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Abstract

This study investigates the correlation between various hypergroupoids and a specified metric space, examining the
distinctive characteristics of this hyperstructure. Through rigorous analysis, our inquiry establishes the potential of
these hypergroupoids to function as commutative quasihypergroups. Additionally, we delineate specific conditions
under which these hypergroupoids exhibit hypergroup properties, shedding light on the complex interplay of these
mathematical structures within the context of the given metric space. Finally, a metric space obtained from a given
hypergroupoid is introduced.
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1 Introduction

The theory of hyperstructures originated in 1934 with Marty’s introduction of the concept of a hypergroup. Nu-
merous papers and books, such as [4, 5, 7], have since been published on this subject.

The connection between algebra and metric spaces can be traced back to the early 20th century, when mathemati-
cians began to study the properties of abstract spaces using algebraic tools. One of the key figures in this development
was Hausdorff [15], who introduced the concept of a topological space in 1914. This allowed mathematicians to study
the properties of spaces without relying on specific geometric or metric structures. In 1930, mathematicians such as
John Von Neumann and Gelfand began to develop the theory of Banach spaces, which are complete normed vector
spaces [12, 16]. This theory combined algebraic and metric concepts to provide a framework for studying linear oper-
ators on infinite-dimensional spaces. Another important development in the connection between algebra and metric
spaces was the introduction of functional analysis by Stefan Banach [1] in 1930. This field uses algebraic techniques
to study the properties of functions on metric spaces, and has applications in many areas of mathematics and physics.
In the latter half of the 20th century, the study of algebraic structures on metric spaces continued to grow, with the
development of theories such as C∗-algebras and von Neumann algebras. These theories provide a powerful framework
for studying quantum mechanics and other areas of mathematical physics. Overall, the connection between algebra

∗Corresponding author
Email addresses: k.hamidizadeh@pnu.ac.ir (Kazem Hamidizadeh), saeedmirvakili@yazd.ac.ir (Saeed Mirvakili),

r.manaviyat@pnu.ac.ir (Rauofeh Manaviyat), ho.naraghi@pnu.ac.ir (Hossein Naraghi)

Received: April 2024 Accepted: July 2024

http://dx.doi.org/10.22075/ijnaa.2024.33780.5038


2 Hamidizadeh, Mirvakili, Manaviyat, Naraghi

and metric spaces has been an important area of research in mathematics for over a century, with applications in
many different fields.

The connection between algebraic hyperstructures and metric spaces was first established by Zarei and Mirvakili
[18] and Mirvakili and Manaviyat [14] by focusing on open neighborhoods of elements in metric spaces and building
a hyperoperation based on the community of two neighborhoods. In this paper, we derive a class of hypergroupoids
based on the concept of open and closed balls in a metric space. We examine the necessary and sufficient conditions
for the associativity of the constructed hyperoperation. We also illustrate this connection with various examples.

Algebraic hyperstructures provide a fitting extension of classical algebraic structures. Whereas the composition of
two elements in a classical algebraic structure results in an element, a composition of two elements in an algebraic
hyperstructure yields a set. Let P ∗(X) be the set of all non-empty subsets of a given set X. A hypergroupoid is a pair
(X, ◦), where X is a non-empty set and ◦ is a hyperoperation, i.e.,

◦ : X ×X −→ P ∗(X), (x, y) 7→ x ◦ y.

If A,B ∈ P ∗(X), then we define A ◦B =
⋃{

a ◦ b | a ∈ A, b ∈ B
}
, x ◦B = {x} ◦B and A ◦ y = A ◦ {y}. If A = ∅

or B = ∅ we define A ◦B = ∅.
A hypergroupoid (X, ◦) is called semihypergroup if the associative axiom is valid, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z, for

all x, y, z ∈ X and it is called reproductive if x ◦ X = X ◦ x = X, for all x ∈ X. A hypergroup is a reproductive
semihypergroup. A commutative hypergroup (X, ◦) (i.e. x ◦ y = y ◦ x for all x, y ∈ X) is called a join space if the
following implication holds for all elements a, b, c, d of X:

a/b
⋂
c/d ̸= ∅ =⇒ a ◦ d

⋂
b ◦ c ̸= ∅,

where a/b = {x | a ∈ x ◦ b}. Connections between hypergraphs and hyperstructures are studied by many authors, for
example, see [6].

Let X be any set. Then a function d : X ×X → R is said to be a metric on X if it has the following properties
for all x, y, z ∈ X:

(M1) d(x, y) ≥ 0;

(M2) d(x, y) = 0 if and only if x = y;

(M3) d(x, y) = d(y, x);

(M4) d(x, y) + d(y, z) ≥ d(x, z).

The real number d(x, y) is called the distance between x and y, and the set X together with a metric d is called a
metric space (X, d) [17]. Given a metric space (X, d) and any real number r > 0, the open ball of radius r and center
a is the set Br(a) ⊆ X defined by

Br(a) = {x ∈ X|d(x, a) < r}.

Also, we set
Br(a) = {x ∈ X|d(x, a) ≤ r}.

2 Main Results

Let X = (X, d) be a metric space. Then Xr = (X, ◦r) and X r = (X, ◦r) are two hypergroupoids where the
hyperoperations ◦r and ◦r are defined by

x ◦r y = Br(x)
⋃

Br(y), ∀(x, y) ∈ X2,

when r > 0 and
x◦ry = Br(x)

⋃
Br(y), ∀(x, y) ∈ X2,

where r ≥ 0.
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Example 2.1. The real numbers with the distance function d(x, y) = |y − x| given by the absolute difference form a
metric space. For any r > 0 and x ∈ R, we have Br(x) = (x− r, x+ r) and Br(x) = [x− r, x+ r]. Then

x ◦r y = (x− r, x+ r) ∪ (y − r, y + r), ∀(x, y) ∈ X2,

and
x◦ry = [x− r, x+ r] ∪ [y − r, y + r], ∀(x, y) ∈ X2.

Lemma 2.2. For all x, y ∈ X and r > 0, x ◦r y is an open set and x◦ry is a closed set.

Theorem 2.3. The hypergroupoids Xr = (X, ◦r) and X r = (X, ◦r) satisfy for each (x, y) ∈ H2 :

(1) x ◦r y = x ◦r x ∪ y ◦r y;

(1’) x◦ry = x◦rx ∪ y◦ry;

(2) x ∈ x ◦r x;

(2’) x ∈ x◦rx;

(3) y ∈ x ◦r x ⇔ x ∈ y ◦r y;

(3’) y ∈ x◦rx ⇔ x ∈ y◦ry.

Proof . It obtains from definitions of ◦r and ◦r. □

Theorem 2.4. A hypergroupoid X satisfying (1), (2), (3) of the Theorem 2.3 also satisfies

(4) {x, y} ⊆ x ◦r y,

(5) x ◦r y = y ◦r x,

(6) x ◦r X = X,

(7) (x ◦r x) ◦r x = ∪z∈x◦rxz ◦r z,

(8) (x ◦r x) ◦r (x ◦r x) = x ◦r x ◦r x, where x ◦r x ◦r x = (x ◦r x) ◦r x = x ◦r (x ◦r x).

Proof . It is straightforward. □

By (5) and (6) of Theorem 2.4 we obtain:

Corollary 2.5. A hypergroupoid Xr = (X, ◦r) is a commutative quasihypergroup.

Proof . Commutativity obtain from Theorem 2.4 part (5) and reproduce law obtain from Theorem 2.4 part (6). □

Corollary 2.6. A hypergroupoid Xr = (X, ◦r) is a commutative Hv-group.

Proof . By Theorem 2.4 part (4), for every x, y, z ∈ X, we have

{x, y, z} ⊆ (x ◦r y) ◦r z ∩ x ◦r (y ◦r z).

This show that proof is complete. □

Theorem 2.7. A hypergroupoid X satisfying (1′), (2′), (3′) of the Theorem 2.3 also satisfies

(4’) {x, y} ⊆ x◦ry,

(5’) x◦ry = y◦rx,

(6’) x◦rX = X,
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(7’) (x◦rx)◦rx = ∪z∈x◦rxz◦rz,

(8’) (x◦rx)◦r(x◦rx) = x◦rx◦rx.

Proof . It is straightforward. □

By (5′) and (6′) of Theorem 2.7 we obtain:

Corollary 2.8. A hypergroupoid X r = (X, ◦r) is a commutative quasihypergroup. Moreover, X r = (X, ◦r) is a
commutative Hv-group.

Proof . The proof is similar to proof of Corollaries 2.5 and 2.6. □

Theorem 2.9. [4] A hypergroupoid X satisfying (1), (2), (3) of the Theorem 2.3 is a hypergroup if and only if

∀(a, c) ∈ X2, c ◦r c ◦r c− c ◦r c ⊆ a ◦r a ◦r a.

where c ◦r c ◦r c = (c ◦r c) ◦r c ∪ c ◦r (c ◦r c).

Lemma 2.10. (i) Let x ∈ X, then x ◦r x ◦r x = B2
r (x), where B2

r (x) =
⋃

z∈Br(x)
Br(z).

(ii) Let x ∈ X, then x◦rx◦rx = B2
r(x).

Proof . (i) By part (8) of Theorem 2.4, we have (x ◦r x) ◦r (x ◦r x) = x ◦r x ◦r x. Then

x ◦r x ◦r x = Br(x) ◦r Br(x)

=
⋃

y,z∈Br(x)

y ◦r z

=
⋃

y,z∈Br(x)

(Br(z) ∪Br(y))

=
⋃

z∈Br(x)

Br(z) = B2(R).

(ii) By part (8’) of Theorem 2.7, we have (x◦rx)◦r(x◦rx) = x◦rx◦rx. Then

x◦rx◦rx = Br(x)◦rBr(x)

=
⋃

y,z∈Br(x)

y◦rz

=
⋃

y,z∈Br(x)

(Br(z) ∪Br(y))

=
⋃

z∈Br(x)

Br(z) = B
2
(R).

Therefore the proof is complete. □

Corollary 2.11. A hypergroupoid Xr = (X, ◦r) is a hypergroup if and only if for every x, y ∈ X we have

B2
r (x)−Br(x) ⊆ B2

r (y),

where B2
r (x) =

⋃
z∈Br(x)

Br(z).

Corollary 2.12. A hypergroupoid Xr = (X, ◦r) is a hypergroup if and only if for every x, y ∈ X we have

B2
r (x)−Br(x) ⊆ B2

r (y),

where B2
r (x) =

⋃
z∈Br(x)

Br(z).
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Proof . It obtains from Theorem 2.9 and Lemma 2.10 part (i). □

Corollary 2.13. A hypergroupoid X r = (X, ◦r) is a hypergroup if and only if for every x, y ∈ X we have

B2
r(x)−Br(x) ⊆ B2

r(y),

where B2
r(x) =

⋃
z∈Br(x)

Br(z).

Proof . It obtains from Theorem 2.9 and Lemma 2.10 part (ii). □

Corollary 2.14. If for every x ∈ X, B2
r (x) = Br(x), then the hypergroupoid Xr = (X, ◦r) is a hypergroup.

Proof . Since B2
r(x)−Br(x) = ∅, we have Xr = (X, ◦r) is a hypergroup by Corollary 2.12 . □

Corollary 2.15. If for every x ∈ X, B2
r(x) = Br(x) then the hypergroupoid X r = (X, ◦r) is a hypergroup.

Proof . We obtain B2
r(x)−Br(x) = ∅ and by Corollary 2.13 we have X r = (X, ◦r) is a hypergroup. □

Example 2.16. Let (X, d) be the metric space where d is discrete metric, that d(x, y) = 0 if x = y and d(x, y) = 1
otherwise. Then for every r ∈ R+ and for every x ∈ X, we have B2

r (x) = Br(x). So, by Corollary 2.14, the
hypergroupoid Xr = (X, ◦r) is a hypergroup.

Also, by Corollary 2.14, the hypergroupoid X r = (X, ◦r) is a hypergroup.

Example 2.17. If G is an undirected connected graph, then the set V of vertices of G can be turned into a metric
space by defining d(x, y) to be the length of the shortest path connecting the vertices x and y.

The r-ball Br(x) of center x and radius r ≥ 0 consists of all vertices of G at distance at most r from x: In
particular, if 0 ≤ r ≤ 1, the ball Br(x) = {x} and if 1 < r ≤ 2, the ball Br(x) comprises x and N(x), where N(x) is
the neighborhood of vertex x in graph G.

Therefore, the hyperoperation ◦r is to coincide with the hyperoperation ◦ in [6], when for every x, y ∈ G,

x ◦ y = N(x) ∪N(y).

Theorem 2.18. If the hypergroupoid (X, ◦r) is a hypergroup then it is a join space.

Proof . Let a/b = {x | a ∈ x ◦r b}. Suppose that a/b
⋂

c/d ̸= ∅ then there exists x ∈ X such that a ∈ x ◦r b and
c ∈ x ◦r d. So a ∈ Br(x) ∪Br(b) and c ∈ Br(x) ∪Br(d). We have one of the four following cases:

(1) a ∈ Br(x) and c ∈ Br(x), then x ∈ Br(a) and x ∈ Br(c) and so x ∈ a ◦r d ∩ b ◦r c.

(2) a ∈ Br(x) and c ∈ Br(d), then c ∈ a ◦r d ∩ b ◦r c.

(3) a ∈ Br(b) and c ∈ Br(x), then a ∈ a ◦r d ∩ b ◦r c.

(4) a ∈ Br(b) and c ∈ Br(d), then a ∈ a ◦r d ∩ b ◦r c.

□

Theorem 2.19. If the hypergroupoid X r = (X, ◦r) is a hypergroup then it is a join space.

Proof . It is similar to the proof of Theorem 2.18. □

In general, we have ◦r ⊆ ◦r. Also, there are many examples in which we have ◦r ⊆ ◦r. Moreover, ◦r ̸= ◦s and
◦r ̸= ◦s in the general state. Now, the following two questions arise:

Question 1. For every r > 0, is there s > 0 such that ◦r = ◦s?
Question 2. For every r > 0, is there s > 0 such that ◦r = ◦s?
The next example shows that there is a metric space where the answers to the above questions can not be correct.
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Example 2.20. Let X = R with the usual metric. Then for every x ∈ N and r > 0, there is no s > 0 such that
Br(x) = Bs(x). Also, for every x ∈ N and r > 0, there is no s > 0 such that Br(x) = Bs(x).

The next example shows that there is a metric space where the answers to the above questions are correct.

Example 2.21. Consider N = {1, 2, 3, . . .} with the usual metric. Then for every x ∈ N and r > 0 we have Br(x) =

Bs(x), where s =

{
r r ̸∈ N
r − 1 r ∈ N . Therefore (X, ◦r) = (X, ◦s).

Moreover, for every x ∈ N and r > 0 we have Br(x) = Bs(x), where s =

{
r r ̸∈ N
r + 1 r ∈ N . Therefore (X, ◦r) =

(X, ◦s).

Example 2.22. Consider the set X = {0, 1, 1
2 ,

1
3 ,

1
4 , . . .} with the usual metric. Then every closed ball in X is open

in X; but the open ball B1(1) is not closed in X.

In this example, for every x ∈ X and r > 0 we have Br(x) = Bs(x), for some s > 0. So (X, ◦r) = (X, ◦s).
But, for every r > 0, 1 ◦1 1 = B1(1) = X − {0} ≠ 1◦r1 ∋ 0. So for every r > 0, ◦r ̸= ◦1.

Example 2.23. Consider the Hilbert cube H := [0, 1]N with metric

d((x1, x2, . . .), (y1, y2, . . .)) =

∞∑
i=1

|xi − yi|
2i

.

For each i ∈ N , let ei denote the element of H which is all 0s except for a 1 in the ith slot. So, e1 = (1, 0, 0, . . .) ,
e2 = (0, 1, 0, . . .), etc. I’ll also write 0 for the all-zeroes element (0, 0, 0, . . .)

Let Y ⊂ H be given by Y = {0, e1, e2, . . .}. Then Y will be the desired example. That is, I claim that 1) every
open ball in Y is closed but 2) that there is a closed ball in Y which is not open.

As a preliminary observation, note that for i ̸= j, that d(ei, ej) =
1
2i +

1
2j > max{ 1

2i ,
1
2j }, and that d(ei, 0) =

1
2i .

It follows that each ei is isolated, with, e.g., B 1

2i
(ei) = {ei} being an open ball containing just the one point ei.

Moreover, for each ei, 0 is the unique closest point to it.

Here’s the proof of 1) To begin with, note first that every open ball centered at 0 is closed because the complement
can only possible contain some of the {ei} which are all isolated.

So, consider Br(ei), an open ball centered at ei of radius r > 0. Since all the ei are isolated, the only case we need
to consider is if 0 ̸∈ Br(ei). But 0 is the closest point to ei, so if 0 is not in Br(ei), then neither are any ej with i ̸= j.
Thus, any ball around 0 which doesn’t contain ei witnesses the fact that the complement of B is open. E.g., one can
take B 1

2i
(0). This concludes the proof of 1).

We now prove 2), that there is a closed ball which is not open. To that end, consider B 1
2
(e1). This set clearly

contain e1 and 0; since 0 is the unique closest point to e1, it follows that B 1
2
(e1) = {e1, 0}. So, to show B 1

2
(e1) is not

open, it’s enough to show that every ball around 0 contains an ei other than e1.

But d(ei, 0) =
1
2i → 0 as i → ∞, so any open ball around 0 contains all but finitely many of the ei.

In this example, for every x ∈ X and r > 0 we have Br(x) = Bs(x), for some s > 0. So (X, ◦s) = (X, ◦r).
But, for every r > 0, 1 ◦1 1 = B1(1) = X − {0} ≠ 1◦r1 ∋ 0. So for every r > 0, ◦r ̸= ◦1.

Definition 2.24. Let (H, ◦) and (H, ⋆) be two hypergroupoids. We say that (H, ◦) ⊑ (H, ⋆) if for every x, y ∈ H,
x ◦ y ⊆ x ⋆ y.

Theorem 2.25. For every 0 < r < s, we have (X, ◦r) ⊑ (X, ◦s) and 0 ≤ r < s, (X, ◦r) ⊑ (X, ◦s).

Proof . We have Br(x) ⊆ Bs(x) and Br(x) ⊆ Bs(x) for every x ∈ X. So proof is complete. □

Example 2.26. the Euclidean space Rn = R × . . . × R is the set of all ordered n-tuples or vectors over the real
numbers R (when n = 1 we refer to the vectors as scalars). We denote a vector in Rn when n > 1 in bold and refer
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to its scalar components via subscripts. For example the vector x = (x1, . . . , xn) has n scalar components xi ∈ R ,
i = 1, . . . , n. Together with the Euclidean distance

d(x, y) =

√√√√ n∑
i=1

(xi− yi)2,

the Euclidean space is a metric space (Rn, d).

Then for every 0 < r < s, (X, ◦r) ⊑ (X, ◦s) and (X, ◦r) ⊑ (X, ◦s) while (X, ◦r) ̸= (X, ◦s) and (X, ◦r) ̸= (X, ◦s)

Example 2.27. Consider N = {1, 2, 3, . . .} with the usual metric. Then for every 0 < r < s < 1 we have (X, ◦r) =
(X, ◦s) = (X, ◦r) = (X, ◦s).

Definition 2.28. Let X and Γ be two non-empty sets. Then X is called a Γ-Hv-group if for each γ ∈ Γ is a
hyperoperation on X such that (X, γ) is an Hv-group and for every α, β ∈ Γ and x, y, z ∈ X we have

xα(yβz) ∩ (xαy)βz ̸= ∅.

In fact, Γ has a mutually weak associative law.

Theorem 2.29. Let (X, d) be a metric space.

(1) Let Γ ⊆ {◦r|r ∈ (0,∞]}. Then (X,Γ) is a Γ-Hv-group.

(2) Let Γ ⊆ {◦r|r ∈ [0,∞]}. Then (X,Γ) is a Γ-Hv-group.

Proof . (1) For every x, y, z ∈ X and r, r′ > 0, we have

{x, y, z} ⊆ x ◦r (y ◦r′ z) ∩ (x ◦r y) ◦r′ z.

Since (X, ◦r) is an Hv-group, (X,Γ) is a Γ-Hv-group.

(2) It is proved by the same method. □

Now, we will build a metric space from the structure of a hypergroupoid.

Definition 2.30. Let H = (X, ◦) be a hypergroupoid. Then define dH : X ×X → Z as follows,

(i) d(x, x) = 0, for every x ∈ X

(ii) d(x, y) = r, where r = min D where

D = {n | ∃y0, . . . , yn, s.t. yi ∈ yi−1 ◦ yi−1 or yi−1 ∈ yi ◦ yi ∀ 1 ≤ i ≤ n and y0 = x, yn = y}

for every x, y ∈ X, if D is empty, then let d(x, y) = ∞.

Theorem 2.31. Let H = (X, ◦) be a hypergroupoid. Then (X, dH) forms a metric space, when dH is defined as
above.

Proof . The item M2 is clear by Definition 2.30 part(i). Since D ⊂ N ∪ {0}, the item M1 is satisfied. Let x, y ∈ X.
If there exists y0, . . . , yn such that yi ∈ yi−1 ◦ yi−1 or yi−1 ∈ yi ◦ yi for all 1 ≤ i ≤ n where y0 = x, yn = y, then
y′0, . . . , y

′
n is a sequence from y to x such that y′i ∈ y′i−1 ◦ y′i−1 or y′i−1 ∈ y′i ◦ y′i where y′i = yn−i for all 1 ≤ i ≤ n and

so dH(x, y) = dH(y, x). For x, y, z ∈ X, if dH(x, y) = ∞ or dH(y, z) = ∞, then clearly dH(x, y) + dH(y, z) ≥ dH(x, z).
Now, let y0 = x, . . . , yn = y such that yi ∈ yi−1◦yi−1 or yi−1 ∈ yi◦yi and y′0 = y, . . . , y′m = z such that y′j ∈ y′j−1◦y′j−1

or y′j−1 ∈ y′j ◦ y′j . Then y0 = x, . . . , yn = y = y′0, . . . , y
′m = z is a desired sequence with length at most n+m from x

to z. Thus we have dH(x, y) + dH(y, z) ≥ dH(x, z), item M4 is satisfied and the proof is complete. □

Theorem 2.32. Let H = (X, ◦) be a hypergroupoid satisfying (1), (2) and (3) of Theorem 2.3. Then there is a metric
space X = (X, d) such that (X, ◦r) is isomorphic to H.
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Proof . Let d = dH and r = 1 as defined in Definition 2.30. Then for all z ∈ X

E(z) =
⋃

z∈x◦x
{x, z} =

⋃
x∈z◦z

{z, x} = z ◦ z.

Then for all x, y ∈ X x ◦ y = x ◦ x ∪ y ◦ y = E(x) ∪ E(y), so (X, ◦1) is isomorphic to H and the result follows. □

Theorem 2.33. Let (X, d) be a metric space. Set H0 = (X, ◦0r), H1 = (X, ◦1r), . . . ,Hk = (X, ◦kr ), . . . the sequence of
hypergroupoid obtained by setting for all x, y ∈ X, x◦0r y = x◦r y, x◦k+1

r x = x◦kr x◦kr x, x◦k+1
r y = x◦k+1

r x∪x◦k+1
r y.

Then for all k ≥ 0,

(i) The hyperoperation ◦kr satisfies (1), (2) and (3) of Theorem 2.3.

(ii) ((x ◦kr x ◦kr x) ◦kr (x ◦kr x ◦kr x)) ◦kr (x ◦kr x ◦kr x) = x ◦k+2
r x.

Proof .

(i) We prove it by induction on k. So assume that ◦kr satisfies (1), (2) and (3) of Theorem 2.3. We that the same
items are satisfied by ◦k+1

r .

(1) holds by definition of ◦k+1
r .

(2) for all x ∈ X, x ∈ x ◦kr x ⊂ x ◦kr x ◦kr x = x ◦k+1
r x by the hypothesis of induction.

(3) assume that y ∈ x ◦k+1
r x = x ◦kr x ◦kr x, then there is z ∈ x ◦kr x such that y ∈ z ◦kr x = z ◦kr x ∪ x ◦kr x, by

the hypothesis of induction. If y ∈ x ◦kr x, then by the inductive hypothesis

x ∈ y ◦kr y ⊂ y ◦k+1
r y.

If y ∈ z ◦kr z, then z ∈ y ◦kr y. Since z ∈ x ◦kr x, we have x ∈ z ◦kr z. So by Theorem 2.4(7),

x ∈ (y ◦kr y) ◦kr (y ◦kr y) = y ◦kr y ◦kr y = y ◦k+1
r y

(ii) For any S ⊂ X

S ◦r S =
⋃

(y,z)∈S×S

y ◦r z =
⋃

(y,z)∈S×S

(y ◦r y ∪ z ◦r z) =
⋃

x∈S×S

x ◦r x.

So, for any S ⊂ X, by Theorem 2.4(8),

S ◦r S ◦r S ⊂(S ◦r S) ◦r (S ◦r S)

=
⋃

y∈S◦rS

y ◦r y

=
⋃
x∈S

(
⋃

y∈x◦rx

y ◦r y)

=
⋃
x∈S

(x ◦r x) ◦r (x ◦r x)

=
⋃
x∈S

x ◦r x ◦r x ⊂ S ◦r S ◦r S,

thus we have
S ◦r S ◦r S =

⋃
x∈S

x ◦r x ◦r x.

Now, let
S = x ◦kr x ◦kr x = x ◦k+1

r x.
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So, by Theorem 2.4(7), we have

S ◦kr S ◦kr S =
⋃
z∈S

z ◦kr z ◦kr z

=
⋃

z∈x◦k+1
r x

z ◦k+1
r z

=(x ◦k+1
r x) ◦k+1

r (x ◦k+1
r x)

=x ◦k+1
r x ◦k+1

r x

=x ◦k+2
r x

and the proof is complete.

□

By the similar way we have:

Theorem 2.34. Let (X, d) be a metric space. Set H0 = (X, ◦0r), H1 = (X, ◦1r), . . . ,Hk = (X, ◦kr ), . . . the sequence
of hypergroupoid obtained by setting for all x, y ∈ X, x◦0ry = x◦ry, x◦k+1

r x = x◦krx◦krx, x◦k+1
r y = x◦k+1

r x ∪ x◦k+1
r y.

Then for all k ≥ 0,

(i) The hyperoperation ◦kr satisfies (1), (2) and (3) of Theorem 2.3.

(ii) ((x◦krx◦krx)◦kr (x◦krx◦krx))◦kr (x◦krx◦krx) = x◦k+2
r x.

3 Conclusion

For the first time, Mirvakili and et. al. introduced the connection between algebraic hyperstructures and metric
spaces [14, 18] by focusing on open neighborhoods of elements in metric spaces and constructing a hyperoperation based
on the intersection of two neighborhoods. In this article, the authors examined the necessary and sufficient conditions
for the associativity of the constructed hyperoperation. Additionally, they illustrated this connection through various
examples.

For future work, constructing non-commutative hypergroupoids based on metric spaces and hyperstructures based
on the concept of paths in metric spaces can be considered. Additionally, examining the idea of constructing hyper-
structures in metric spaces for topological spaces and uniform topology could also be beneficial.
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