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Abstract

This paper provides a characterization for zero divisor graphs of a completely primary finite ring R satisfying the
conditions (Z (R))

5
= (0) ; (Z (R))

4 ̸= (0) where Z(R) is its subset of all zero divisors (including zero). This has
been achieved through Anderson and Livingston’s zero divisor graphs by precisely determining the graph invariants,
including diameter, girth and the binding number, and graph characteristics including completeness, connectedness
and partiteness.
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1 Introduction

In this section, we summarize some well-known results on the zero-divisor graphs of a completely primary finite
ring. A completely primary finite ring is a ring R with identity 1 ̸= 0 whose subset of all its zero divisors forms a
unique maximal ideal. The study of zero-divisor graphs of a finite ring encapsulates properties of the zero divisors
of the completely primary finite rings. A plethora of such have been witnessed since Beck in [4] proposed the notion
of zero divisor graphs of a commutative ring with identity. According to Beck, any two distinct vertices x and y in
the graph of the ring R, Γ(R) = R are adjacent if and only if xy = 0. Beck’s graph was later simplified by Anderson
and Livingston [3] by considering nonzero zero divisors as the vertices of the graph Γ(R) and the adjacency concept
corresponded to that of Beck. Mulay [5] and Redmond [10] discovered zero divisor graphs based on equivalence classes
and ideal-based zero divisor graphs, respectively. Oduor [6] characterized the zero divisor graphs of a Galois ring
R0 = GR(pnr, pn) based on zero divisor graphs defined by Anderson and Livingston [3] and Mulay [5]. The diameter,
girth, connectedness and binding number for the Γ(R0) of the Galois ring R0 were among the properties studied. Since
the discovery of completely primary finite rings through idealization of R0-modules, much work has been done on the
zero-divisor graphs for such commutative rings with identity. For more, see [7, 8, 1, 2]. Throughout this paper, R
denotes a completely primary finite ring, Z(R) denotes the set of all zero divisors (including zero), Γ(R) denotes the
graph of the ring R, |V (Γ(R))| denotes the number of vertices in the zero divisor graph of the ring R, b(Γ(R)) denotes
the binding number of the Γ(R), gr(Γ(R)) denotes the girth of Γ(R) and diam(Γ(R)) denotes the diameter of Γ(R).
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In section 2, we state some results that are important in this work and give a construction of five radical zero
commutative completely primary finite rings. In section 3, we investigate the zero divisor graphs of such rings
based on the zero divisor graphs determined by Anderson and Livingston in [3]. Section 4 gives a conclusion with a
recommendation for further research.

2 Preliminaries

The following results are fundamental in this paper and their proofs can be obtained from the cited references.

Theorem 2.1. ([9, Theorem 2]). Let R be a finite ring with multiplicative identity 1 ̸= 0, whose zero divisors form
an additive group J. Then

(i) J is the Jacobson radical of R;

(ii) |R| = pnr and |J | = p(n−1)r for some prime p, and some integers n, r;

(iii) Jn = (0);

(iv) The characteristic of the ring R is pk for some integer k with 1 ≤ k ≤ n; and

(v) If the characteristic is pn, then R will be commutative.

Theorem 2.2. ([11, Proposition 2.2]). Let R be a completely primary finite ring of characteristic pk with radical J
such that R/J ≡ GF (pr). Then there exists an independent generating set u1, . . . , uh ∈ J of U as an R0−module such
that each R0ui, i = 1, . . . , h is an R0−submodule of U and R = R0 ⊕ U = R0 ⊕R0u1 ⊕ · · · ⊕R0uh.

We now give a specific case of the general construction of five radical zero commutative completely primary finite
rings where the automorphism is the identity in R0 and the ring R is commutative. Let R0 = GR(pkr, pk) be a Galois
ring of order pkr and characteristic pk where p is a prime integer, 1 ≤ k ≤ 5 and r ∈ Z+. Suppose U, V,W and Y are
R0/pR0-spaces considered as R0−modules generated by e, f, g and h elements respectively, such that the corresponding
generating sets are {u1, . . . , ue}, {v1, . . . , vf}, {w1, . . . , wg} and {y1, . . . , yh} so that R = R0 ⊕ U ⊕ V ⊕W ⊕ Y is an
additive abelian group. Then, on the additive group, we define multiplication by the following relations:

(i) If k = 1, then

uiui′ = ui′ui = vj , uivj = vjui = wk, uiwk = wkui = yl, uiyl = ylui = 0, vjvj′ = vj′vj = yl,

vjwk = wkvj = 0, vjyl = ylvj = 0, wkwk′ = wk′wk = 0, wkyl = ylwk = 0, ylyl′ = yl′yl = 0.

(ii) If k = 2, then

uiui′ = ui′ui = pr0 + pui + vj , uivj = vjui = pui + wk, uiwk = wkui = pui + yl, uiyl = ylui = pui,

vjvj′ = vj′vj = yl, vjwk = wkvj = 0, vjyl = ylvj = 0, wkwk′ = wk′wk = 0, wkyl = ylwk = 0, ylyl′ = yl′yl = 0.

(iii) If k = 3, then

uiui′ = ui′ui = p2r0 + pui + vj , uivj = vjui = p2r0 + pui + pvj + wk, uiwk = wkui = p2r0 + pui + pwk + yl,

uiyl = ylui = p2r0+pui, vjvj′ = vj′vj = p2r0+pvj+yl, vjwk = wkvj = p2r0+pvj+pwk, vjyl = ylvj = p2r0+pvj ,

wkwk′ = wk′wk = p2r0 + pwk, wkyl = ylwk = p2r0 + pwk, ylyl′ = yl′yl = p2r0.

(iv) If k = 4, then

uiui′ = ui′ui = p2r0 + pui + vj , uivj = vjui = p2r0 + pui + pvj + wk, uiwk = wkui = p2r0 + pui + pwk + yl,

uiyl = ylui = p2r0+pui, vjvj′ = vj′vj = p2r0+pvj+yl, vjwk = wkvj = p2r0+pvj+pwk, vjyl = ylvj = p2r0+pvj ,

wkwk′ = wk′wk = p2r0 + pwk, wkyl = ylwk = p2r0 + pwk, ylyl′ = yl′yl = p2r0.

(v) If k = 5, then

uiui′ = ui′ui = p2r0 + pui + vj , uivj = vjui = p2r0 + pui + pvj + wk, uiwk = wkui = p2r0 + pui + pwk + yl,

uiyl = ylui = p2r0+pui, vjvj′ = vj′vj = p2r0+pvj+yl, vjwk = wkvj = p2r0+pvj+pwk, vjyl = ylvj = p2r0+pvj ,

wkwk′ = wk′wk = p2r0 + pwk, wkyl = ylwk = p2r0 + pwk, ylyl′ = yl′yl = p2r0.
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Further uiui′ui′′ui′′′uiiv = 0, uir0 = r0ui, vjr0 = r0vj , wkr0 = r0wk, ylr0 = r0yl, where r0 ∈ R0 and 1 ≤ i, i′ ≤ e,
1 ≤ j, j′ ≤ f , 1 ≤ k, k′ ≤ g, 1 ≤ l, l′ ≤ h.

Lemma 2.3. From the given multiplication in R, we see that if r0+
e∑

i=1

riui+
f∑

j=1

sjvj+
g∑

k=1

tkwk+
h∑

l=1

zlyl and r′0+

e∑
i=1

r′iui+
f∑

j=1

s′jvj+
g∑

k=1

t′kwk+
h∑

l=1

z′lyl are any two elements of R, then this multiplication turns R into a commutative

ring with identity 1.

Proposition 2.4. The ring R constructed in this section is completely primary of characteristic pn with Jacobson
radical Z(R) :

1) If n = 1, then

Z(R) =

e∑
i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))2 =

f∑
j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))3 =

g∑
k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))4 =

h∑
l=1

R0yl

(Z(R))5 = (0)

2) If n = 2, then

Z(R) = pR0 ⊕
e∑

i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))2 = pR0 ⊕ p

e∑
i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))3 = p

e∑
i=1

R0ui ⊕ p

f∑
j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))4 = p

f∑
j=1

R0vj ⊕
h∑

l=1

R0yl

(Z(R))5 = (0)

3) If n = 3, then

Z(R) = pR0 ⊕
e∑

i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))2 = p2R0 ⊕ p

e∑
i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))3 = p2
e∑

i=1

R0ui ⊕ p

f∑
j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))4 = p2
f∑

j=1

R0vj ⊕ p

g∑
k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))5 = (0)



4 Were, Oduor

4) If n = 4, then

Z(R) = pR0 ⊕
e∑

i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))2 = p2R0 ⊕ p

e∑
i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))3 = p3R0 ⊕ p2
e∑

i=1

R0ui ⊕ p

f∑
j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))4 = p3
e∑

i=1

R0ui ⊕ p2
f∑

j=1

R0vj ⊕ p

g∑
k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))5 = (0)

5) n = 5, then

Z(R) = pR0 ⊕
e∑

i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))2 = p2R0 ⊕ p

e∑
i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))3 = p3R0 ⊕ p2
e∑

i=1

R0ui ⊕ p

f∑
j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))4 = p4R0 ⊕ p3
e∑

i=1

R0ui ⊕ p2
f∑

j=1

R0vj ⊕ p

g∑
k=1

R0wk ⊕
h∑

l=1

R0yl

(Z(R))5 = (0)

3 Main Results

Proposition 3.1. Suppose that R is a ring construct according to the previous section, and of characteristic pn, 1 ≤
n ≤ 5 with pξui = 0, pvj = 0, pwk = 0, pyl = 0, ξ = 1 for n = 1, 1 ≤ ξ ≤ 2 for n = 2, 1 ≤ ξ ≤ 3 for n = 3, and
1 ≤ ξ ≤ 4 for n = 4, 5. Then Γ(R) satisfies the following:

(i) |V (Γ(R))| = p((n−1)+ξe+f+g+h)r − 1.
(ii) Γ(R) is incomplete.
(iii) Γ(R) is connected.
(iv) diam(Γ(R)) = 2.
(v) gr(Γ(R)) = 3.

Proof .

(i) To show (i), we consider two cases: n = 1 & ξ = 1 and 2 ≤ n ≤ 5. When n = 1, and ξ = 1, Z(R) =
e∑

i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl. Thus, we have |Z(R)| = p(e+f+g+h)r and since the set Z(R)∗ =

Z(R)− {(0, 0, 0, 0, 0)} , it follows that |Z(R)∗| = |V (Γ(R))| = p(e+f+g+h)r − 1.

When 2 ≤ n ≤ 5, Z(R) = pR0 ⊕
e∑

i=1

R0ui ⊕
f∑

j=1

R0vj ⊕
g∑

k=1

R0wk ⊕
h∑

l=1

R0yl, thus |Z(R)| = p((n−1)+ξe+f+g+h)r

which clearly follows that |V (Γ(R))| = p((n−1)+ξe+f+g+h)r − 1.

(ii) Let

(
e∑

i=1

riui +
f∑

j=1

sjvj +
g∑

k=1

tkwk +
h∑

l=1

zlyl

)
and

(
e∑

i=1

r′iui +
f∑

j=1

s′jvj +
g∑

k=1

t′kwk +
h∑

l=1

z′lyl

)
be any two ver-

tices in the graph set V (Γ(R)). Clearly their product is a nonzero element in V (Γ(R)). Since (Z(R))2 ̸= (0), it
is evident that not all the vertices in the graph set V (Γ(R)) are adjacent. This shows that Γ(R) is incomplete.
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(iii) The ann(Z(R)∗) = (Z(R))4 = Y i.e. ann(Z(R)∗) ̸= ∅. At least there is some vertex
h∑

l=1

zlyl ∈ ann(Z(R)∗) which

is adjacent to every other vertex in the graph set V (Γ(R)). Thus Γ(R) is connected.

(iv) Since (Z(R))2 ̸= (0), there exists non-adjacent vertices in the graph set V (Γ(R)) each of whose product with
ann(Z(R)∗) is zero. Thus diam(Γ(R)) = 2.

(v) Since (Z(R))2 ̸= (0), the gr(Γ(R)) ≮ 3. Consider the two cases where the two vertices in V (Γ(R)) are adjacent.
Case(i): Z(R)∗ is adjacent to (Z(R)4)∗. Since (Z(R)4)∗ = ann(Z(R)∗), this cycle is of length 1.
Case (ii): (Z(R)2)∗ is adjacent to both (Z(R)3)∗ and ann(Z(R)∗). Also (Z(R)3)∗ is adjacent to ann(Z(R)∗).
Clearly the girth of the graph, gr(Γ(R)) ≯ 3 since ann(Z(R)∗) = (Z(R)4)∗ = Y. Thus gr(Γ(R)) = 3.

□

Proposition 3.2. Suppose R is a ring constructed in section 2, and of characteristic pn, 1 ≤ n ≤ 5 with pξui =
0, pvj = 0, pwk = 0, pyl = 0, ξ = 1 for n = 1, 1 ≤ ξ ≤ 2 for n = 2, 1 ≤ ξ ≤ 3 for n = 3, and 1 ≤ ξ ≤ 4 for n = 4, 5.
Then Γ(R) satisfies the following:

(i) b(Γ(R)) =



p((n−1)+g+h)r−1

p((n−1)+g+h)r(p(e+f)r−1)
, ξ = 1

p((n−1)+e+g+h)r−1

p((n−1)+e+g+h)r(p(e+f)r−1)
, ξ = 2

p((n−1)+2e+g+h)r−1

p((n−1)+2e+g+h)r(p(e+f)r−1)
, ξ = 3

p((n−1)+3e+g+h)r−1

p((n−1)+3e+g+h)r(p(e+f)r−1)
, ξ = 4

(ii) Γ(R) =


p((n−1)+g+h)r − partite, ξ = 1

p((n−1)+e+g+h)r − partite, ξ = 2

p((n−1)+2e+g+h)r − partite, ξ = 3

p((n−1)+3e+g+h)r − partite, ξ = 4

Proof . Let ε1, . . . , εr ∈ R0 with ε1 = 1 such that ε̄1, . . . , ε̄r ∈ R0/pR0 form a basis for R0/pR0 regarded as a vector
space over its prime subfield Fp. We consider two cases: When n = 1, ξ = 1 and 2 ≤ n ≤ 5, separately.

When n = 1 and ξ = 1, we let Hµ,k,l =

{
g∑

k=1

r∑
µ=1

εµwk +
h∑

l=1

r∑
µ=1

εµyl

}
. Then the set Z(R)∗ is partitioned into the

following mutually disjoint subsets;V g∑
k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 = Hµ,k,l − {(0, 0, 0, 0, 0)}

and

V1 = Z(R)∗ −
⋃
µ,k,l

V g∑
k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

From the definition of V1, we obtain the set of neighbours of V1 as

N(V1) =
⋃
µ,k,l

V g∑
k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

Clearly, |N(V1)| =

∣∣∣∣∣∣ ⋃µ,k,l
V g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p(g+h)r − 1. Therefore

|V1| = |Z(R)∗| − |N(V1)|

= p(e+f+g+h)r − 1−
(
p(g+h)r − 1

)
= p(g+h)r

(
p(e+f)r − 1

)
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Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p(g+h)r − 1

p(g+h)r
(
p(e+f)r − 1

) .
Since |N(V1)| = p(g+h)r − 1, it follows that Γ(R) is p(g+h)r partite. When 2 ≤ n ≤ 5, we consider cases A and B

where the set Z(R)∗ is partitioned for ξ = 1, 2, 3, 4 followed by determination of the binding number of Γ(R).

Case A : When n is even. For ξ = 1, let

Hµ,k,l =

{
r∑

µ=1

mµεµ +

g∑
k=1

r∑
µ=1

εµwk +

h∑
l=1

r∑
µ=1

εµyl,mµ ∈ {0, λ(p)} : 1 ≤ λ ≤ p(n−1) − 1

}
,

then the set Z(R)∗ is partitioned into the following mutually disjoint subsets;V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 = Hµ,k,l − {(0, 0, 0, 0, 0)}

and

V1 = Z(R)∗ −
⋃
µ,k,l

V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

From the definition of V1, we have

N(V1) =
⋃
µ,k,l

V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

Clearly, |N(V1)| =

∣∣∣∣∣∣ ⋃µ,k,l
V r∑

µ=1
mµεµ+

g∑
k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+g+h)r − 1. Therefore,

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+e+f+g+h)r − 1−
(
p((n−1)+g+h)r − 1

)
= p((n−1)+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+g+h)r − 1

p((n−1)+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+g+h)r − 1, it follows that Γ(R) is p((n−1)+g+h)r partite. For ξ = 2, let

Hµ,i,k,l =

{
r∑

µ=1

mµεµ + p

e∑
i=1

r∑
µ=1

εµui +

g∑
k=1

r∑
µ=1

εµwk +

h∑
l=1

r∑
µ=1

εµyl,mµ ∈ {0, λ(p)} : 1 ≤ λ ≤ p(n−1) − 1

}

then the set Z(R)∗ is partitioned into the following mutually disjoint subsets;V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 = Hµ,i,k,l − {(0, 0, 0, 0, 0)}

and
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V1 = Z(R)∗ −
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

From the definition of V1, we have

N(V1) =
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

Clearly,

|N(V1)| =

∣∣∣∣∣∣
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+e+g+h)r − 1.

Therefore,

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+2e+f+g+h)r − 1−
(
p((n−1)+e+g+h)r − 1

)
= p((n−1)+e+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+e+g+h)r − 1

p((n−1)+e+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+e+g+h)r − 1, it follows that Γ(R) is p((n−1)+e+g+h)r partite. For ξ = 3, Z(R)∗ is

partitioned as in the case when ξ = 2 with

|N(V1)| =

∣∣∣∣∣∣
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+2e+g+h)r − 1

and

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+3e+f+g+h)r − 1−
(
p((n−1)+2e+g+h)r − 1

)
= p((n−1)+2e+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+2e+g+h)r − 1

p((n−1)+2e+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+2e+g+h)r − 1, it follows that Γ(R) is p((n−1)+2e+g+h)r partite. For ξ = 4, Z(R)∗ is

partitioned as in the case when ξ = 2 with

|N(V1)| =

∣∣∣∣∣∣
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+3e+g+h)r − 1,
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and

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+4e+f+g+h)r − 1−
(
p((n−1)+3e+g+h)r − 1

)
= p((n−1)+3e+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+3e+g+h)r − 1

p((n−1)+3e+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+3e+g+h)r − 1, it follows that Γ(R) is p((n−1)+3e+g+h)r partite.

Case B : When n is odd. For ξ = 1, let

Hµ,k,l =

{
r∑

µ=1

mµεµ +

g∑
k=1

r∑
µ=1

εµwk +

h∑
l=1

r∑
µ=1

εµyl,mµ ∈ {0, (λ− 1)(p)} : 2 ≤ λ ≤ p(n−1)

}
,

then the set Z(R)∗ is partitioned into the following mutually disjoint subsets:V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 = Hµ,k,l − {(0, 0, 0, 0, 0)}

and

V1 = Z(R)∗ −
⋃
µ,k,l

V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

From the definition of V1, we have

N(V1) =
⋃
µ,k,l

V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

Clearly,

|N(V1)| =

∣∣∣∣∣∣
⋃
µ,k,l

V r∑
µ=1

mµεµ+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+g+h)r − 1.

Therefore,

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+e+f+g+h)r − 1−
(
p((n−1)+g+h)r − 1

)
= p((n−1)+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+g+h)r − 1

p((n−1)+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+g+h)r − 1, it follows that Γ(R) is p((n−1)+g+h)r partite. For ξ = 2, let

Hµ,i,k,l =

{
r∑

µ=1

mµεµ + p

e∑
i=1

r∑
µ=1

εµui +

g∑
k=1

r∑
µ=1

εµwk +

h∑
l=1

r∑
µ=1

εµyl,mµ ∈ {0, (λ− 1)(p)} : 2 ≤ λ ≤ p(n−1)

}
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then the set Z(R)∗ is partitioned into the following mutually disjoint subsets:V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 = Hµ,i,k,l − {(0, 0, 0, 0, 0)}

and

V1 = Z(R)∗ −
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

From the definition of V1, we have

N(V1) =
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl

 .

Clearly,

|N(V1)| =

∣∣∣∣∣∣
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+e+g+h)r − 1.

Therefore,

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+2e+f+g+h)r − 1−
(
p((n−1)+e+g+h)r − 1

)
= p((n−1)+e+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+e+g+h)r − 1

p((n−1)+e+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+e+g+h)r − 1, it follows that Γ(R) is p((n−1)+e+g+h)r partite. For ξ = 3, Z(R)∗ is

partitioned as in the case when ξ = 2 with

|N(V1)| =

∣∣∣∣∣∣
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+2e+g+h)r − 1,

and

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+3e+f+g+h)r − 1−
(
p((n−1)+2e+g+h)r − 1

)
= p((n−1)+2e+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+2e+g+h)r − 1

p((n−1)+2e+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+2e+g+h)r − 1, it follows that Γ(R) is p((n−1)+2e+g+h)r partite. For ξ = 4, Z(R)∗ is

partitioned as in the case when ξ = 2 with

|N(V1)| =

∣∣∣∣∣∣
⋃

µ,i,k,l

V r∑
µ=1

mµεµ+p
e∑

i=1

r∑
µ=1

εµui+
g∑

k=1

r∑
µ=1

εµwk+
h∑

l=1

r∑
µ=1

εµyl


∣∣∣∣∣∣ = p((n−1)+3e+g+h)r − 1,
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and

|V1| = |Z(R)∗| − |N(V1)|

= p((n−1)+4e+f+g+h)r − 1−
(
p((n−1)+3e+g+h)r − 1

)
= p((n−1)+3e+g+h)r

(
p(e+f)r − 1

)
.

Thus, the binding number of the graph Γ(R) is given by

b(Γ(R)) =
|N(V1)|
|V1|

=
p((n−1)+3e+g+h)r − 1

p((n−1)+3e+g+h)r
(
p(e+f)r − 1

) .
Since |(N(V1))| = p((n−1)+3e+g+h)r − 1, it follows that Γ(R) is p((n−1)+3e+g+h)r partite. □

4 Conclusion

This work has evidently laid bare the interplay between ring theory and graph theory. The algebraic theory of
zero-divisor graphs for certain classes of five-radical zero, completely primary, finite rings has been considered. It
has been noted that for such classes of rings, Γ(R) is incomplete, connected with a diameter of 2 and a girth of 3.
These graphical properties have been realized to be invariant for all the characteristics of the ring R while the binding
number, b(Γ(R)) and Γ(R) partite have been noted to be directly proportional to the characteristic of the ring. Since
zero-divisor graphs consist of vertices and edges between them, urban planners may find it useful as a model, where
vertices represent cities and edges represent roads between them. From it, the shortest route between any two cities
through another city and cities that are well bounded with fairly distributed roads between them may be developed.
For such classes of rings, the spectral theory of the zero divisor graphs and compressed zero divisor graphs has been
left open for further exploration.
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