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Abstract

Let A be a unital Banach ∗-algebra with unit 1, and X be a Banach ∗-A-bimodule. In this paper, we determining
continuous linear maps δ : A −→ X that satisfy one of the following conditions:

δ(x ⋄ y) = δ(x) ⋄ y,

δ(x ⋄ y ⋄ x) = δ(x) ⋄ y ⋄ x,

for all x, y ∈ A with xy = 1, where x ⋄ y = x∗y− y∗x. We also characterize continuous linear maps ϕ : A −→ B which
behave like homomorphisms at the identity products.
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1 Introduction and Preliminaries

Let A be an associative algebra over C and let X be an A-bimodule. A linear map δ : A −→ X is called a left
multiplier (right multiplier) if for all x, y ∈ A,

δ(xy) = δ(x)y,
(
δ(xy) = xδ(y)

)
,

and δ is called a multiplier if it is both left and right multiplier. If A is unital, then δ is a left multiplier if and only if
δ is of the form δ(x) = δ(1)x.

A linear map δ : A −→ X is called commuting map if [δ(x), x] = 0, for every x ∈ A, where [x, y] = xy − yx is the
Lie product.

Obviously, each multiplier is a commuting map; however, there exist commuting maps which are not multipliers.
Bresar [3] proved that every commuting additive map δ on a prime ring A is of the form

δ(x) = λx+ µ(x), x ∈ A,

where λ is an element in C, the extended centroid of A, and µ is an additive map from A into C. Recall that a ring
A is called prime if aAb = {0} implies that a = 0 or b = 0.
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A linear map δ is called a derivation if δ(xy) = δ(x)y + xδ(y), for all x, y ∈ A. Moreover, δ is called a Jordan
derivation if δ(x2) = δ(x)x+ xδ(x), for every x ∈ A.

We say that a map δ is a left multiplier at a given point w ∈ A, if

x, y ∈ A, xy = w =⇒ δ(xy) = δ(x)y. (1.1)

This type of map has been discussed by several authors. For example, it is shown [16] that if A is a unital C∗-
algebra, X is a unital Banach A-bimodule and δ : A −→ X is a continuous linear map satisfying (1.1) with w = 0, then
δ is a left multiplier. The same result was obtained [15] at the identity products. Left multiplier at zero product on a
prime ring studied in [4]. For characterization of linear maps, especially, multipliers, derivations and homomorphisms
at a given point w ∈ A, see for example [4, 6, 17, 18] and references therein.

Let A be a ∗-algebra. For x, y ∈ A, define [x, y]∗ = xy− yx∗ and x • y = xy+ yx∗ for skew Lie product and Jordan
∗-product, respectively. These products are fairly meaningful and important in some research topics, see [1, 8].

A linear map δ from ∗-algebra A into ∗-A-bimodule X is said to be a Jordan ∗-derivation or a skew Lie derivation
if δ is self-adjoint, i.e., δ(x∗) = δ(x)∗ and for all x, y ∈ A,

δ(x • y) = δ(x) • y + x • δ(y), or δ([x, y]∗) = [δ(x), y]∗ + [x, δ(y)]∗.

Furthermore, δ is called a Jordan triple ∗-derivation or a skew Lie triple derivation if

δ(x • y • z) = δ(x) • y • z + x • δ(y) • z + x • y • δ(z),

or
δ(
[
[x, y]∗, z

]
∗) =

[
[δ(x), y]∗, z

]
∗ +

[
[x, δ(y)]∗, z

]
∗ +

[
[x, y]∗, δ(z)

]
∗, (1.2)

for all x, y, z ∈ A. Yu and Zhang [13] proved that every nonlinear skew Lie derivation on factor von Neumann algebras
is an additive ∗-derivation. The analogous result was obtained for skew Lie triple derivation [7].

Taghavi et al. [11] proved that every nonlinear Jordan ∗-derivation between factor von Neumann algebras is an
additive ∗-derivation. Nonlinear Jordan triple ∗-derivation between von Neumann algebras is discussed in [14].

In [9], the authors introduced the new n-tuple product x ⋄ y = x∗y − y∗x, and then under certain conditions,
characterized maps that preserve the product a ⋄ b between factor von Neumann algebras are additive ∗-derivation.
The same authors in [10] proved that if A is a unital prime ∗-algebra that possesses a nontrivial projection and
δ : A −→ A is a nonlinear map which δ(α 1

2 ) is self-adjoint map for all α ∈ {1, i} and satisfies

δ(x ⋄ y ⋄ z) = δ(x) ⋄ y ⋄ z + x ⋄ δ(y) ⋄ z + x ⋄ y ⋄ δ(z),

for all x, y, z ∈ A, then δ is additive ∗-derivation.
Wang and Fei [12] proved that if A is a C∗-subalgebra of B, then every continuous linear map δ : A −→ B satisfying

(1.2), for all x, y, z ∈ A with xy = 1 and x = z is a ∗-derivation. Moreover, they studied Jordan ∗-homomorphism
between two unital C∗-algebras. See also [5], for more results concerning characterization of maps on C∗-algebras.

Motivated by these studies, in this paper, we consider the problem of determining a continuous linear map δ from
a Banach ∗-algebra A into a Banach ∗-A-bimodule X satisfying

x, y ∈ A, xy = 1 =⇒ δ(x ⋄ y) = δ(x) ⋄ y,

or
x, y, z ∈ A, xy = 1, z = x =⇒ δ(x ⋄ y ⋄ z) = δ(x) ⋄ y ⋄ z,

where x ⋄ y = x∗y− y∗x and x ⋄ y ⋄ z = (x ⋄ y) ⋄ z. We also investigate a continuous linear map ϕ : A −→ B satisfying
ϕ(x ⋄ y) = ϕ(x) ⋄ ϕ(y), for all x, y ∈ A with xy = 1.

Throughout this paper, A is a unital Banach ∗-algebra with unit 1, and X is a unital Banach ∗-A-bimodule. Recall
that an element a ∈ A is self-adjoint if a = a∗, and it is unitary if aa∗ = a∗a = 1. The set of all self-adjoint elements
in A will be denoted by Asa.
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2 Characterization of commuting maps

In this section, we characterize continuous linear maps on Banach ∗-algebras which behaving like multipliers at
the identity products. We commence with the following result.

Theorem 2.1. Let δ : A −→ X be a continuous linear map satisfying

x, y ∈ A, xy = 1 =⇒ δ(x ⋄ y) = δ(x) ⋄ y.

Then δ is a commuting ∗-map.

Proof . Put any a ∈ Asa, e
−ita is a unitary for each t ∈ R and e−ita ⋄ eita = e2ita − e−2ita. Thus, we have

δ(e2ita − e−2ita) = δ(e−ita ⋄ eita)
= δ(e−ita) ⋄ eita

= δ(e−ita)∗eita − e−itaδ(e−ita).

By taking derivative of above equation at t, we obtain that

δ(2ae2ita + 2ae−2ita) = δ(ae−ita)∗eita + δ(e−ita)∗aeita + ae−itaδ(e−ita) + e−itaδ(ae−ita). (2.1)

Taking t = 0 and a = 1 in (2.1), we conclude that δ(1) = δ(1)∗. Again put t = 0 in (2.1) and using δ(1) = δ(1)∗,
we arrive at

δ(a) = δ(a)∗, a ∈ Asa.

For each x ∈ A, there exist a, b ∈ Asa such that x = a+ ib. Hence,

δ(x∗) = δ(a)− iδ(b) = δ(x)∗.

Therefore, δ is self-adjoint. Taking derivative of (2.1) in t = 0 yields that

2δ(a)a+ δ(1)a2 = a2δ(1) + 2aδ(a) a ∈ Asa. (2.2)

Replacing a by a+ 1 in (2.2), we get
aδ(1) = δ(1)a, a ∈ Asa. (2.3)

From (2.2) and (2.3), we have
δ(a)a = aδ(a) a ∈ Asa.

Put any a, b ∈ Asa, then
δ(a)b+ δ(b)a = aδ(b) + bδ(a).

For any x ∈ A, there are a, b ∈ Asa such that x = a+ ib. So,

δ(x)x = δ(a)a− δ(b)b+ i
(
δ(a)b+ δ(b)a

)
= aδ(a)− bδ(b) + i

(
aδ(b) + bδ(a)

)
= xδ(x),

for all x ∈ A. Therefore, δ is a commuting ∗-map. □

From Theorem 2.1 and [3, Theorem A] we have the following result.

Corollary 2.2. Let δ : A −→ A be a continuous linear map satisfying

x, y ∈ A, xy = 1 =⇒ δ(x ⋄ y) = δ(x) ⋄ y.

If A is prime, then
δ(x) = λx+ µ(x), x ∈ A,

where λ is an element in C and µ is a continuous linear map from A into C.
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Theorem 2.3. Let δ : A −→ X be a continuous linear map satisfying

x, y ∈ A, xy = 1 =⇒ δ(x ⋄ y) = δ(x) ⋄ y − y ⋄ δ(x).

Then δ is a commuting ∗-map.

Proof . Let a ∈ Asa, and take x = e−ita and y = eita, for each t ∈ R. Then we have

δ(e2ita − e−2ita) = δ(e−ita ⋄ eita)
= δ(e−ita) ⋄ eita − eita ⋄ δ(e−ita)

= 2δ(e−ita)∗eita − 2e−itaδ(e−ita). (2.4)

It follows from (2.4) with t = 0 that δ(1) = δ(1)∗. By taking derivative of equation (2.4) at t, we obtain

δ(ae2ita + ae−2ita) = δ(ae−ita)∗eita + δ(e−ita)∗aeita + ae−itaδ(e−ita) + e−itaδ(ae−ita). (2.5)

Taking t = 0 and a = 1 in (2.5), we conclude that δ(1) = 0. Again put t = 0 in (2.5) and using δ(1) = 0, we get

δ(a) = δ(a)∗, a ∈ Asa.

Now one can show that δ(x∗) = δ(x)∗ for all x ∈ A. By taking derivative of equation (2.5) at t, we obtain

2δ(a2e2ita − a2e−2ita) = δ(a2e−ita)∗eita + 2δ(ae−ita)∗aeita + δ(e−ita)∗a2eita

− a2e−itaδ(e−ita)− 2ae−itaδ(ae−ita)− e−itaδ(a2e−ita). (2.6)

Taking t = 0 in (2.6), we get
δ(a)a = aδ(a), a ∈ Asa.

As in the proof of Theorem 2.1, we can see that δ(x)x = xδ(x), for all x ∈ A. □

The corollary below follows from Theorem 2.1 and [2, Theorem 2.1].

Corollary 2.4. Let A be a von Neumann algebra and δ : A −→ A be a continuous linear map satisfying

x, y ∈ A, xy = 1 =⇒ δ(x ⋄ y) = δ(x) ⋄ y − y ⋄ δ(x).

Then
δ(x) = cx+ µ(x), x ∈ A,

where c ∈ Z(A), the centre of A, and µ is a continuous linear map from A into Z(A).

It should be pointed out that in Corollary 2.4, in fact c = −µ(1). Indeed,

0 = δ(1) = c+ µ(1),

and so µ(x) = δ(x) + µ(1)x, for all x ∈ A.

3 Characterization of multipliers

This section devoted to the problem of characterizing continuous linear maps which are necessary ∗-multipliers.

Theorem 3.1. Let δ : A −→ X be a continuous linear map satisfying

x, y, z ∈ A, xy = 1, z = x =⇒ δ(x ⋄ y ⋄ z) = δ(x) ⋄ y ⋄ z.

Then
2δ(x) = xδ(1) + δ(1)x, x ∈ A.

Moreover, if
δ(1) ∈ Z(X) = {x ∈ X : ax = xa for all a ∈ A},

then δ is a ∗-multiplier.
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Proof . Put any a ∈ Asa, e
ita is a unitary for each t ∈ R and

eita ⋄ e−ita ⋄ eita = e3ita − e−ita − e−3ita + eita.

Therefore,

δ(e3ita − e−ita − e−3ita + eita) = δ(eita ⋄ e−ita ⋄ eita)
= δ(eita) ⋄ e−ita ⋄ eita

= eitaδ(eita)eita − δ(eita)∗ − e−itaδ(eita)∗e−ita + δ(eita). (3.1)

It follows from (3.1) with t = 0 that δ(1) = δ(1)∗. By taking derivative of equation (3.1) at t = 0 and noted that
δ(1) = δ(1)∗, we deduce that

3δ(a) = aδ(1) + δ(1)a+ δ(a)∗, a ∈ Asa. (3.2)

Since δ(1) is self-adjoint, from (3.2) we get

δ(a) = δ(a)∗, a ∈ Asa.

As in the proof of Theorem 2.1, we can see that δ(x∗) = δ(x)∗, for all x ∈ A. Now it follows from (3.2) that

2δ(a) = aδ(1) + δ(1)a, a ∈ Asa.

One can show that
2δ(x) = xδ(1) + δ(1)x, x ∈ A.

If δ(1) ∈ Z(X), then δ(x) = δ(1)x = xδ(1), and hence δ is a ∗-multiplier. □

It is clear that A′, the dual of A, is a Banach A-bimodule with the following module structures:

(f · a)b = f(ab), (a · f)b = f(ba), a, b ∈ A, f ∈ A′.

Therefore, if A is commutative, then f · a = a · f , and so we obtain the next result.

Corollary 3.2. Let δ : A −→ A′ be a continuous linear map. If A is commutative, then δ is a ∗-multiplier if and only
if

δ(x ⋄ y ⋄ x) = δ(x) ⋄ y ⋄ x,

for all x, y ∈ A with xy = 1.

Theorem 3.3. Let δ : A −→ X be a continuous linear map satisfying

δ(x ⋄ y ⋄ z) = δ(x) ⋄ y ⋄ z − x ⋄ δ(y) ⋄ z + x ⋄ y ⋄ δ(z),

for all x, y, z ∈ A with xy = 1, z = x. Then

2δ(x) = xδ(1) + δ(1)x, x ∈ A.

Moreover, if δ(1) ∈ Z(X), then δ is a ∗-multiplier.

Proof . Let a ∈ Asa, and take x = eita and y = e−ita. Then for each t ∈ R, we have

δ(e3ita − e−3ita + eita − e−ita) = eitaδ(eita)eita + δ(eita)− e−itaδ(eita)∗e−ita − δ(eita)∗

− δ(e−ita)∗e2ita + e−2itaδ(e−ita)−
(
e−itaδ(e−ita)∗ + e−itaδ(e−ita)

)
eita

+ (e2ita − e−2ita)δ(eita) + δ(eita)∗(e2ita − e−2ita). (3.3)

Taking t = 0 in (3.3), we conclude that δ(1) = δ(1)∗. By taking derivative of equation (3.3) at t = 0 and using
δ(1) = δ(1)∗, we arrive at

2δ(a) = δ(1)a+ aδ(1).
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Since δ(1) is self-adjoint, we get
δ(a) = δ(a)∗, a ∈ Asa.

The equality above imply that δ(x∗) = δ(x)∗, for all x ∈ A, and hence δ is self-adjoint. Now one can show that

2δ(x) = xδ(1) + δ(1)x, x ∈ A.

If δ(1) ∈ Z(X), then δ(x) = δ(1)x = xδ(1), and hence δ is a ∗-multiplier. □

4 Characterization of homomorphisms

In this section, we prove that there is no nonzero continuous linear map ϕ : A −→ B between Banach ∗-algebras
with the property that ϕ(x ⋄ y) = ϕ(x) ⋄ ϕ(y) for all x, y ∈ A with xy = 1.

Theorem 4.1. Let ϕ : A −→ B be a continuous linear map satisfying

x, y ∈ A, xy = 1 =⇒ ϕ(x ⋄ y) = ϕ(x) ⋄ ϕ(y).

Then ϕ is identically zero.

Proof . Put any a ∈ Asa, e
ita is a unitary for each t ∈ R. Therefore,

ϕ(e2ita − e−2ita) = ϕ(e−ita ⋄ eita)
= ϕ(e−ita)∗ϕ(eita)− ϕ(eita)∗ϕ(e−ita). (4.1)

By taking derivative of equation (4.1) at t, we obtain

2ϕ(ae2ita + ae−2ita) = ϕ(ae−ita)∗ϕ(eita) + ϕ(e−ita)∗ϕ(aeita) + ϕ(aeita)∗ϕ(e−ita) + ϕ(eita)∗ϕ(aeita). (4.2)

Taking t = 0 and a = 1 in (4.2), we thus get

ϕ(1) = ϕ(1)∗ϕ(1).

Therefore, ϕ(1) = ϕ(1)∗ and hence ϕ(1) is an idempotent in B. Put t = 0 in (4.2), we get

2ϕ(a) = ϕ(a)∗ϕ(1) + ϕ(1)ϕ(a). (4.3)

From (4.3), we arrive at
ϕ(a) = ϕ(a)∗, a ∈ Asa.

For any x ∈ A, there are a, b ∈ Asa such that x = a+ ib. So,

ϕ(x∗) = ϕ(a)− iϕ(b)∗ = ϕ(x)∗,

for all x ∈ A. Thus, ϕ is self-adjoint. Now it follows from (4.3) that

2ϕ(a) = ϕ(a)ϕ(1) + ϕ(1)ϕ(a). (4.4)

By taking derivative of equation (4.2) at t = 0, we obtain

ϕ(1)ϕ(a2) = 0, a ∈ Asa.

In particular, ϕ(1) = ϕ(1)ϕ(1) = 0, and thus by (4.4),

ϕ(a) = 0, a ∈ Asa.

Consequently, ϕ(x) = 0, for all x ∈ A. □
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Theorem 4.2. Let ϕ : A −→ B be a continuous linear map satisfying

x, y, z ∈ A, xy = 1, z = x =⇒ ϕ(x ⋄ y ⋄ z) = ϕ(x) ⋄ ϕ(y) ⋄ ϕ(z).

Then
4ϕ(x) = ϕ(x)ϕ(1)2 + 2ϕ(1)ϕ(x)ϕ(1) + ϕ(1)2ϕ(x), x ∈ A.

Moreover, if ϕ is surjective and ϕ(1) is idempotent, then ϕ(1) is the identy of B.

Proof . Let a ∈ Asa, x = eita and y = e−ita for each t ∈ R. Then

eita ⋄ e−ita ⋄ eita = e3ita − e−3ita + eita − e−ita.

Thus, we get

ϕ(e3ita − e−3ita + eita − e−ita) = ϕ(eita ⋄ e−ita ⋄ eita)
= ϕ(eita) ⋄ ϕ(e−ita) ⋄ ϕ(eita)
= ϕ(e−ita)∗ϕ(eita)ϕ(eita)− ϕ(eita)∗ϕ(e−ita)ϕ(eita)

− ϕ(eita)∗ϕ(eita)∗ϕ(e−ita) + ϕ(eita)∗ϕ(e−ita)∗ϕ(eita). (4.5)

By taking derivative of equation (4.5) at t = 0, we obtain

4ϕ(a) = ϕ(a)∗ϕ(1)ϕ(1) + ϕ(1)∗ϕ(a)ϕ(1) + ϕ(1)∗ϕ(a)∗ϕ(1) + ϕ(1)∗ϕ(1)∗ϕ(a). (4.6)

Put a = 1 in (4.6), to get
2ϕ(1) = ϕ(1)∗ϕ(1)ϕ(1) + ϕ(1)∗ϕ(1)∗ϕ(1).

Therefore, ϕ(1) = ϕ(1)∗ and so (4.6) imply that

4ϕ(a) = ϕ(a)∗ϕ(1)2 + ϕ(1)ϕ(a)ϕ(1) + ϕ(1)ϕ(a)∗ϕ(1) + ϕ(1)2ϕ(a). (4.7)

From (4.7), we deduce that
ϕ(a) = ϕ(a)∗, a ∈ Asa.

Thus, by (4.6) we obtain
4ϕ(a) = ϕ(a)ϕ(1)2 + 2ϕ(1)ϕ(a)ϕ(1) + ϕ(1)2ϕ(a).

For any x ∈ A, there are a, b ∈ Asa such that x = a+ ib. Hence

4ϕ(x) = ϕ(x)ϕ(1)2 + 2ϕ(1)ϕ(x)ϕ(1) + ϕ(1)2ϕ(x), x ∈ A. (4.8)

Now suppose that ϕ is surjective and ϕ(1) is an idempotent. By multiplying (4.8) on the left and right by ϕ(1),
respectively, we deduce

ϕ(1)ϕ(x) = ϕ(1)ϕ(x)ϕ(1),

ϕ(x)ϕ(1) = ϕ(1)ϕ(x)ϕ(1).

Therefore, ϕ(1) commutes with ϕ(x), for all x ∈ A. From (4.8), we get

ϕ(x) = ϕ(x)ϕ(1) = ϕ(1)ϕ(x), x ∈ A.

The surjectivity of ϕ now implies that ϕ(1) is the identy of B. □
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[3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.
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