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ON FIXED POINT THEOREMS IN FUZZY METRIC SPACES
USING A CONTROL FUNCTION

C. T. AAGE1∗ AND J. N. SALUNKE2

Abstract. In this paper, we generalize Fuzzy Banach contraction theorem estab-
lished by V. Gregori and A. Sapena [Fuzzy Sets and Systems 125 (2002) 245-252]
using notion of altering distance which was initiated by Khan et al. [Bull. Austral.
Math. Soc., 30(1984), 1-9] in metric spaces.

1. Introduction and preliminaries

Fuzzy metric space is closely generalization of generalized Menger space. Kramosil
and Michalek [19] introduced fuzzy metric space, George and Veermani [11] modified
the notion of fuzzy metric spaces with the help of continuous t-norms. George
and Veeramani[11] imposed some stronger conditions on the fuzzy metric space in
order to obtain a Hausdorff topology. In [8], V. Gregori, A. Sapena proved that
the topology induced by a fuzzy metric space in George and Veeramani’s sense is
actually metrizable. The aim of this paper is to generalize the Banach fixed-point
theorem to (fuzzy) contractive mappings on complete fuzzy metric spaces in George
and Veeraman sense using concept of alternating distance.

Definition 1.1. (Schweizer and Sklar [26]. A binary operation ∗ : [0, 1]× [0, 1] →
[0, 1] is a continuous t-norm if ([0, 1, ∗) is a topological monoid with unit 1 such that
a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, (a, b, c, d ∈ [0, 1]).

Definition 1.2. (Kramosil and Michalek [19]). The 3-tuple (X,M, ∗) is said to be
a fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm and M is a
fuzzy set on X2 × [0,∞) satisfying the following conditions:
(i)M(x, y, 0) = 0,
(ii)M(x, y, t) = 1 for all t > 0 iff x = y,
(iii)M(x, y, t) = M(y, x, t),
(iv)M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(v)M(x, y, ∗) : [0,∞) → [0, 1] is left-continuous, x, y, z ∈ X and t, s > 0.

To obtain a Hausdorff topology on the fuzzy metric space, the authors gave the
following definitions in [11].
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Definition 1.3. (George and Veeramani [11]). The 3- tuple (X,M, ∗) is said to be
a fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm and M is a
fuzzy set on X2 × (0,∞) satisfying the following conditions:
(i)M(x, y, t) > 0,
(ii)M(x, y, t) = 1 iff x = y,
(iii)M(x, y, t) = M(y, x, t),
(iv)M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(v) M(x, y, ∗) : (0,∞) → [0, 1] is continuous, x, y, z ∈ X and t, s > 0.

Definition 1.4. (George and Veeramani [11]). Let (X,M, ∗) be a fuzzy metric
space. The open ball B(x, r, t) for t > 0 with centre x ∈ X and radius r, 0 < r < 1,
is defined as B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}. The family {B(x, r, t) : x ∈
X; 0 < r < 1, t > 0} is a neighborhood’s system for a Hausdorff topology on X,
that we call induced by the fuzzy metric M .

Definition 1.5. (George and Veeramani [11]). In a metric space (X, d) the 3-tuple
(X,Md, ∗) where Md(x, y, t) = t/t + d(x, y) and a ∗ b = ab, is a fuzzy metric space.
This Md is called the standard fuzzy metric induced by d. The topologies induced
by d.

The topologies generated by the standard fuzzy metric and the corresponding
metric are the same.

Lemma 1.6. M(x, y, ∗) is nondecreasing for all x, y ∈ X.

Remark 1.7. In a fuzzy metric space (X,M, ∗), for any r ∈ (0, 1) we can find an
s ∈ (0, 1) such that s ∗ s > r.

Definition 1.8. (George and Veeramani [11]). A sequence (xn) in a fuzzy metric
space (X,M, ∗) is a Cauchy sequence iff for each ε ∈ (0, 1) and each t > 0 there
exists n0 ∈ N such that M(xn, xm, t) > 1− ε, for all n,m ∈ n0.

A fuzzy metric space in which every Cauchy sequence is convergent is called a
complete fuzzy metric space.

Theorem 1.9. (George and Veeramani [11]). A sequence (xn) in a fuzzy metric
space (X,M, ∗) converges to x if and only if M(xn, x, t) → 1 as n→∞.

Definition 1.10. G-Cauchy Sequence [11, 12]. A sequence (xn) in a fuzzy metric
space (X,M, ∗) is called a G-Cauchy if limn→∞M(xn, xn+m, t) = 1 for each m ∈ N
and t > 0.

We call a fuzzy metric space (X,M, ∗) G-complete if every G-Cauchy sequence
in X is convergent. It follows immediately that a Cauchy sequence is a G-Cauchy
sequence. The converse is not always true. This has been established by an example
in [29].

The following concept of convergence was introduced in fuzzy metric spaces by
Mihet[22].

Definition 1.11. Point Convergence or p-convergence[22]. Let (X,M, ∗) be a fuzzy
metric space. A sequence (xn) in X is said to be point convergent or p-convergent
to x ∈ X if there exists t > 0 such that limn→∞M(xn, x, t) = 1. We write xn →p x
and call x as the p-limit of (xn).
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The following lemma was proved in [22].

Lemma 1.12. [22] In a fuzzy metric space (X,M, ∗) with the condition M(x, y, t) 6=
1 for all t > 0 whenever x 6= y, p-limit of a point convergent sequence is unique.

It has been established in [22] that there exist sequences which are p-convergent
but not convergent .

V. Gregori and A. Sapena [10] established fixed point theorem for following types
fuzzy contractive mappings.

Definition 1.13. Let (X,M, ∗) be a fuzzy metric space. We will say the mapping
f : X → X is fuzzy contractive if there exists k ∈ (0, 1) such that

1

M(f(x), f(y), t)
− 1 ≤ k

( 1

M(x, y, t)
− 1

)
, (1.1)

for each x, y ∈ X and t > 0. (k is called the contractive constant of f .)

Definition 1.14. Altering distance function [18] An altering distance function is
a function ψ : [0,∞) → [0,∞)
(i) which is monotone increasing and continuous and
(ii) ψ(t) = 0 if and only if t = 0.

In 1984 Khan et al proved the following result.

Theorem 1.15. [18] Let (X, d) be a complete metric space, ψ be an altering distance
function and let f : X → X be a self mapping which satisfies the following inequality

ψ(d(fx, fy)) ≤ cψ(d(x, y)

for all x, y ∈ X and for some 0 < c < 1. Then f has a unique fixed point.

Definition 1.16. A function φ : R → R+ is said to satisfy the condition ∗ if it
satisfies the following conditions
(i)φ(t) = 0 if and only if t = 0,
(ii)φ(t) is increasing and φ(t) →∞ as t→∞,
(iii)φ is left continuous in (0,∞),
(iv)φ is continuous at 0.

In this connection Binayak S. Choudhury et al have been studied the fixed point
results in Menger Space, details see in [3, 4, 6, 7]. Recently C. T. Aage and B. S.
Choudhury proved following result.

Theorem 1.17. Let (X,M, T ) be a fuzzy metric space in the sense of George and
Veeramani and sup0≤a<1T (a, a) = 1 and the self mapping f : X → X satisfy

M(fx, fy, φ(t) ≥M(x, y,
(
φ(
t

c
)
)
,

where 0 < c < 1, x, y ∈ X and t > 0 and φ satisfies ∗ condition. Suppose that for
some x0 ∈ X the sequence of {fnx0} has a p-convergent subsequence. Then f has a
unique fixed point.

In this paper we generalize contractive condition (1.1) using alternating distance
and establish fixed point theorem in G-complete fuzzy metric space in the sense of
George and Veeramani.
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2. Main Results

Theorem 2.1. Let (X,F, ∗) be a G-complete fuzzy metric space and f : M → M
be a self mapping satisfying the following inequality

1

M
(
fx, fy, φ(ct)

) − 1 ≤ ψ
( 1

M(x, y, φ(t))
− 1

)
(2.1)

where x, y ∈ M , 0 < c < 1, φ is a function which satisfies Definition (1.16) and
ψ : [0, 1) → [0, 1) is such that ψ is continuous, ψ(0) = 0 and ψn(an) → 0, whenever
an an → 0 as n→∞ and t > 0 is such that M(x, y, φ(t)) > 0. Then f has a unique
fixed point.

Proof. Let x0 ∈ X. Define the sequence {xn} as follows fxn = xn+1.
We assume that xn+1 6= xn for all n ∈ N , otherwise f has a fixed point. By virtue

of the properties of φ, we can find t > 0 such that M(x0, x1, φ(t)) > 0. Then by an
application of (2.1) we have

1

M(x1, x2, φ(ct))
− 1 =

1

M(fx0, fx1, φ(ct))
− 1 ≤ ψ

( 1

M(x0, x1, φ(t))
− 1

)
(2.2)

Again M(x0, x1, φ(t)) > 0 implies M(x0, x1, φ( t
c
)) > 0. Then again by an application

of (2.1) we have

1

M(x1, x2, φ(t))
− 1 =

1

M(fx0, fx1, φ(t))
− 1 ≤ ψ

( 1

M(x0, x1, φ( t
c
))
− 1

)
. (2.3)

Repeating the above procedure successively n times we obtain

1

M(xn, xn+1, φ(t))
− 1 ≤ ψn−1

( 1

M(x0, x1, φ( t
cn ))

− 1
)
. (2.4)

Again (2.2) implies that M(x1, x2, φ(ct)) > 0.
Then following the above procedure we have

1

M(xn, xn+1, φ(ct))
− 1 ≤ ψn−1

( 1

M(x1, x2, φ( ct
cn−1 ))

− 1
)
. (2.5)

Repeating the above step r times, in general we have for n > r,

1

M(xn, xn+1, φ(crt))
− 1 ≤ ψn−r

( 1

M(xr, xr+1, φ( (crt)
cn−r ))

− 1
)
. (2.6)

Since ψn(an) → 0 whenever an → 0, we have from (2.6), for all r > 0

M(xn, xn+1, φ(crt)) →∞ as n→∞ (2.7)

Let ε > 0 be given, then by virtue of the properties of φ we can find r > 0 such that
φ(crt) < ε. It then follows from (2.7) that

M(xn, xn+1, ε) → 1 as n→∞. (2.8)

Again

M(xn, xn+p, φ(ε)) ≥M(xn, xn+1,
ε

p
) ∗M(xn+1, xn+2,

ε

p
) ∗ · · · ∗M(xn+p−1, xn+p,

ε

p
)︸ ︷︷ ︸

p−times

.
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Taking n → ∞ and using (2.8) we have for any integer p, M(xn, xn+p, ε) → ∞ as
n → ∞. Hence {xn} is a G-Cauchy sequence. As (X,M, ∗) is G-complete, {xn} is
convergent and hence xn → z as n→∞ for some z ∈ X. Again

M(fz, z, ε) ≥M(fz, xn+1,
ε

2
) ∗M(xn+1, z,

ε

2
). (2.9)

Using the properties of φ-function, we can find a t2 > 0, such that φ(t2) <
ε
2
. Again

xn → z as n→∞. Hence there exists N ∈ N such that for all n > N ,

M(xn, z, φ(t2)) > 0.

Then we have for n > N ,

1

M(fz, xn+1,
ε
2
)
− 1 ≤ 1

M(fz, fxn, φ(t2))
− 1

≤ ψ
( 1

M(z, xn, φ( t2
c
))
− 1

)
.

Letting n→∞, utilizing φ(0) = 0 and continuity of ψ , we obtain

M(fz, xn+1,
ε

2
) → as n→∞. (2.10)

Making n → ∞ in (2.9), using (2.10), by continuity of ψ and the fact that xn → z
as n→∞ we have,

M(fz, z, ε) = 1 for every ε > 0.

Hence z = fz. Next we establish the uniqueness of the fixed point. Let x and y be
two fixed points of f . By the properties of φ there exists s > 0 such thatM(x, y, φ(s)) >
0. Then by an application of (2.1) we have

1

M(x, y, φ(cs))
− 1 =

1

M(fx, fy, φ(cs))
− 1 ≤ ψ

( 1

M(x, y, φ(s))
− 1

)
. (2.11)

Again M(x, y, φ(s)) > 0 implies M(x, y, φ( s
c
)) > 0. Then replacing s by s

c
in (12)

we obtain

1

M(x, y, φ(s))
− 1 ≤ ψ

( 1

M(x, y, φ( s
c
))
− 1

)
.

Repeating the above procedure n times we have

1

M(x, y, φ(s))
− 1 ≤ ψn

( 1

M(x, y, φ( s
cn ))

− 1
)
→ 0 as n→∞ (by the properties of ψ ).

This shows that M(x, y, φ(s)) = 1 for all s > 0.
Again from (2.11) it follows that M(x, y, φ(cs)) > 0. Repeating the same argu-

ment with s replaced by cs we have M(x, y, φ(cs)) = 1 and in general we have,
M(x, y, φ(cns)) = 1 for all n ∈ N ∪ {0}. By the properties of φ for any given ε > 0
there exists r ∈ N ∪ {0} such that φ(crs) < ε, so that from the above we have
M(x, y, ε) = 1 for all ε > 0, that is x = y. This establishes the uniqueness of the
fixed point. �
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Theorem 2.2. Let (X,M, ∗) be a fuzzy metric space with the condition M(x, y, t) 6=
1 for all t > 0 whenever x 6= y, and f : X → X be a self mapping which satisfies the
inequality (2.1) in the statement of Theorem 2.1. If for some x0 ∈ X, the sequence
{xn} given by xn+1 = fxn, n ∈ N ∪ {0} has a p-convergent subsequence then f has
a unique fixed point.

Proof. Let {xnk
} be a subsequence of {xn} which is p-convergent to x ∈ X.

Consequently there exists s > 0 such that

limk→∞M(xnk
, x, s) = 1. (2.12)

Further, following (2.8) we have limi→∞M(xni
, xni+1

, s) = 1. Therefore given δ > 0
there exist k1, k2 ∈ N ∪ {0} such that for all k′ > k1 and k′′ > k2 we have,

M(xnk′
, x, s) > 1− δ

and M(xnk′′
, xnk′′+1, s) > 1− δ.

Taking k0 = max{k′, k′′}, we obtain that for all j > k0,

M(xnj
, x, s) > 1− δ (2.13)

and

M(xnj
, xnj+1

, s) > 1− δ. (2.14)

So we obtain

M(xnj+1
, x, 2s) ≥M(xnj+1

, xnj
, s) ∗M(xnj

, x, s)

≥ (1− δ) ∗ (1− δ) [ by (2.13) and (2.14)].

Let ε > 0 be arbitrary. As (1 ∗ 1) = 1 and ∗ is a continuous t-norm, we can find
δ > 0 such that (1 − δ) ∗ (1 − δ) > 1 − ε. It follows from (2.13) and (2.14) that
for given ε > 0 it is possible to find a positive integer k0 such that for all j > k0,
M(xnj+1

, x, 2s) > 1− ε. Hence limj→∞M(xnj+1, x, 2s) = 1, that is

xnj+1 →p x. (2.15)

Again, following the properties of φ-function we can find t > 0 such that

φ(t) ≤ 2s < φ(
t

c
).

Also from (2.15) it is possible to find a positive integer N1 such that for all i > N1

M(xni+1, x, 2s) > 0.

Consequently for all i > N1,

1

M(xni+1, fx, 2s)
− 1 ≤ 1

M(fx, fxni
, φ(t))

− 1

≤ ψ
( 1

M(x, xni
, φ( t

c
))
− 1

)
≤ ψ

( 1

M(x, xni
, 2s)

− 1
)
.

Taking i→∞ in the above inequality, and using (2.12) and the continuity of ψ we
obtain M(xni+1, fx, 2s) → 1 as i→∞, that is,

xni+1 →p fx as i→∞. (2.16)
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Using (2.15), (2.16) we have fx = x which proves the existence of the fixed point.
The uniqueness of the fixed point follows as in the proof of Theorem 2.1.

Example 2.3. Let (X,M, ∗) be a complete fuzzy metric space whereX = {x1, x2, x3}, a∗
b = min{a, b} and M(x, y, t) be defined as

M(x1, x2, t) = M(x2, x1, t) =

 0, if t ≤ 0,
0.9, if 0 < t ≤ 3,
1, t > 3.

M(x1, x3, t) = M(x3, x1, t) = M(x2, x3, t) = M(x3, x2, t)

=

 0, if t ≤ 0,
0.7, if 0 < t < 6,
1, if t ≥ 6.

f : X → X is given by fx1 = fx2 = x2 and fx3 = x1 . If we take φ(t) = t2, ψ(t) =
2t3 and c = 0.8, then it may be seen that f satisfies the inequality (2.1) and x2 is
the unique fixed point of f .
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