
تعداد نشریات | 21 |
تعداد شمارهها | 646 |
تعداد مقالات | 9,462 |
تعداد مشاهده مقاله | 68,261,502 |
تعداد دریافت فایل اصل مقاله | 47,782,229 |
Integrated high frequency RF circuit design using deep reinforcement learning via proximity policy optimization method | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 06 شهریور 1404 اصل مقاله (991.22 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34754.5198 | ||
نویسندگان | ||
Ali Khakshoor Shandiz؛ Abbas Golmakani* ؛ Amin Noori | ||
Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran | ||
تاریخ دریافت: 25 خرداد 1403، تاریخ بازنگری: 28 تیر 1403، تاریخ پذیرش: 13 مرداد 1403 | ||
چکیده | ||
The automatic design of analog circuits is a challenging task due to the high complexity of the design, which is caused by the search space and the sometimes conflicting parameters. In the article, a trial-and-error-based approach that combines reinforcement learning and deep neural networks is used to determine the values of circuit elements have been used. In methods based on reinforcement learning, the agent tries to act like an expert designer and maybe better than that by trial and error and using the information he gets from the environment. In this article, one of the latest methods of deep reinforcement learning called approximate policy optimization (PPO) is used. To show the efficiency of the above method, a cascaded LNA circuit is considered. And the voltages are determined by the learning agent to optimize the circuit design requirements such as gain, noise figure and power consumption. To train the learning agent in the reward function, two categories of adverbs have been included in such a way that the main goal is to optimize the gain and noise figure and the secondary goal is to focus on other requirements such as power consumption. The environment which is the amplifier circuit is simulated in the Hspice software in 0.18 micrometer technology from TSMC company at the frequency of 5.7 GHz and the learning agent is also defined in the MATLAB environment which has been able to design the values of the circuit elements by interacting with the environment. | ||
کلیدواژهها | ||
integrated circuit design؛ RF؛ deep reinforcement learning؛ PPO؛ LNA | ||
مراجع | ||
[1] M.V. Harsha and B.P. Harish, Artificial neural network model for design optimization of 2-stage op-amp, 24th Int. Symp. VLSI Design Test (VDAT), Bhubaneswar, India, 2020. [2] A. Anthony, C. Kyungwook, and L. Sung Kyu, VLSI placement parameter optimization using deep, 39th Int. Conf. Comput.-Aided Design, 2020. [3] S. Fujimoto, H. Hoof, and D. Meger, Addressing function approximation error in actor-critic methods, 5th Int. Conf. Machine Learn., 2018. [4] L. Gil, N.R. Marku, A.L. Edward, and A.S. Sanjit, Lwarning heuristics for quantified boolean, arXiv:1807.08058, Cornell University, 2019, https://doi.org/10.48550/arXiv.1807.08058. [5] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, Soft actor-critic algorithms and applications, 2019, https://arxiv.org/abs/1812.05905. [6] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. S¨usstrunk, and G.D. Micheli, Deep learning for logic optimization algorithms, IEEE Int. Symp. Circuits Syst. (ISCAS), Florence, 2018. [7] H. Dong, Z. Ding, and S. Zhang, Deep Reinforcement Learning, Springer Singapore, Singapore, 2020. [8] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, DRiLLS: Deep reinforcement learning for logic synthesis, 25th Asia South Pacific Design Autom. Conf. (ASP-DAC), Beijing, 2020. [9] G. Ian, B. Yoshua, and C. Aaron, Deep Learning, MIT Press, 2016. [10] Y. Li, Y. Wang, Y. Li, R. Zhou, and Z. Lin, An artificial neural network assisted optimization system for analog design space exploration, IEEE Trans. Comput.-Aided Design Integ. Circuits Syst. 39 (2020), no. 10, 2640–2653. [11] G.L. Michail and L.L. Michael, Learning to select branching rules in the DPLL procedure for satisfiability, Elec[1]tronic Notes Discrete Math. 9 (2001), 344–359. [12] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E.M. Songhori, S. Wang, and Y.J. Lee, Chip placement with deep reinforcement learning, 2020, https://doi.org/10.48550/arXiv.2004.10746. [13] A. Mirhoseini, H. Pham, Q.V. Le, B. Steiner, Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and J. Dean, Device placement optimization with reinforcement learning, 34th Int. Conf. Machine Learn., Sydney, 2017. [14] S.D. Murphy and K.G. McCarthy, Automated design of CMOS operational amplifier using a neural network, 32nd Irish Signals and Systems Conference (ISSC), Athlone, Ireland, 2021. [15] B. Razavi, Design of Analog CMOS, McGraw-Hill Education (2017). [16] B. Razavi, RF Microelectronics, Prentice Hall (1997). [17] J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. Moritz, Trust region policy optimization, 32nd Int. Conf. Machine Learn., 2015. [18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, 2017, https://arxiv.org/abs/1707.06347. [19] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic, AutoCkt: Deep reinforcement learning of analog circuit designs, Design Autom. Test Eur. Conf. Exhib. (DATE), Grenoble, 2020. [20] M. Sewak, Deep Reinforcement Learning-Frontiers of Artificial Intelligence, Springer, 2019. [21] R.S. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, 1992. [22] P.L. Timothy, J.H. Jonathan, P. Alexander, H. Nicolas, E. Tom, T. Yuval, S. David, and W. Daan, Continuous control with deep reinforcement learning, 4th. Int. ICLR (2016). [23] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.S. Lee, and S. Han, GCN-RL circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning, 57th ACM/IEEE Design Autom. Conf. (DAC), San Francisco, 2020. [24] H. Wang, J. Yang, H.S. Lee, and S. Han, Learning to design circuits, Cornell University, 2020, https://doi.org/10.48550/arXiv.1812.02734. [25] L. Yann, B. Yoshua, and H. Geoffrey, Deep learning-review, Nature 521 (2015), 436–444. [26] L. Yi-Chen, L. Jeehyun, A. Anthony, S. Kambiz, and L. Sung Kyu, A generative adversarial framework for clock tree prediction and optimization, ACM Int. Conf. Comput.-Aided Design (ICCAD’19), Westminster, 2019. [27] Z. Zhao and L. Zhang, Deep reinforcement learning for analog circuit sizing, IEEE Int. Symp. Circuits Syst., Seville, 2020. | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 1 |