
تعداد نشریات | 21 |
تعداد شمارهها | 643 |
تعداد مقالات | 9,417 |
تعداد مشاهده مقاله | 68,143,945 |
تعداد دریافت فایل اصل مقاله | 40,990,634 |
Structural and Magnetic Phase Transitions in Cu1-3xZn2xMnxFe2O4 Ferrites | ||
Progress in Physics of Applied Materials | ||
مقاله 1، دوره 6، شماره 1 - شماره پیاپی 10، فروردین 2026، صفحه 1-13 اصل مقاله (2.6 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2025.37277.1141 | ||
نویسندگان | ||
Ahmad Gholizadeh* ؛ Sakineh Hosseini | ||
School of Physics, Damghan University, Damghan, Iran | ||
تاریخ دریافت: 10 فروردین 1404، تاریخ بازنگری: 10 اردیبهشت 1404، تاریخ پذیرش: 16 اردیبهشت 1404 | ||
چکیده | ||
Doping spinel ferrites with carefully selected dopants is a common approach to enhance the physical properties of the base ferrite. Zn/Mn co-substituted CuFe2O4, represented as Cu1-3xZn2xMnxFe2O4, was prepared by the auto-combustion method. The primary goal was to study the effects of varying Zn/Mn levels on the structural, optical, and magnetic properties of CuFe2O4 spinel ferrites. As the Zn/Mn co-substitution level increased, a notable structural phase change from a tetragonal phase with I41/amd space group to a cubic phase with Fd m space group was observed. This finding was further validated through FTIR spectroscopy analysis. Interestingly, the bandgap energy of the co-substituted ferrites showed a clear dependence on the substitution levels, ranging from 1.68 eV to 1.98 eV. This variation in optical properties is a significant result, as it allows researchers to fine-tune the bandgap energy of these materials based on specific application requirements. Furthermore, the saturation magnetization of the co-substituted ferrites exhibited a considerable shift as the Zn/Mn levels increased. A hard-to-soft magnetic phase transition was observed, indicating a substantial change in the materials' magnetic behavior. This discovery highlights the potential to tailor the magnetic properties of CuFe2O4 spinel ferrites by carefully controlling the Zn/Mn co-substitution levels. Overall, the findings from this study demonstrate that Zn/Mn co-substitution is an effective technique to modify the properties of CuFe2O4 spinel ferrites. | ||
کلیدواژهها | ||
Spinel Ferrite؛ Zn/Mn Co-Substitutions؛ Structure Phase Transition؛ Magnetic Properties | ||
مراجع | ||
[1] Liandi, A. R., Cahyana, A. H., Kusumah, A. J. F., Lupitasari, A., Alfariza, D. N., Nuraini, R., ... & Kusumasari, F. C. (2023). Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: A review. Case Studies in Chemical and Environmental Engineering, 7, 100303.
[2] Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., ... & Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486.
[3] Suresh, R., Rajendran, S., Kumar, P. S., Vo, D. V. N., & Cornejo-Ponce, L. (2021). Recent advancements of spinel ferrite-based binary nanocomposite photocatalysts in wastewater treatment. Chemosphere, 274, 129734.
[4] Satyanarayana, G., Rao, G. N., Babu, K. V., Kumar, G. S., & Reddy, G. D. (2020). Influence of Chromium Substitution on Structural, Electrical, and Magnetic Properties of Ni–Zn–Cu Ferrites. Acta Physica Polonica Series a 138(3):355-363.
[5] Kefeni, K. K., Msagati, T. A., Nkambule, T. T., & Mamba, B. B. (2020). Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Materials Science and Engineering: C, 107, 110314.
[6] Jacob, J., Javaid, K., Amin, N., Ali, A., Mahmood, K., Ikram, S., Arshad, M. I., Munir, A., & Amami, M. (2023). The influence of lanthanum concentration on microstructural and electrical properties of Mg-Cd-Bi ferrite nanoparticles, Ceramics International, 49(2), 1896-1901.
[7] Mojahed, M., Dizaji, H. R., & Gholizadeh, A. (2022). Structural, magnetic, and dielectric properties of Ni/Zn co-substituted CuFe2O4 nanoparticles. Physica B: Condensed Matter, 646, 414337.
[8] Dastjerdi, O. D., Shokrollahi, H., & Mirshekari, S. (2023). A review of synthesis, characterization, and magnetic properties of soft spinel ferrites. Inorganic Chemistry Communications, 153, 110797.
[9] Gonçalves, J. M., de Faria, L. V., Nascimento, A. B., Germscheidt, R. L., Patra, S., Hernández-Saravia, L. P., ... & Angnes, L. (2022). Sensing performances of spinel ferrites MFe2O4 (M= Mg, Ni, Co, Mn, Cu, and Zn) based electrochemical sensors: A review. Analytica Chimica Acta, 1233, 340362.
[10] Salih, S. J., & Mahmood, W. M. (2023). Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon, 9(6), e16601.
[11] Harrabi, D., Hcini, S., Dhahri, J., Wederni, M. A., Alshehri, A. H., Mallah, A., ... & Bouazizi, M. L. (2023). Study of structural and optical properties of Cu–Cr substituted Mg–Co spinel ferrites for optoelectronic applications. Journal of Inorganic and Organometallic Polymers and Materials, 33(1), 47-60.
[12] Kaur, S., Chalotra, V. K., Jasrotia, R., Bhasin, V., Kumari, S., Thakur, S., ... & Kumar Godara, S. (2022). Spinel nano ferrite (CoFe2O4): The impact of Cr doping on its structural, surface morphology, magnetic, and antibacterial activity traits. Optical Materials, 133, 113026.
[13] Peng, Y., Tang, H., Yao, B., Gao, X., Yang, X., & Zhou, Y. (2021). Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chemical Engineering Journal, 414, 128800.
[14] Ferreira, L. S., Silva, T. R., Silva, V. D., Raimundo, R. A., Simões, T. A., Loureiro, F. J., ... & Macedo, D. A. (2022). Spinel ferrite MFe2O4 (M= Ni, Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. Advanced Powder Technology, 33(1), 103391.
[15] Vinnik, D. A., Sherstyuk, D. P., Zhivulin, V. E., Zhivulin, D. E., Starikov, A. Y., Gudkova, S. A., ... & Trukhanov, A. V. (2022). Impact of the Zn–Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceramics International, 48(13), 18124-18133.
[16] Mahajan, H., Godara, S. K., & Srivastava, A. K. (2022). Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite. Journal of Alloys and Compounds, 896, 162966.
[17] Murugesan, C., Ugendar, K., Okrasa, L., Shen, J., & Chandrasekaran, G. (2021). Zinc substitution effect on the structural, spectroscopic, and electrical properties of nanocrystalline MnFe2O4 spinel ferrite. Ceramics International, 47(2), 1672-1685.
[18] Sherstyuk, D. P., Starikov, A. Y., Zhivulin, V. E., Zherebtsov, D. A., Gudkova, S. A., Perov, N. S., ... & Trukhanov, A. V. (2021). Effect of Co content on magnetic features and SPIN states IN Ni–Zn spinel ferrites. Ceramics International, 47(9), 12163-12169.
[19] Nasr, M. H., Elkholy, M. M., El-Deen, L. M. S., Turky, G. M., Moustafa, M., EL-Hamalawy, A. A., & Abouhaswa, A. S. (2024). Synthesis, structural, electrical and magnetic characteristics of Co–Cd spinel nano ferrites synthesized via sol-gel auto combustion method. Journal of Sol-Gel Science and Technology, 1-13.
[20] Dojcinovic, M. P., Vasiljevic, Z. Z., Pavlovic, V. P., Barisic, D., Pajic, D., Tadic, N. B., & Nikolic, M. V. (2021). Mixed Mg–Co spinel ferrites: Structure, morphology, magnetic and photocatalytic properties. Journal of alloys and compounds, 855, 157429.
[21] Patil, R. P., Elhouichet, H., Iqbal, M., & Ayyar, M. (2025). Highly stable dielectric frequency response of chemically synthesized Cobalt substituted Zn-Mn-Ferrites. Ceramics International.
[22] Abd-Elbaky, H. G., Rasly, M., Deghadi, R. G., Mohamed, G. G., & Rashad, M. M. (2022). Strong-base free synthesis enhancing the structural, magnetic and optical properties of Mn/Co and Zn/Co substituted cobalt ferrites. Journal of Materials Research and Technology, 20, 905-915.
[23] Ghodake, U. R., Chaudhari, N. D., Kambale, R. C., Patil, J. Y., & Suryavanshi, S. S. (2016). Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. Journal of Magnetism and Magnetic Materials, 407, 60-68.
[24] Mazen, S., Abu-Elsaad, N. I., & Nawara, A. S. (2020). The Influence of Various Divalent Metal Ions (Mn2+, Co2+, and Cu2+) Substitution on the Structural and Magnetic Properties of Nickel–Zinc Spinel Ferrite. Physics of the Solid State, 62, 1183-1194.
[25] Eghdami, F., & Gholizadeh, A. (2023). A correlation between microstructural and impedance properties of MnFe2-xCoxO4 nanoparticles. Physica B: Condensed Matter, 650, 414551.
[26] Sefatgol, R., & Gholizadeh, A. (2022). The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn–Mg–Cu–Zn ferrites. Physica B: Condensed Matter, 624, 413442.
[27] El-Masry, M. M., & Ramadan, R. (2022). The effect of CoFe2O4, CuFe2O4 and Cu/CoFe2O4 nanoparticles on the optical properties and piezoelectric response of the PVDF polymer. Applied Physics A, 128(2), 110.
[28] Takalloo, F., Gholizadeh, A., & Ardyanian, M. (2024). Crystal structure-physical properties correlation in Ni–Cu–Zn spinel ferrite. Journal of Materials Science: Materials in Electronics, 35(27), 1792.
[29] Choupani, M., & Gholizadeh, A. (2024). Correlation between structural phase transition and physical properties of Co2+/Gd3+ co-substituted copper ferrite. Journal of Rare Earths, 42(7), 1344-1353.
[30] Kazemi, N., & Mahdavi Shahri, M. (2017). Magnetically separable and reusable CuFe2O4 spinel nanocatalyst for the O-arylation of phenol with aryl halide under ligand-free condition. Journal of Inorganic and Organometallic Polymers and Materials, 27, 1264-1273.
[31] Shamgani, N., & Gholizadeh, A. (2019). Structural, magnetic and elastic properties of Mn0.3-xMgxCu0.2Zn0.5Fe3O4 nanoparticles. Ceramics International, 45(1), 239-246.
[32] Gholizadeh, A., & Beyranvand, M. (2020). Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0.3-xBaxCu0.2Zn0.5Fe2O4 nanoparticles. Physica B: Condensed Matter, 584, 412079.
[33] Sefatgol, R., Gholizadeh, A., & Hatefi, H. (2024). Effect of Ti Substitution on the Structural, Optical, and Magnetic Properties of Mn-Mg-Cu-Zn Ferrite Prepared by the Sol–Gel Route. Journal of Electronic Materials, 53(10), 6140-6150.
[34] Shannon, R. T., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Structural Science, 25(5), 925-946.
[35] Voorhees, P. W. (1985). The theory of Ostwald ripening. Journal of Statistical Physics, 38, 231-252.
[36] Khedr, A., & Striolo, A. (2019). Quantification of Ostwald ripening in emulsions via coarse-grained simulations. Journal of chemical theory and computation, 15(9), 5058-5068.
[37] López, R., & Gómez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of sol-gel science and technology, 61, 1-7.
[38] Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The journal of physical chemistry letters, 9(23), 6814-6817.
[39] Mojahed, M., Gholizadeh, A., & Dizaji, H. R. (2024). Influence of Ti4+ substitution on the structural, magnetic, and dielectric properties of Ni-Cu–Zn ferrite. Journal of Materials Science: Materials in Electronics, 35(18), 1239.
[40] Spaldin, N. A. (2010). Magnetic materials: fundamentals and applications. Cambridge university press.
[41] Beyranvand, M., & Gholizadeh, A. (2020). Structural, magnetic, elastic, and dielectric properties of Mn0.3-xCdxCu0.2Zn0.5Fe2O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 31(7), 5124-5140.
[42] Gholizadeh, A., & Jafari, E. (2017). Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. Journal of Magnetism and Magnetic Materials, 422, 328-336.
[43] Hakeem, A., Alshahrani, T., Muhammad, G., Alhossainy, M. H., Laref, A., Khan, A. R., ... & Khosa, R. Y. (2021). Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. Journal of Materials Research and Technology, 11, 158-169.
[44] Butt, K. Y., Aman, S., AlObaid, A. A., Al-Muhimeed, T. I., Rehman, A., Hegazy, H. H., ... & Farid, H. M. T. (2021). The study of structural, magnetic and dielectric properties of spinel ferrites for microwave absorption applications. Applied Physics A, 127(9), 714.
[45] Yang, H., Yang, X., Lin, J., Yang, F., He, Y., & Lin, Q. (2023). Effect of Cd2+ substitution on structural–magnetic and dielectric properties of Ni–Cu–Zn spinel ferrite nanomaterials by Sol–Gel. Molecules, 28(16), 6110.
| ||
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 3 |