!

]

=
1

2

[
19

27
e1/3 − 1

3
− 4

9
e1/3 +

1

3

]
=

1

2

(
7

27
e1/3

)
= 0.1809 · · ·
= δ. (2.7)

□
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