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Abstract

In this work, our objective is to prove the existence and uniqueness of weak solutions to a class of nonlinear degenerate
weighted elliptic p(u)-Laplacian problem with Dirichlet-type and L*° data. For this, we utilise some results from
Sobolev spaces with weighted and variable exponents, as well as theorems such as the Minty-Browder theorem.
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1 Introduction

Let Q C RY, (N > 2) be an open bounded domain with a connected Lipschitz boundary 9 and p(x) € (1, 0) for
all z € (0,00). Our goal in this work is to demonstrate the existence and uniqueness of weak solutions to the nonlinear
degenerate elliptic problem:

{ —div(w|Vu — 0(w) [P =2(Vu — 0(u)) + wlu[P =2y = f inQ (1.1)

u=20 on 0N.

where p(.) is a continuous function defined on Q with p(x) > 1 for all # € Q, w is a measurable positive and a.e finite
function defined in RY and the datum f is in L>°. The nonlinear elliptic equation (1.1)) can be written as follows:

Au=f in Q
{ u=20 on 0f2, (1.2)
with A is the Leray-Lions operator defined on W1() (€, w) to its dual W27 ()(Q, w), several examples to this type
of operator are already treated, for example,

(1.3)

—div(w|Vu|PW=2Vu) = f inQ
u=20 on 01,
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and,

u=20 on 0N. (1.4)

{ —div(w|VulP=2)Vu + wa(u) = f inQ

In recent years, the study of partial differential equations (PDEs) and variational problems has gained considerable

momentum due to its wide-ranging applications in mathematical physics and applied sciences. These applications

span diverse fields such as elastic mechanics, electrorheological fluid dynamics, and image processing, highlighting the
versatility of these mathematical frameworks.

Moreover, the development of mathematical models for degenerate phenomena has become a focal area, driven by
challenges in oceanography, turbulent fluid flows, induction heating, and electrochemical processes. Such phenomena
often introduce unique mathematical and computational challenges, necessitating innovative approaches to modelling
and analysis. Notable references in this context include [3] and [5], which provide foundational insights into these
complex systems. This paper aims to establish the existence and uniqueness of weak solutions by using the properties
of Sobolev spaces with weighted and variable exponents. To do this, we use the Minty-Browder theorem, which helps
us to prove the existence of the weak solution by showing the subjectivity of the operator A. Notably, we have a wealth
of articles dedicated to exploring the existence and uniqueness of the equation (|1.3)) in [3], as well as the equation
in [2], but with a constant value of p. To give a value to our basic problem it is interesting to note that this is
the origin of some native problems, namely the following two basic problems noted in Ruzicka [I5] and Bay et al. [3]:

e Model 1. The magneto-quasi-static approximation. In induction heating processes, the frequencies
involved can vary widely, ranging from 50Hz (low frequency used for even heating) to several hundred MHz
(high frequency employed for heat treatment purposes). When applying the magneto-quasi-static approximation,
we disregard the displacement currents %—? in the Maxwell-Ampere equation, effectively ignoring propagation
phenomena. This assumption is valid when the distances between the source locations and the points where the
electromagnetic field is calculated are shorter than the wavelength. In the industrial setups where frequencies

are typically below 109 Hz, this condition holds, which can be expressed by the following mathematical equation:

aJ

1
w(~VE) = -2
dw(,u ) ot’

where F is the magnetic field, J is the current density and p is the permeability of space.

e Model 2. Fluid flow through porous media. This model is governed by the following equation,
00 ) —9
5¢ ~ div([Ve(0) = K(0)e|P™"(Vep(0) — K(f)e) =0,

where 6 is the volumetric content of moisture, K(6) the hydraulic conductivity, ¢(6) the hydrostatic potential
and e is the unit vector in the vertical direction.

Over the past few years, elliptic equations involving variable exponents takes the attention several researcher, and
especially the type when will treated in this paper, for example and for § = 0, w(z) =1 and f € L* data, Chipot and
Oliveira in [5] using the Schauder fixed-point theorem to prove the existence of weak solutions for some p(u)-Laplacian
problems. With the same condition and f € L! data, C. Zhang and X. Zhang in [I9] proved the existence of entropy
solutions to problem (1.1). M. Sanchon and J.M. Urbano in [I8] generalize the proof of C. Zhang and X. Zhang with
are real functions defined on R to RY and b(u) = u. The case when p(.) be a constant and f € L> is already treated
by Sabri et al. [I7], they prove the existence and uniqueness of weak solutions.

2 Preliminaries and notations

In the present section, we give some definitions, notations and results which well be used in this work. Let ) be a
bounded open domain in RV, we consider the following set

CT(Q) ={p: Q— RT continuous and such that 1 < p~ < p™ < o}, (2.1)
where p~ = mig p(x) and pt = max p(z). Let w be a measurable positive and a.e finite function defined in RY and
xe xe

satisfied the following integrability conditions.
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(H)) we LLOC(Q) and wPW T ¢ LLOC(Q),
(H2) w —s(2) ¢ LLOC(Q), where s(z) € (% o0) N (ﬁ,oo],

for p(.) € C*(Q), we define the weighted Lebesgue with variable exponent LP()(Q,w) by

LPO(Q,w) = {g : Q@ — R : g is measurable and/ l9|P @ w(z)de < oo} .
Q

Endowed with the Luxemburg norm

190000 cr) = lnf{A>o/| ) o, ()dxgl}.

We denote by LP'()(€,w) the conjugate space of LP() (2, w), where
1 1

p@ P

=1

)

and where )
w*(z) = w7 @ for all z € Q.

On the space LP)(Q,w), we consider the function Op( ) LP0)(Q,w) — R* defined by
0p(),w(W) = opnc. )(Q, w) / Ju(z |p(w) (2)dax

The connection between g, and ||.||»)(q,.) is established by the next result.

Proposition 2.1. Let u be an element of LP() (), w) and hypothesis (H;) be satisfied. Then, the following assertions
hold:

i) [Jullpy,w <1 (respectively >,= 1) < 0p(yw(u) <1 (respectively >,= 1),
i) If flullp)w <1 then Hullp( 1o S 0p()w(@) < lullb ) s

iii) If [|ul[p()w > 1 then HUHZ(_.)M < 0p()wlu) < Hu||z(')’w,

iv) [[ullp)w = 0 0pyw(u) = 0 and [lullp)w — 00 & 0p()w(u) — oco.

Proposition 2.2. Let u € LPO)(Q,w), v € L' ()(Q,w) functions and assuming that hypothesis (H;) is satisfied, we

have
1 1
wluv|dx < | — — ) llullpe),w
Q p p

The weighted Sobolev space with variable exponent is defined by

[0llpr ()0 < 20ullp)wllVllp)w

whr)(Q,w) = {9 € LY (Q,w) such that Vg € L”“(QM)}

with the norm
[l pyw = ltllp)w + 1 Vtllp) o for allz € WHPO(Qw).

In the following of this paper, the space T/Vol’p(')(Q7 w) denote the closure of C§° in W1P()(Q, w) with respect the
norm |[.[|1 p(.)w- Let p(.),s(.) are two elements of space where the function s(.) satisfies the hypothesis (Hs), we define
the following function
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p(@)s(x) -
i) = Tr@N—p@sm LN >Ps(),
) 400 if N < Ds (LIJ),

for all most all x € Q.

Proposition 2.3 ([17]). Let © C RN a open set of RV, p(.) € CT(Q) and let hypothesis (H;) be satisfied, we have
LPO(9,w) < Lioe(9)

Proposition 2.4 ([I7]). Let hypothesis (H;) be satisfied and p(.) € C* (), the space (W'PO(Q,w), [|.[l1 p()w) is a
separable and reflexive Banach space.

Proposition 2.5 ([17]). Assume that hypotheses (H;) and (Hsz) hold and p(-); s(-) € CT(Q2), then we have the
continuous embedding
WPO(Q,w) — WhPO(Q, w).

Moreover, we have the compact embedding
Wl’p(')(Q,w) e Wl’r(')(Q,w),

provided that r € C+(Q),1 <r < p* for all x € Q.

Proposition 2.6 ([6]). Suppose that Q@ C RY be a bounded set. Let the exponent p(.) € C*(Q). Then, for all
u e WyP(Q,w) , the inequality
Hu”p(.),w < C()”qup(.),w7

is satisfied where the constant Cjy depends on the exponent p(.), diam(2) and the dimension N.

Definition 2.7. Given a constant k£ > 0; we define the cut function 7y : R — R as
s if |s| <k,
Ti(s) =1 k if s>k,
-k if s< —k.
Lemma 2.8 ([1]). For ¢£,n € RY and 1 < p(.) < oo, we have:
1 1
p(.) p(.)

where a dot denote the Euclidian scalar product in RY.

€7 — [P < PO (n — €).

Lemma 2.9 ([I]). For a >0, b >0 and 1 < p(.) < oo, we have:

(a + b)p(A) < 21)(-)—1(@?(-) + bp(-)).

Lemma 2.10 ([16]). Let p(.) and p/(.) two reals numbers such that p > 1, p’ > 1, and ﬁ + ; = 1. There existed a

positive constant m such that
_ o _ _ 8 118
1€[P72€ — P20 ” < mf{(€ —m)(€P726 — [€P2)} = {€P + 07 }' 72,
forallé,neRN, 3=2if1<p<2 and B=p if p> 2.

Definition 2.11 ([8]). Let Y be a reflexive Banach space and let A be an operator from Y to its dual Y. We say
that A is monotone if

(Au — Av,u —v) >0 Yu,v €Y.

Theorem 2.12 ([8]). Let Y be a reflexive real Banach space and A : ¥ — Y’ be a bounded operator, hemi-
continuous, coercive and monotone on space Y . Then the equation Au = v has at least one solution v € Y for each
veY'.
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3 Assumptions and main result

In this section, we introduce the concept of a weak solution to problem (1.1)) and state the existence results for
such solutions. In addition to the hypotheses (Hj)and (Hj) listed earlier, we also assume the following assumptions:

(Hs3) 6 is a continuous function from R to RY such that §(0) = 0 and for all real numbers x, y we have is a real constant
1

|0(z) — 0(y)| < Molz — y| where Xg is a real constant such that 0 < Ag < (i 2p+171 21(7/%2)17 with py = pt if

Co>1lelsepy =p~.
(Hy) feL>Q).

Definition 3.1. A function u € Wol’p(')(Q,w) is a weak solution of degenerate elliptic problem (|1.1)) if and only if
/ w®(Vu — 0(u))Ve + / wluP=2yp = / fo (3.1)
Q Q Q
for all ¢ € Wy (Q,w) N L®(Q). Where ®(¢) = |¢PE-2¢, V¢ € RV,

The central result of this work is encapsulated in the following theorem:

Theorem 3.2. Let hypotheses (Hy), (Hz), (Hs) and (Hy) be satisfied. Then, the problem (1.1)) has a unique weak
solution.

Proof . Let the operator T : Wol’p(')(Q, w) — (Wol’p(')(ﬂ, w))’, where (Wol’p(')(Q,w))’ is the dual space of Wol’p(')(Q, w).
T(u) = A'(u) + A%*(v) — L, and A(u) = A (u) + A?(u).

For u,v € Wol’p(')(Q,w)

(Alu,v) = /w@(Vu—@(u))Vvdx,
Q

(A%u,v) = /w|u|p(“)72uvdx,
Q

(L,v)y = fudzx
Q

We must use the Theorem (12.12)) to prove the existence of the weak solution. for that it is necessary to show that
the operator T is bounded, monotone coercive and hemi continuous.

Step 1: The operator T is bounded. We use Holder inequality, lemma (2.9)) and hypothesis (Hs), for any u, ¢ €
Wol’p(')(Q,w) we have

(Au, )| < / W[V — B(u) P Vogldar + / P |
Q Q

< /zp(u)_gw(|vu|p(u)—1+‘e(u)|p(u)—1)|v<p|dx+/w|u|P(u)—1|<p|da;
o Q
< gt / (| VP 4 |(w) [P Viplda + / wlulP | da
O Q
+_ u)— - W= N
< ort /Qw(\VUI”() 1|V¢|dx+/ﬂ>\§ Y|P 1)|Vgod:r) +2[[ 25 el () o
+_ -1 -1 N
< or 2(2||Vu||§2.>,wHVsollp'(.),w+2/\§ H““ﬁ.),wHV“"”P’O»”)
N ¢ B _
< 2" (IVullg LIVl + 20Vl IVl ).0) + 20l L el
+_ - - » (
< 27l el 27 T allul P Ll + 20l el
-1
< C||u\|f}p(,),w o111, ()0
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where

P if ||u||1,p(.),w <1,

*_ -_ +_ *_
C=rRrayer T omaOf T a=ara T ad = {20 R

Then we get immediately the boundedness of L. Hence, T is bounded.

Step 2: The operator T is coercive. For any u € W(} P (')(Q,w), remark that by application hypothesis (Hs), and
by using Holder’s inequality and hypothesis (Hy), there exists a positive constant C3 such that

| puda < Call 1y o
Consequently, for u large enough and by lemma 2, we get

(Au,u) = /w\Vu—O(U)I”(“)‘Z(Vu—9(u))Vudx+/w|u\P(u)d$
Q Q

Y

/wiwufa(uﬂp(u)dx*/wi|9(u)|p(“)dx/W|u|p(“)dx
Q p(u) o

o plu)

and by lemma 3 we have

e VUl da — ()P < [V — 6(u) P

\%

1 1 2
Au,u /w—i Vup(“)d:cf/w—ﬂu ”(“)der/wup(“)
O R A [ oS ibw [ wlu

1 1 2
—ﬁ/cﬂvml’(”)dm— —/w|9(u)|p(“)d:ﬂ+/w|u|p(“)dac.
P+ 2P+ Jq p— Ja Q

Y

Now, using Hz we have |0(u)| < Ao|u| and / w|u|PWdz > 0. So, we obtain
Q

1 1 2 u
(Auu) > [ etvup®as - 2 [ oxpupias,
Q Q

py 2P+1 [
We denote Ay = min (X, )\ng) .. Furthermore using (H3), we obtain

1 1 2

(Au,u) > fﬁ/w|Vu\p(")dx——Al/w\u|p(“)da¢
o 2P+ Q p_ Q
1 1
py vt

1 1 2
_ P2 p(u)
(p+ T p_CO Al)/§2w|Vu| dx

11 2

2
/w|Vu\p(")dx——Copz)\l/w|Vu|p(“)da:
Q p— Q

where
M= <1+11 - 200”) S — and p3 = { pj if [Vellro @ <1,
py 2P P (14 Cp)? D else.
Then
(Au, u) +o0 and llull1,p(),w — 0.

1wl () w
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Then A is coercive finally the operator T is coercive.

Step 3 : The operator T' is monotonous. First we have T is coercive so there exists M; > 0 such that (T'u,u) >
Ml

(Tu —Tv,u —v) (Tu,u) + (Tv,v) — (Tu,v) — (T, u)

1 ~1
= M (”“'If?pc),w + ””Hf’p(.),w) —C (”“”f?p(.m”””me + ||”||’ff'p<.>,w”“”LP(-)’W)
-1 1
> Ma[llull’, )0 T 101500 = I0lpewllelT0 o = 1015250 wllullp) ]
1 ~1
2 MQ(HUHZSP(,)M - ||”||11)?p(‘)’w) X (lull1,p(),0 = 10l1p0).0)

with My = min(M7, C"). Finally, the operator T is monotonous.

Step 4: The operator T is is hemi continues. Let (up)nen C Wol’p(')(Q,w) and u € Wol’p(')(Q,w) such that
un — u strongly in Wol’p(')(ﬁw). Firstly, we will prove that A; is continuous on Wol’p(')(ﬁw). Indeed, we have for
b eW" (@)

(Avtin — Ayu, )] =| / |Vt — () [P ~2(Vay — O(up)) Vabdar — / WV = 6(w) PO2(Vu — 6(u)) Vabde|
Q Q
(Avuy — Ayu, o) <| / |Vt — () [P ~2(Vay — O(up)) Vebdar — / WVt — 0() [P =2 (Y, — O(up)) Vb
Q Q
+ | / W[V, — 0(uy) [P 2(Vuy, — 0(uy))Vipdr — / w|Vu — (u) [P ~2(Vu — 0(u)) Vipdz|
Q Q
we denote that
Fp|Vn —0(un) P2 (Vuy —0(u)),  Gn = [Vig —0(u,) [P 72(Vu, —0(uy)), F=|Vu—0u)P2(Vu——0(u)).

This implies that

Ay — Ay, o) < / \Fy — G| + |G — Flda
Q

IN

/ |E |||V — 0(uy, ) [P =P — 1| | VY| da +/ |G — F||VY|da.
Q Q

We have u,, — u strongly in VVO1 P (')(Q, w), then O(u,) and Vu, bounded. Moreover, p is continuous this implies
that p(uy) bounded. Finally, we have F,, and |Vu,, — 6(u,)| bounded. Consequently the exists Ky and K; such that

(Arun — Ay, ) < / Ko PP 720 1|y de + / G — F||Vildz
Q Q

and we have o reel number such that
|G = F| < |[Vup = 0(un)|* (Vg = 0(un)) — |Vu = 0(u)|**(Vu — 6(u))]
and we denote
F! = |V, — 0(un) | 2(Vu, — 0(uy)), and  F' = |Vu—0(u)|* 2(Vu—0(u)).

For that we have

(Arun — Ayu, ) < /Q | Kol * K5 = 1IVelde + | Fy = F'llupwll$lip o

since u, — u strongly in Wol’p(')(ﬂ, w) then

F — F' strongly in ng’p/(')(ﬂ,w)N
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and /
K" —1—0 strongly in Wo_l’p (')(Q,w)N

with €, = p(u,) — p(u) and by the Dominated Convergence Theorem, we have
Ayu, — Aju strongly in (WP (9, w))’

This implies that A; is continuous on VVO1 »() (Q,w). and we get immediately the continuity of As and L, Therefore T
is hemi-continuous on T/VO1 P (')(Q,w). Finally by Theorem 1, there exists a weak solution to problem (1).

Step 5: Uniqueness.

Lemma 3.3. Let hypotheses (Hy), (Hz), (
) lim lim w|Vu — 0(u) [P
h—+o00 k—0
1 u —
£ f{h<|u|<h+k}w|Vu|p( )dz = 0.

3) and (Hy) be satisfied, if u is an weak solution of (1). then
(1 -

(2) lim lim

(3) lim lim %f{h<|u|<h+k} w|Vu — 0(u) [P dx = 0.

3 f{h<|u|<h+k} (Vu — 0(u))Vudz = 0.

h—4o00 k—0
h—+o00 k—0
First we prove that there exists a positive constant 3 such that for all £ > 0 we have

M
meas{|u| > k} < Bk -1

where M = || f||L(q). Choosing ¢ = Tj(u) in equality (3.1]), we obtain

/Q |V — B(u)[P 2 (Ve — 0(u)) VT (w) + /

Q

w|u|p(“)_2uTk(u):/ka(u), (3.2)

Q

since [, w|u[P~2uT), (u)dz > 0.

Remark 3.4. If |u| < k. Then we have:

/w|u|p(“)72uTk(u) _ / w|u|p(“) >0,
Q Q
else uTy(u) > 0.

This implies that

/ |V — B(u) P2 (T — 0(u)) VT (w)dar = / |V — B(w)|P=2(Va — B()) Vuda
Q |u|>k

<kl fllze (o)

It may be obtained similarly as coercivity of operator A! | there exists a constant 3 > 0 such that

/ w|Vu — 0(u) [P =2(Vu — 0(u))VTi(u) > B w|Vu|PW dz
Q |u|>k

Therefore L
[ wlvur®ds < 2o
|u|>k B

Then L
[ @lVI P e < 2o
Q B
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This implies that for all k£ > 0,
1 M
= VT (u)PWdx < —
k /Q“" H(u)"de < 5

by the Markov inequality, we have

1
meas{|u| > k} = mea8{|Tk(u)| > k} § F/QW|T]C(U)|17(U)d$ § /Bk/,p_—l

Let k and h be two real numbers such that 0 < k& < h. Taking ¢ = Ty (u — Tx(u)) in equality (3.1), we get

/w|Vu—0(u)|p(“)*2(Vu—O(U))VTk(u—Th(u))dx+/
Q Q

Firstly, we have

/ w|u|P 20T (4 — Ty (u))de = / w|u|PO 20Ty, (u — hsign(u))da
Q |u|>h

then
/ w|uPW 20Ty (u — Ty, (w))dz > 0.
Q

Therefore, equality (6) becomes

/ w|Vu — 0(u) [P =2(Vu — 0(w)) VT (u — Th(u)))de < / fdz.
h<|u|<h+k |u|>h

Now, using (3.3), we deduce that meas{|u| > h} tends to zero as h goes to infinity. So

li dx = 0.
h—1>r-‘yr-1t>o \u|>h|f| v

This implies that

1
lim lim —

wVu — 0(w)|P™=2(Vu — 0(u))Vudz = 0.
ha+ookﬂ0k/{h<u|<h+k} | (u) ( ()

Now, using the coercivity of operator A, we have:

1 1 2
il p(u) _ 2 \P(w)) ip(u) < _ 9w [P -2 .y
g VP = TR < [V 000 (T~ 0(a) Ve,
then L1 o)
— / w|Vu|PWdz — s wlu|P™Wdx < / w|Vu — 8(u) [P ~2(Vu — 6(u)) Vudz,
Py 2P0 o p— Jap ol

where QF = {h < |u| < h + k}, and by using Proposition (2.5)) , we obtain

1 1 p(w) 2)\1053 p(w) p(u)—2
T w|VuP'"dy — ———— w|VuP'"dx < w|Vu — 6(u)] (Vu — 0(u))Vudz
P+ Qr p QF Qr

h

o D+ lf CO < 17
P3= p_ else.

Then

J

w|VuPWdz < K/ w|Vu — 0(u) [P =2(Vu — (u)) Vudz
a

k
h

w|uP 20Ty, (u — Th (w))de = /Q FTi(u— Ty (u))de.
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where K is a constant positive. Finally we have

1
lim lim — w|VulPWdz =0
h—+o0 k—0 k {h<|u|<h+k}
(3) We have by Lemma (2.8))
1

p(u)

IV — 0(u)P) - ﬁwww < [V — 0(u) P 2(Vu — 0(u) Vu

then

1
— \Vu — 0(u)|P™ dx

P~ Jak _/Q

A

1
V= 0u) P03V = 0(00) Vs + / [6(u) P

k
h h

1
< [ 1Vu— b@P O (Vu = b Vude+ - [ AP
o P Jak
(w)-2 MGy (w
< |[Vu — 0(u)? (Vu — 0(u))Vudx + |u|P*™ da
Q Qk

p+

.
h h
p3 = p4 if Cy > 1 else ps = p—, We apply the previous results (1) and (2) and we get that

1
lim lim — w|Vu — (u) [P de = 0
h—~+o00 k—0 k {h<|u|<h+k}

Let u and v be two weak solutions of degenerate elliptic problem (1.1) and let h, k be two positive real numbers
such that 1 < k < h. For the solution u, we take ¢ = Ti(u — T}, (v)) in equality (3.1)), and for the solution v, we take
@ =Ti(v —Tx(u)) as test function. We have

/ wo(Vu — 0(uw)) VI (u — Th(v))dz + /
Q

w|uP 20Ty, (u — Ty, (v))de = / [Ti(u — Th(v))dzx
Q Q

and

/ wd (Vo —0(v)) VT (v — Ty (u))dx + / w|v|P 20T, (v — Ty (u))de = / fTk(v = Ty (u))dx.
Q Q Q

By letting h go to infinity and k to 0, we find Ty (u — Tp(v)) = u — v and T (v — T (u)) = v — v and by summing
up the two above inequalities and applying Dominated Convergence, we have

1 B
low) = g(o)ll + , lim _im (ki ) = 0, (3.5)

where g(u) = |u[P“) 24 and
I(h; k) = /Qw@(Vu —0(w))VTi(u — Th(v))dr + /QwCD(VU —0(v)) VT, (v — Th(u))dx.

to prove u = v first should be prove that lim lim %I(h; k) > 0. Consider the following decomposition:
h—+o00 k—0

Oy (k) = {lul < hs[o] <h}; Qa(h) = {[u] < h;|v] > h}
Qs(h) = {lul > h;[o| < h}; Qa(h) = {[ul > h;[v] > h}

we have 0 = UL_,Q;(h) and for i = 1,..,4,

Zi(h; k) = /Q‘(h) wd(Vu — 0(w)) VT (u — v)dx + /Qw@(Vv —0(v))VTi(v — u)dx.

Firstly, we have
Zy(h k) = / _ w(d(Vu —0(u)) — ¢(Vo — 0(v))) VI (v — u)dx
Qf ()
= Zi(hik) + I (hs k)

where
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OF(h) = {lu—v] < k; Ju| < h; Jo] < A},
THhR) = foge (g @(@(Vu — 0(u)) — B(Vo — 0(0))) ¥ (us ) dr,
T2h: K) = [y @(@(Vu — 0(u)) — B(Vo — 0(0))) ¥ (us )dor,
and
Ul(u;v) = (Vu—0(u)) — (Vo —0(v)) and V2(u;v) = (0(u) — 0(v)).

Our goal now is to prove that lim lim $Z;(h;k) > 0.

h—+00 k—0
Iy(h k) = /Qk(h) w(®(Vu —0(u)) — (Vo — 0(v)))(Vu — 0(u)) — (Vv —0(v)))dz > 0

Case 1: 1 < p(.) <2. Let € > 0. We apply Young’s inequality, we find

2 W u—0(u)) — v —0(v)) [P dax 1
now < | o 1T 000) ~ #(F e+ /

- _ p'(u)
- 5p’(u)w|9(u) 6(v)| dx

i_ w|®(Vu — 0(u)) — (Vo — 0(v))|Podx + % / w|f(u) — O(v)|Podz.
b Jagn ep'~ Jarn

Now, using Hs, we have
16(u) — B(v) [P0 < N0 |u — w|Po and lu —v| < k.

Then

/ w|f(u) — O(v)|Podx < )\g"/ wlu — v|Podx
Th Qlh

k
< meas(Q,lc’h)kpo
< CskPo.

Now, we use Lemma ([2.9)), we find

/1 X w|®(Vu — 0(u)) — (Vo — 0(v))|Podx < m/1 X w|®(Vu — 0(u)) — ®(Vo — 0(v))| ¥ (u; v)d
ol ol

k

IN

CuZL(h, k).

Then
C5 kPo

T3 (h, k)

IN

(eC4Zi (h, k) + ) (3.6)

. 1,
lim <Cy 2 T} (h, ). (3.7)

IN

1,

If lim +Z1 (h, k) = 0. Then
—

. .1
It £ (1) =0

If0 < %g% +Z1(h, k) < oo, we pose in (3.6), e = Then

1
B Jim T (h k)"

1
lim lim —Z;(h,k) > 0.
h—+o0 k—0
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If %in%) +Z1 (h, k) = +o0, using (Hs), (3-3),used to prove the coercivity of A! for solution u and v, we find that
—

i (h,k) < kXo /Q w|®(Vu — 0(u)) — ®(Vv — 0(v))|d,

k

’CAO/ |V — 6(u) P da + / w| Vo — 6(v) P da.
Q" QLn

IN

1
ST < o [ wlVus0Ptds s [ wiTo - 6P,
K Q. " Qb

For the solution u we take ¢ = Ty (u) in equality (L.1) and we find:
/ wd(Vu — 0(u))Vudz < kCq
{lul<k}

This implies that
/ . w|Vu — 0(u)[PWde < kP1Chy
Ql:h

k

and
/ w| Vv — 0(v) [PV dx < kPO,
Q"
Therefore
1
E|If(h, E) < Xo(h+E)PCh.
1
Tim, E|If(h, k) < AohPCha.
. 1 1 . 1 2 _
]113%) %11 (h, k) + I}l_r)% Ezl (h,k) = oo.
Then

: N
dm_Jim G2 ) =0

This implies that
1
lim lim Ezl(h’ k) > 0.

h—4o00 k—0

Case 2: p(.) > 2. By similar method in case 1 and by use Young’s inequality we get

1, , e(k+h) 2
) < .
%136 k:Il (h,k) < %136 (C’7 T +Csg p— (3.8)
) (k+h)
< fmOn gy

taking e = %, we get

: s 172 -
hgr-ir-loo 111—>0 EIl (h, k) =0
This implies that

1
lim lim —Z;(h,k) > 0.
h—+o00 k—0

On the other hand, we have

Io(h; k) = / wp(Vu — 0(u)) VT (v — u)dx + / wp(Vu — 0(w)) VT (u — hsign(v))dx
Qk (h) Q% (n)

I (hi k) + I3 (hs k)
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where
(hk) = /Qk(h) wh(Vu — 0(u)) VT (v — u)dw
= / we(Vo — 0(v))Vudr — / we(Vo — 0(v))Vudx
Q5.1(h) Q3,(h)
and
T2(h; k) = / wp(Vu — 0(w)) VT (u — hsign(v))dx
Q5 (h)
_ / wb(Vu — 0(u)) Vude
Q5 5(h)
where

05 (h) = {lu—v| < k; |u <h; o] > h}
05 5(h) = {lu — hsign(v)| < k; |u| < hs [v] > h}

we use the result of the coercivity part and we get
I3 (h:k) > 0
and moreover we have

lej (i wO(Vo —0(v))Vodz = 0.

On the other hand, by Holder’s inequality, we have

pt—1

P 1/p~
/ wp(Vv — 0(v))Vudx < C / w|Vv — 0(v) [P dx / W VP dz
lec,l(h) Qg,l(h) Qk l(h)

2,

Now, using Lemma (2.4, we get

. . 1 _
hgrfw %11)% E fQ’S,l(h) wp(Vv — 0(v))Vudz = 0.

Finally, we have lim lim +7}(h;k) > 0. Then
h—+o00 k—0

lim lim +Z5(h; k) > 0.
h—-+oc0 k—0

If we replace u by v we get lim lim %Ig(h; k) > 0. Now, we will prove that
h—+o00 E—0

1
lim lim —Z,(h; k) > 0.
h—+oo k—0 k

Then, we have

Io(h k) = /Qk(h) wp(Vu — 0(u)) VT (u — hsign(v)dx + / wp(Vv — 0(v))VTi (v — hsign(u))dz

Qi (h)

= / wp(Vu — 0(u))Vudx + / wp(Vo — 0(v))Vudz > 0
Qi (h) Q5 (h)

where

Ok 4 () = {Ju — hsign(v)| < k; [ul > h; [o] > h}
QZ’Q(h) = {|v — hsign(u)| < k; |u| > h; |v| > h}

13

Finally, we have lim lim +Z(h;k) > 0. Therefore, inequality (3) becomes ||g(u) — g(v)||1 = 0.. This implies that

h—+o0 k—0 k
u = v in ). This completes the proof of Theorem. [J
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Conclusions

In this work, we study the question of existence and Uniqueness of weak solutions for the elliptic Problem (1.1))

in weighted Sobolov space with Dirichlet type boundary condition. Other questions are still being processed, it is the
question existence and Uniqueness of weak solutions for the parabolic Problem.
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