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Abstract

In this paper, we present findings on the placement of zeros of generalized derivative of polynomials, drawing parallels
to those observed in the ordinary derivative of polynomials. Mathematicians have broadened the scope of the Gauss-
Lucas Theorem, a classic principle that deals with zero location in polynomials and their derivatives. The new work
expands it to cover convex linear combinations of incomplete polynomials.
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1 Introduction and Preliminaries

Polynomials play a significant role in almost all branches of mathematics. Virtually every branch of mathematics,
from algebraic number theory and algebraic geometry to Fourier analysis and computer science, has a corpus of
theory arising from the study of polynomials. Historically, polynomials have given rise to some of the most important
problems. The subject has now grown too large to attempt encyclopedic coverage. One of the most fascinating
problems in algebra is to find the location of the zeros of a polynomial. However, as the degree of a polynomial
increases, it becomes more and more difficult to find the exact location of its zeros. This makes the identification
of regions containing the zeros of a polynomial a significant problem. In 1829, Cauchy [2] provided a very simple
expression for the zero-bound in terms of the coefficients of a polynomial.

Let A(z) be a polynomial of degree n with zeros at z1, z2, . . . , zn. The zeros of the derivative A′(z) are also called
critical points of A(z). A critical point of A(z) is said to be non-trivial if it is not a zero of A(z). The classical
Gauss–Lucas theorem states that all the zeros of A′(z) lie in the convex hull H(z1, z2, . . . , zn) of z1, z2, . . . , zn. It is
also obvious from the proof of Gauss–Lucas theorem that if the zeros of A(z) do not lie on a straight line, then all its
non-trivial critical points lie inside H(z1, z2, . . . , zn).

Definition 1.1 (Generalized Derivative). Given a polynomial A(z) = c(z−z1)(z−z2) · · · (z−zn) of degree n and
an n-tuple γ = (γ1, γ2, . . . , γn) of non-negative real numbers (not all zero), Sz-Nagy (see [6]) introduced a generalized
derivative of A(z) defined by:

Aγ(z) = A(z)

n∑
j=1

γj
z − zj

= c

n∑
j=1

γjAj(z),
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where Aj(z) = c
∏n

i=1
i ̸=j

(z − zi) for 1 ≤ j ≤ n. Note that the ordinary derivative A′(z) of A(z) can be obtained from

Aγ(z) by setting γj = 1 for j = 1, 2, . . . , n, that is,

Aγ(z) = A′(z), for γ = (1, 1, . . . , 1)
n-times

.

Diaz-Barrero et al. [3] extended the Gauss-Lucas theorem to generalized derivative of polynomials. In fact they
proved the following result.

Theorem 1.2. Let z1, z2, . . . , zn denote n, not necessarily distinct, complex numbers. Then the polynomial

Aγ
n(z) =

n∑
k=1

γkgk(z), where gk(z) =

n∏
j=1
j ̸=k

(z − zj)

has all its roots inside or on the convex hull H(z1, z2, . . . , zn).

The following result, proved by Specht [7], is an improvement of the Gauss-Lucas theorem.

Theorem 1.3 (Specht). Let f(z) be a polynomial of degree n with zeros z1, . . . , zn. Then the convex hull K∗(f) of
the n2 − n points

wvµ =
zv + (n− 1)zµ

n
, where v, µ ∈ {1, ..., n}, v ̸= µ

contains all the critical points of f(z).

The following result, proved by Mir et al. [5], is an improvement of a result in [1], and it gives a relationship
between the zeros and critical points of a polynomial.

Theorem 1.4. Let A(z) be a polynomial of degree n. If A′(ω) = 0, then for every given real or complex number α,
A(z) has at least one zero in each of the regions∣∣∣∣ω − α+ z

2

∣∣∣∣ ≤ ∣∣∣∣α− z

2

∣∣∣∣ and

∣∣∣∣ω − α+ z

2

∣∣∣∣ ≥ ∣∣∣∣α− z

2

∣∣∣∣ . (1.1)

The following well-known result gives us the region which contains at least one critical point of the polynomial
f(z)

Theorem 1.5 (Grace-Heawood). Let f(z) =
∑n

v=0 avz
v be a polynomial of degree n ≥ 2. If z1, z2 ∈ C are any

two distinct points at which f takes the same value, then the disc

D(z1, z2, n) =

{
z ∈ C :

∣∣∣∣z − z1 + z2
2

∣∣∣∣ ≤ ∣∣∣∣z1 − z2
2

∣∣∣∣ cot πn
}

contains at least one zero of f ′(z).

2 Lemmas

In this part, we first prove the following lemma, which will be employed to establish our main results in the next
section.

Lemma 2.1. Let z1, z2, . . . , zn be n, not necessarily distinct points, but z1 comes only once. Let

γv =
λ1zv + (n− λ1)z1

n
, v = 2, 3, . . . , n.

where, 0 ≤ λ1 ≤ 1. Let M be an open disk or a half-plane containing z1 but none of the points γv, v = 2, 3, . . . , n.
Then M cannot contain any zero of Aγ

n(z).
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Proof . Let A(z) =
∏n

v=1(z − zv). We have γv /∈ M , v = 2, 3, . . . , n and z1 ∈ M . Let ξ be a zero of Aγ
n(z) but not of

A(z). Assume to the contrary that ξ ∈ M . Consider the mobius transformation

ϕ(z) =
λ1

λ1ξ + (n− λ1)z1 − nz
. (2.1)

The denominator of ϕ(z) vanishes at z = λ1

n ξ + (1− λ1

n )z1 ∈ M. Hence, ϕ(M c) is a disk D and ϕ(γv) ∈ D. Thus

their convex linear combination given by
∑n

v=2 λvϕ(γv)∑n
v=2 λv

∈ D, where λv ≥ 0 and
∑n

v=1 λv = 1. Hence there exits some

γ̂ ∈ M c, such that

ϕ(γ̂) =

∑n
v=2 λvϕ(γv)∑n

v=2 λv
.

Using equation (2.1) this gives us

λ1 (
∑n

v=2 λv)

λ1ξ + (x− λ1)z1 − nγ̂
=

n∑
v=2

λ1λv

λ1ξ + (x− λ1)z1 − nγv

=

n∑
v=2

λv

ξ − zv
.

This can be write as
λ1(1− λ1)

λ1ξ + (x− λ1)z1 − nγ̂
=

n∑
v=2

λv

ξ − zv
. (2.2)

Now, we can write

0 =
Aγ

n(ξ)

An(ξ)

=

n∑
v=1

λv

ξ − zv

=
λ1

ξ − z1
+

λ1(1− λ1)

λ1ξ + (x− λ1)z1
− nγ̂.

Simplify the above equation, we obtain γ̂ = (1 − 1
n )z1 + ξ

n . But M is a convex set, hence γ̂ ∈ M . This is a
contradiction, to the fact that γ̂ /∈ M . This proves the Lemma. □

3 Main Results

In this paper, we first prove the following result which provides a simple proof of Theorem 1.2 besides giving some
insight about the geometrical relationship between the points z1, z2, . . . , zn and the roots of Aγ

n(z) which is lacking in
the original proof as given in [3].

Theorem 3.1. Let z1, z2, . . . , zn denote n, not necessarily distinct, complex numbers. Then the polynomial

Aγ
n(z) =

n∑
k=1

γkgk(z), where gk(z) =

n∏
j=1
j ̸=k

(z − zj)

has all its roots inside or on the convex hull H(z1, z2, . . . , zn).

Remark 3.2. It follows from the proof of Theorem 3.1 that if ξ is a zero of Aγ
n(z) and not equal to any zv, then ξ

lies inside the convex hull H(z1, z2, . . . , zn). In other words any line passing through ξ separate the points zv, v =
1, 2, . . . , n.
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Our next result is an improvement of [4, Theorem 1.3], which in fact gives a smaller region than prescribed in
Theorem 1.3 containing all the zeros of Aγ

n(z).

Theorem 3.3. Let z1, z2, . . . , zn be n distinct complex numbers. Then the polynomial Aγ
n(z) =

∑n
k=1 λkgk(z) has

all its zeros in the convex hull of the points

βvµ =
λµzv + (n− λµ)zµ

n
, where v, µ ∈ {1, 2, . . . , n, v ̸= µ}. (3.1)

We next prove the following result which extends [5, Theorem 1.4] to generalized derivative.

Theorem 3.4. Let A(z) =
∏n

v=1(z − zv) be a polynomial of degree n and Aγ
n(ξ) = 0. Then for every given real or

complex number α, A(z) has at least one zero in each of the regions given by∣∣∣∣ξ − α+ z

2

∣∣∣∣ ≤ ∣∣∣∣α− z

2

∣∣∣∣ and

∣∣∣∣ξ − α+ z

2

∣∣∣∣ ≥ ∣∣∣∣α− z

2

∣∣∣∣ . (3.2)

Finally, we prove the following result, which provides a circular region which contains at least one zero of f ′(z)
under conditions similar to those of the Grace-Heawood Theorem [7].

Theorem 3.5. Let f(z) be a polynomial such that f(z1) = f(z2). Then f ′(z) has a zero in the circular region

|z − z1| ≥
|z1 − z2|

2
.

4 Proof of Theorems

Proof .[Proof of Theorem 3.1] Let A(z) =
∏n

v=1(z − zv). We can write

Aγ
n(z) = A(z)

Aγ
n(z)

A(z)
for A(z) ̸= 0

That is;
Aγ

n(z) = A(z)Bn(z) (4.1)

where

Bn(z) =
Aγ

n(z)

A(z)

=
1

A(z)

n∑
k=1

γkgk(z)

=

n∑
k=1

γk
z − zk

. (4.2)

The theorem is proved if we show that every half plane H containing all the zeros of A(z) also contains all the zeros
of Aγ

n(z). Assume that Aγ
n(ξ) = 0 and ξ /∈ H, where H is any half plane given by H = {z ∈ C / Re(eiαz) ≤ b}.

Since A(ξ) ̸= 0, we have Bn(ξ) = 0. Thus, from equation (4.2), we get

Bn(ξ) =

n∑
k=1

γk
ξ − zk

.
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Therefore, we can write

Re
(
e−iαBn(ξ)

)
= Re

(
e−iαBn(ξ)

)
=

n∑
k=1

γkRe

(
eiα

ξ − zk

)

=

n∑
k=1

γkRe

(
eiα(ξ − zk)

|ξ − zk|2

)

=

n∑
k=1

γkRe

(
(eiαξ − b)− (eiαzk − b)

|ξ − zk|2

)
.

This gives Re
(
e−iαBn(ξ)

)
> 0. That is Bn(ξ) ̸= 0, for all ξ /∈ H. Hence from equation (4.1), it follows that all the

zeros of Aγ
n(z) lie inside H unless all the zeros of A(z) lie on a line. □

Proof .[Proof of Theorem 3.3] We need to show that every closed half plane H containing all the points βvµ must
contain all the zeros of Aγ

n(z). If H contains all the points z1, z2, . . . , zn, then by Theorem 1.2, H also contains all
the zeros of Aγ

n(z). So we may assume some zero, say z1, is not contained in H. Then z1 can not coincide with any
other zv, v = 2, 3, . . . , n, because otherwise z1 coincides with some βvµ and hence cannot lie outside H. For µ = 1,
the points

βv1 =
λ1zv + (n− λ1)z1

n
, v = 2, 3, · · · , n

are all in Hc and z1 ∈ Hc. Hence by the Lemma (2.1), Hc contains no zero of Aγ
n(z). That is, all zeros of Aγ

n(z) lie
in H. This proves the theorem. □

Proof .[Proof of Theorem 3.4] We observe that the circular regions∣∣∣∣ξ − α+ z

2

∣∣∣∣ ≤
∣∣∣∣α− z

2

∣∣∣∣ and

∣∣∣∣ξ − α+ z

2

∣∣∣∣ ≥
∣∣∣∣α− z

2

∣∣∣∣
are respectively equivalent to the circular regions

|z − (2ξ − α)| ≤ |z − α| and |z − (2ξ − α)| ≥ |z − α|.

These two regions denote the right and left half-plane respectively formed by a line passing through ξ. The direction
of line depends on the points α. Since ξ is a zero of Aγ

n(z). Therefore by Remark 3.2 there are zeros of A(z) in both
the half-planes. This proves the result. □

Proof .[Proof of Theorem 3.5] Let f(z) be a polynomial of degree n ≥ 1. We first assume that f(0) = f(1). Let
f ′(z) = a0 + a1z + · · ·+ an−1z

n−1. Then we can write

0 = f(1)− f(0)

=

∫ 1

0

f ′(z)dz

=

[
a0z +

a1z
2

2
+ · · ·+ an−1z

n

n

]1
0

= a0 +
a1
2

+ · · ·+ an−1

n
. (4.3)

Consider the polynomial

g(z) = zn−1 −
(
n− 1

1

)
zn−2

2
+

(
n− 1

2

)
zn−3

3
− · · ·+ (−1)n−1 1

n
. (4.4)

Then from (4.3), it follows that the polynomial g(z) is apolar to f ′(z). Hence by Grace’s theorem every circular
domain containg all the zeros of g(z) also contains at least one zero of f ′(z). We first assume that n is odd. It is easy
to verify that (

m

k

)
1

k + 1
=

1

1 +m

(
m+ 1

k + 1

)
.
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We can write g(z) in the form given by

g(z) =
1

n

[
zn−1 −

(
n

2

)
zn−2 +

(
n

3

)
zn−3 − · · ·+

(
n

n

)]
=− 1

n

[
zn −

(
n

1

)
zn−1 +

(
n

2

)
zn−2 − · · ·

(
n

n

)
− zn

]
=− 1

n
[(1− z)

n − zn] .

The zeros of g(z) are given by the points

z =
1

2
,

1

1 + ω
,

1

1 + ω2
, . . . ,

1

1 + ωn−1

where 1, ω, ω2, · · · , ωn−1 are the n-th roots of unity. Since |ωv| = 1 for all v = 0, 1, 2, · · · , n − 1, it is easy to verify
that all the zeros of g(z) lie in |z| ≥ 1

2 . The same holds if we assume n is even. Hence, f ′(z) has at least one zero in
|z| ≥ 1

2 . In general, if f(z1) = f(z2) for any two distinct complex numbers z1 and z2, we consider the polynomial

g(z) = f [(z2 − z1)z + z1] .

Then g(1) = g(0). Hence, the derivative

g′(z) = (z2 − z1) f
′ [(z2 − z1)z + z1]

has at least one zero in |z| ≥ 1
2 . This implies that f ′(z) has at least one zero in the region

|z − z1| ≥
|z1 − z2|

2
.

This proves the theorem. □

5 Conclusion

In this paper, we present findings on the placement of zeros of generalized derivative of polynomials, drawing
parallels to those observed in the ordinary derivative of polynomials. Mathematicians have broadened the Gauss-
Lucas Theorem, a classic principle that deals with zero location of polynomials and their derivatives. The new work
deals with the location of zeros of incomplete polynomials and generalized derivatives, and also throws light upon the
location of zeros of a polynomial in half planes.
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