- Tokiwa, Y., Calabia, B., Ugwu, C. and Aiba, S., 2009. Biodegradability of Plastics. International Journal of Molecular Sciences, 10, pp. 3722−3742. Doi:10.3390/ijms 10093722
- Faibunchan, P., Pichaiyut, S., Kummerlowe, C. Vennemann, N. and Nakason, C., 2020. Green biodegradable thermoplastic natural rubber based on epoxidized natural rubber and poly(butylene succinate) blends: Influence of blend proportions. Journal of Polymers and the Environment, 28(3), pp. 1050-1067. Doi:10.1007/s10924-020-01655-5
- Sasimowski, E., Majewski, L. and Grochowicz, M., 2023. Study on the biodegradation of poly(butylene succinate)/wheat bran biocomposites. Materials, 16(21), p. 6843. Doi:10.3390/ ma16216843
- Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T. and Tian, D., 2018. Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, pp. 319–326. Doi:10.1016/ j.polymertesting.2018.02.003
- Zhao, J., Wang, X., Zeng, J., Yang, G., Shi F. and Yan, Q., 2005. Biodegradation of Poly(Butylene Succinate) in Compost. Journal of Applied Polymer Science, 97(6), pp. 2273–2278. Doi:10.1002/app.22009
- Samir, A., Ashour, F. H., Hakim, A. A. A. and Bassyouni, M., 2022. Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation, 6(1), p. 68. Doi:10.1038/s41529-022-00277-7
- Rong-or, C., Pongputthipat, W., Ruksakulpiwat, Y. and Chumsamrong, P., 2024. Soil burial degradation of bio-composite films from poly(lactic acid), natural rubber, and rice straw. Polymer bulletin. Doi:10.1007/s00289-024-05229-6
- Pongputthipat, W., Ruksakulpiwat, Y. and Chumsamrong, P., 2023. Development of biodegradable biocomposite films from poly(lactic acid), natural rubber and rice straw. Polymer bulletin, 80(9), pp. 10289-10307. Doi:10.1007/s00289-022-04560-0
- Umamaheswara, R., Venkatanarayana, B. and Suman, K. N. S., 2019. Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today, 18, pp. 85-97. Doi:10.1016/j.matpr.2019.06.280
- Lyu, J. S., Lee, J. and Han, J., 2019. Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), p. 20236. Doi:10.1038/s41598-019-56757-5
- Singsang, W., Rumjuan, P., Ausungnoen, Y., Charentanom, W., Srakaew, N. and Prasoetsopha, N., 2020. Mechanical Properties and Melt Flow Index of Poly (butylene succinate) Blended with a Small Amount of Natural Rubber IOP Conferences Series: Materials Science and Engineering, 965(1), p. 012026. Doi:10.1088/1757-899X/965/1/012026
- Faibunchan, P., Nakaramontri, Y., Chueangchayaphan, W., Pichaiyut, S., KummerlÖwe, C., Vennemann, N. and Nakason, C., 2018. Novel Biodegradable Thermoplastic Elastomer Based on Poly(butylene succinate) and Epoxidized Natural Rubber Simple Blends. Journal of Polymers and the Environment, 26, pp. 2867-2880. Doi:10.1007/s10924-017-1173-4
- Faibunchan, P., Pichaiyut, S., Chueangchayaphan, W., KummerlÖwe, C., Vennemann, N. and Nakason, C., 2019. Influence type of natural rubber on properties of green biodegradable thermoplastic natural rubber based on poly(butylene succinate). Polymers for Advanced Technologies, 30(4), pp. 1010-1026. Doi:10.1002/pat.4534
- Hemsri, S., Thongpin, C., Moradokpermpoon, N., Niramon, P. and Suppaso, M., 2015. Mechanical Properties and Thermal Stability of Poly(butylene succinate)/ Acrylonitrile Butadiene Rubber Blend. Macromolecular Symposia, 354(1), pp. 145-154. Doi:10.1002/masy.20140 0129
- Phiri, M. J., Mofokeng, J. P., Phiri, M. M., Mngomezulu, M. and Tywabi-Ngeva, Z., 2023. Chemical, thermal and morphological properties of polybutylene succinate-waste pineapple leaf fibres composites. Heliyon, 9(11), p. e21238. Doi:10.1016/j.heliyon.2023.e21238
- Calabia, B. P., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M. and Funabashi, M., 2013. Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymer, 5(1), pp. 128-141. Doi:3390/polym 5010128
- Prasoetopha, N., Thainoi, P., Jinnavat, R., Charerntanom, W., Hasook, A. and Singsang, W., 2020. Morphological and Mechanical Properties of Natural Rubber Compound/ Poly(butylene succinate) Blend. IOP Conferences Series: Materials Science and Engineering, 840(1), P. 012013. Doi: 10.1088/1757-899X/840/1/012013
- Lotfy, H. R. and Roubik, H., 2023, Water purification using activated carbon prepared from agriculture waste - overview of a recent development. Biomass Conversion and Biorefinery, 13(17), pp. 15577-15590. Doi:10.1007/s13399-021-01618-3
- Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, and Humairah, N. A., 2022. Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, p. 100291. Doi:10.1016/ j.rechem.2022.100291
- Vasilyeva, G. K., Strijakova, E. R. and Shea, P. J., Use of activated carbon for soil bioremediation. Soil and Water Pollution Monitoring, Protection and Remediation, 69, pp. 309–322. Doi:10.1007/978-1-4020-4728-2_20
- Gao, J., Liu, D., Xu, Y., Chen, J., Yang, Y., Xia, D., Ding, Y. and Xu, W., 2020. Effects of two types of activated carbon on the properties of vegetation concrete and Cynodon dactylon growth. Scientific Reports, 10(1), p. Doi:10.1038/s41598-020-71440-w
- Omokafe, S.M., Adeniyi, A. A., Igbafen, E. O., Oke, S. R. and Olubambi, P. A., 2020. Fabrication of Activated Carbon from Coconut Shells and its Electrochemical Properties for Supercapacitors. International Journal of Electrochemical Science, 15(11), pp 10854-10865. Doi:10.20964/2020.11.10
- Nandi, R., Jha, M. K., Guchhait, S. K., Sutradhar, D. and Yadav, S., 2023. Impact of KOH Activation on Rice Husk Derived Porous Activated Carbon for Carbon Capture at Flue Gas alike Temperatures with High CO2/N2 ACS Omega, 8(5), pp. 4802-4812. Doi:10.1021/acsomega. 2c06955
- Singsang, W., Suetrong, J., Choedsanthia, T., Srakaew, N., Jantrasee, S. and Prasoetsopha, N., 2021. Properties of Biodegradable Poly(butylene succinate) Filled with Activated Carbon Synthesized from Waste Coffee Grounds. Journal of Materials Science and Applied Energy, 10(3), pp. 87-95.
- Boonpoke, A., Chiarakorn, S., Laosiripojana, N., Towprayoon, S. and Chidthaisong, A., 2011. Synthesis of Activated Carbon and MCM-41 from Bagasse and Rice Husk and their Carbon Dioxide Adsorption Capacity. Journal of Sustainable Energy and Environment, 2, pp. 77-81.
- Feng, , Li, J., Wang, H. and Xu, Z., 2020. Biomass-Based Activated Carbon and Activators: Preparation of Activated Carbon from Corncob by Chemical Activation with Biomass Pyrolysis Liquids. ACS Omega, 5(37), pp. 24064-24072. Doi:10.1021/ acsomega.0c03494
- Molina-Sabio, M. and Rodrı́guez-Reinoso, F., 2004. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1), 15-25. Doi:10.1016/j.colsurfa.2004.04.007
- Shen, Y. and Fu, Y., 2018. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Materials Today Energy, 9, pp. 397-405. Doi:10.1016/j.mtener.2018.07.005
- Deng, H., Li, G., Yang, H., Tang, J. and Tang, J., 2010. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 Chemical Engineering Journal, 163(3), pp. 373-381. Doi:10.1016/j.cej.2010.08.019
- Foo, K.Y. and Hameed B.H., 2012. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 Bioresource Technology, 104, p. 679-686. Doi:10.1016/j.biortech.2011.10.005
- Shifa, S. S., Hasan Kanok, M. M., Haque, M. S., Sultan, T., Pritha, K. F., Mubasshira, Al Yeamin, M. and Dipta, S. D., 2024. Influence of heat treatment and water absorption on mechanical properties of cotton-glass fiber reinforced epoxy hybrid composites: An eco-friendly approach for industrial materials. Hybrid Advances, 5, p. 100181. Doi:10.1016/j.hybadv.2024.100181
- Somdee, P., Prasoetsopha, N., Detsunhnoen, S., Matnok, S. and Ansari, M. A., 2024. Enhancing Natural Rubber Composites with Spent Coffee Ground: Physical Properties, Odor Absorption, and Processing. Starch – Stärke, p. 2300300. Doi: 10.1002/star.202300300
- Khoshraftar, Z. and Ghaemi, A., 2022. Presence of activated carbon particles from waste walnut shell as a biosorbent in monoethanolamine (MEA) solution to enhance carbon dioxide absorption. Heliyon, 8(1), p. e08689. Doi:10.1016/ j.heliyon.2021.e08689
- Siakeng, R., Jawaid, M., Asim, M. and Siengchin, S., 2020. Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Textureof Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers (Basel), 12(2), 458. Doi:10.3390/ polym12020458
- Peñas, M. M., Criado-Gonzalez, M., Martínez de Ilarduya, A., Flores, A., Raquez, J.-M., Mincheva, R., Müller, A. J. and Hernández, R., 2023. Tunable enzymatic biodegradation of poly(butylene succinate): biobased coatings and self-degradable films. Polymer Degradation and Stability, 211, p. 110341. Doi:10.1016/j.polymdegradstab.2023.110341
- Zhang, L., Tu, L., Liang, Y., Chen, Q., Li, Z., Li, C., Wang, Z. and Li, W., 2018. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Advances, 8(74), pp. 42280-47291. Doi: 10.1039/c8ra08990f
- Zhang, Y., Zhao, Y.-P., Qiu, L.-L., Xiao, J., Wu, F.-P., Bai, Y.-H. and Liu, F.-J., 2022. Insights into the KOH activation parameters in the preparation of corncob-based microporous carbon for high-performance supercapacitors. Diamond and Related Materials, 129, 109331. Doi: 10.1016/j.diamond.2022.109331
- Ismail, S.N.S., Ibrahim, N.N.I.N., Rasli, S.N., Majid, N.A., Wahab, N.M.A., Jamal, S.N., Zakaria, S. and Nazir, K., 2022. Reinforcement of Charcoal Activated Carbon (CAC) in Natural Rubber (NR) Compound: in Comparison with Carbon Black. ASEAN Engineering Journal, 12(2), 161-167. Doi:10.11113/aej.v12.17224
- Nasri, K., Toubal, L., Loranger, É. And Koffi, D., 2022. Influence of UV irradiation on mechanical properties and drop-weight impact performance of polypropylene biocomposites reinforced with short flax and pine fibers. Composites Part C: Open Access, 9, p. 100296. Doi: 10.1016/j.jcomc.2022.100296
- Veranitisagul, C., Wattanathana, W., Wannapaiboon, S., Hanlumyuang, Y., Sukthavorn, K., Nootsuwan, N., Chotiwan, S., Phuthong, W., Jongrungruangchok, S. and Laobuthee, A., 2019. Antimicrobial, Conductive, and Mechanical Properties of AgCB/PBS Composite System. Journal of Chemistry, 2019(1), 3487529. Doi: 10.1155/2019/3487529
- Luo, X., Li, J., Feng, J., Yang, T. and Lin, X., 2014. Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials and Design, 57, pp. 195-200. Doi:10.1016/j.matdes.2013.12.056
- Li, J., Luo, X. and Lin, X., 2013. Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Materials & Design (1980-2015), 46, pp. 902–909. Doi:10.1016/j.matdes.2012.11.054
- Noh, S., Kim, D., Jeong, G., Koo, J.M. and Koo, J., 2024. Highly dispersed biochar as a sustainable filler for enhancing mechanical performance and biodegradation of polybutylene succinate. Journal of Applied Polymer Science, 141(25), e55539. Doi:10.1002/app.55539
- Cappello, M., Rossi, D., Filippi, S., Cinelli, P. and Seggiani, M., 2023. Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate-co-adipate) Biocomposites. Materials, 16(2), 570. Doi:10.3390/ma16020570
- Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J. and Pukánszky, B., 2021. Impact modification of fiber reinforced polypropylene composites with flexible poly(ethylene terephthalate) fibers. Polymer International, 70(9), pp. 1367-1375. Doi:10.1002/pi.6210
- Ge, F., Wang, X. and Ran, X., 2017. Properties of biodegradable poly(butylene succinate) (PBS)composites with carbon black. Polymer Science, Series A, 59(3), pp. 416 – 424. Doi:10.1134/S0965545X17030051
- Zulkifli, Z., Daud, Y. M., Zainal, F. F. Abu Hashim, M. F. and Aygörmez, Y., 2023. Effect of Composition on Melt Flow and Density of Polypropylene Copolymer/Kaolin Geo-Filler Composites. Archives of Metallurgy and Materials, 68(1), pp. 369-373. Doi:10.24425/amm.2023.141513
- Papadopoulou, K., Klonos, P., Kyritsis, A., Masek, O., Wurzer, C., Tsachouridis, K., Anastasiou, A. and Bikiaris, D., 2023. Synthesis and Study of Fully Biodegradable Composites Based on Poly(butylene succinate) and Biochar. Polymers, 15, 1049. Doi:10.3390/polym15041049
- Zare, Y., 2016. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 84, pp. 158-164. Doi:10.1016/j.compositesa.2016.01.020
- Mohammed Ali, A.S., Hegab, H.M., Almarzooqi, F., Jaoude, M.A., Hasan, S.W. and Banat, F., 2024. Carbon composites for efficient solar-driven atmospheric water harvesting. Journal of Environmental Chemical Engineering, 12(5), 113319. Doi.10.1016/j.jece.2024.113319
- Mrad, H., Alix, S., Migneault, S., Koubaa, A. and Perré, P., 2018. Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement, 115, pp. 197-203. Doi:10.1016/j.measurement.2017.10.011
- Islam, M. S., Nassar, M., Elsayed, M. A., Jameel, D. B., Ahmad, T. T. and Rahman, M. M., 2023. In Vitro Optical and Physical Stability of Resin Composite Materials with Different Filler Characteristics. Polymers, 15(9), p. 2121.
- Okolie, O., Kumar, A., Edwards, C., Lawton, L. A., Oke, A., McDonald, S., Thakur, V. K. and Njuguna, J., 2023. Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation. Journal of Composites Science, 7(6), p. 213.
- Meereboer, K. W., Misra, M. and Mohanty, A. K., 2020. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), pp. 5519-5558. Doi:10.1039/D0GC01647K
|