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Abstract

Let A be a unital Banach x-algebra with unit 1, and X be a Banach *-A-bimodule. In this paper, we determining
continuous linear maps 0 : A — X that satisfy one of the following conditions:

§(zoy)=d(z)oy,

d(xzoyox)=4d(z)oyou,

for all z,y € A with xy = 1, where z oy = z*y — y*z. We also characterize continuous linear maps ¢ : A — B which
behave like homomorphisms at the identity products.
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1 Introduction and Preliminaries

Let A be an associative algebra over C and let X be an A-bimodule. A linear map § : A — X is called a left
multiplier (right multiplier) if for all x,y € A,

S(zy) = d(x)y, (d(zy) = xd(y)),
and 0 is called a multiplier if it is both left and right multiplier. If A is unital, then ¢ is a left multiplier if and only if
d is of the form §(z) = §(1)z.

A linear map 6 : A — X is called commuting map if [6(x), 2] = 0, for every x € A, where [x,y] = zy — yz is the
Lie product.

Obviously, each multiplier is a commuting map; however, there exist commuting maps which are not multipliers.
Bresar [3] proved that every commuting additive map § on a prime ring A is of the form

d(z) =+ p(z), ze€A,

where ) is an element in C, the extended centroid of A, and p is an additive map from A into C. Recall that a ring
A is called prime if aAb = {0} implies that ¢ =0 or b = 0.
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A linear map ¢ is called a derivation if 6(zy) = 0(x)y + zd(y), for all x,y € A. Moreover, 0 is called a Jordan
derivation if §(x?) = §(x)x + xd(x), for every x € A.

We say that a map ¢ is a left multiplier at a given point w € A, if

r,y€ A, zy=w = Jd(zy)=4d()y. (1.1)

This type of map has been discussed by several authors. For example, it is shown [I6] that if A is a unital C*-
algebra, X is a unital Banach A-bimodule and § : A — X is a continuous linear map satisfying with w = 0, then
0 is a left multiplier. The same result was obtained [15] at the identity products. Left multiplier at zero product on a
prime ring studied in [4]. For characterization of linear maps, especially, multipliers, derivations and homomorphisms
at a given point w € A, see for example [4] [0 [I'7, 18] and references therein.

Let A be a #-algebra. For z,y € A, define [z, y], = xy —ya* and z ey = zy + ya* for skew Lie product and Jordan
s-product, respectively. These products are fairly meaningful and important in some research topics, see [11 [§].

A linear map ¢ from *-algebra A into *-A-bimodule X is said to be a Jordan *-derivation or a skew Lie derivation
if 0 is self-adjoint, i.e., 6(z*) = 6(z)* and for all z,y € A,

d(zey)=0d(x)ey+xed(y), or i([z,yl)=I[0(2)yl + [z, (y)]..
Furthermore, 0 is called a Jordan triple *-derivation or a skew Lie triple derivation if
Sweyez)=d(x)eyeztuedly)estuzoyedls),
or

6([[$7y]*’z]*) = [[6(1‘)79}*72:]* + [[x,&(y)]*,z}* + [[m,y]*,é(z)]*7 (1.2)

for all z,y,z € A. Yu and Zhang [I3] proved that every nonlinear skew Lie derivation on factor von Neumann algebras
is an additive #-derivation. The analogous result was obtained for skew Lie triple derivation [7].

Taghavi et al. [TI] proved that every nonlinear Jordan #-derivation between factor von Neumann algebras is an
additive *-derivation. Nonlinear Jordan triple *-derivation between von Neumann algebras is discussed in [14].

In [9], the authors introduced the new n-tuple product z ¢y = z*y — y*z, and then under certain conditions,
characterized maps that preserve the product a ¢ b between factor von Neumann algebras are additive *-derivation.
The same authors in [I0] proved that if A is a unital prime *-algebra that possesses a nontrivial projection and
§: A — A'is a nonlinear map which 6(a1) is self-adjoint map for all a € {1,4} and satisfies

droyoz)=dx)oyozt+aod(y)oz+zoyod(z),

for all x,y,z € A, then § is additive x-derivation.

Wang and Fei [12] proved that if A is a C*-subalgebra of B, then every continuous linear map 6 : A — B satisfying
(1.2), for all z,y,z € A with zy = 1 and & = z is a *-derivation. Moreover, they studied Jordan *-homomorphism
between two unital C*-algebras. See also [B], for more results concerning characterization of maps on C*-algebras.

Motivated by these studies, in this paper, we consider the problem of determining a continuous linear map § from
a Banach x-algebra A into a Banach %-A-bimodule X satisfying
rayeA wxy=1 = dxzoy)=4dx)oy,
or
r,y,2€ A, azy=lz=2 = dlxoyoz)=0d0(x)oyocz
where zoy = x*y —y*r and x oy oz = (zoy) o 2. We also investigate a continuous linear map ¢ : A — B satisfying
d(xoy) = d(x) o d(y), for all z,y € A with xy = 1.

Throughout this paper, A is a unital Banach %-algebra with unit 1, and X is a unital Banach *-A-bimodule. Recall
that an element a € A is self-adjoint if a = a*, and it is unitary if aa* = a*a = 1. The set of all self-adjoint elements
in A will be denoted by Ag,.
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2 Characterization of commuting maps

In this section, we characterize continuous linear maps on Banach x-algebras which behaving like multipliers at
the identity products. We commence with the following result.

Theorem 2.1. Let 6 : A — X be a continuous linear map satisfying

zycA azy=1 = Jd(xoy) =d(x)oy.

Then § is a commuting *-map.

2ita

Proof . Put any a € A,,, e~ is a unitary for each ¢t € R and e~ #?% ¢ ¢ = ¢ — e~ 2% Thus, we have

5(€2ita o 672“0') _ 5(67“& Oeita)
_ 5(€7ita) <>eita
_ 5(e—ita)*eita o e—ita(s(e—ita)
By taking derivative of above equation at ¢, we obtain that

5(2a62ita + 20,672”0') — 6(a67ita)*6ita +5(67ita)*aeita + aefitaé*(efita) +67ita5(a€7ita). (21)

Taking t = 0 and a = 1 in (2.1)), we conclude that §(1) = 6(1)*. Again put ¢t = 0 in (2.1)) and using §(1) = §(1)*,
we arrive at

d(a) =d(a)", a€ Ag.
For each x € A, there exist a,b € A, such that x = a + ib. Hence,
0(z*) = d(a) —i0(b) = d(z)™.
Therefore, § is self-adjoint. Taking derivative of (2.1]) in ¢ = 0 yields that

20(a)a + 6(1)a® = a®5(1) +2ad(a) a € Ay,. (2.2)
Replacing a by a + 1 in (2.2), we get
From (2.2) and (2.3)), we have
Put any a,b € Ay, then
d(a)b+ d(b)a = ad(b) + bé(a).

For any x € A, there are a,b € A, such that z = a + ib. So,

§(z)z = d(a)a — 8(b)b+1i(6(a)b+ 6(b)a)
§(a) — b6(b) + i(ad(b) + bd(a))

for all x € A. Therefore, § is a commuting *x-map. [
From Theorem and [3, Theorem A] we have the following result.
Corollary 2.2. Let 6 : A — A be a continuous linear map satisfying

ryed, wzy=1 = d(zoy) =d(x)oy.

If A is prime, then
d(z) =+ p(z), =z€A,

where X is an element in C and p is a continuous linear map from A into C.
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Theorem 2.3. Let 6 : A — X be a continuous linear map satisfying
r,yeA wxy=1 = dxoy)=4dx)oy—yod(x).
Then § is a commuting *-map.

Proof . Let a € A,,, and take x = e~ *® and y = €'?, for each t € R. Then we have

5(621'15(1 _ 721ta) 5( 7zta zta)
— 6( zta) ita 05( 7ita)
— 25( 77,ta)*ezta _ 7zta§( 7zta) (24)

It follows from (2.4) with ¢t = 0 that §(1) = 6(1)*. By taking derivative of equation (2.4)) at ¢, we obtain
5(0‘,62“& + a672ita) _ 5(a67ita)*eita + (5(67#0’)*&6%0’ + aefitaa(efita) + efita(;(aefita). (25)

Taking ¢t =0 and @ = 1 in (2.5, we conclude that (1) = 0. Again put ¢ =0 in (2.5) and using 6(1) = 0, we get
0(a) =6(a)*, a€ Ag.
Now one can show that §(z*) = §(x)* for all z € A. By taking derivative of equation (2.5) at ¢, we obtain
25(a262ita o a2€72ita) _ 5(a267ita)*6ita + 26(0,67“0’)*0,6”0’ + 5(67ita)*a2€ita
o a267ita5(efita) o 2a67ita5(a€7ita) o eiitaé(azefita), (26)

Taking ¢t = 0 in (2.6)), we get

d(a)a =ad(a), a€ Ag.
As in the proof of Theorem we can see that é(z)x = zd(x), for all z € A. O
The corollary below follows from Theorem and [2] Theorem 2.1].

Corollary 2.4. Let A be a von Neumann algebra and § : A — A be a continuous linear map satisfying
z,y€e A, zy=1 = d(xzoy)=dx)oy—yod(x).

Then
d(z) =cx+plx), x€A,

where ¢ € Z(A), the centre of A, and p is a continuous linear map from A into Z(A).
It should be pointed out that in Corollary in fact ¢ = —p(1). Indeed,
0= 6(1) = ¢+ u(1),
and so p(x) = 0(z) + p(1)z, for all x € A.

3 Characterization of multipliers

This section devoted to the problem of characterizing continuous linear maps which are necessary *-multipliers.

Theorem 3.1. Let 6 : A — X be a continuous linear map satisfying

x,y,2€A, wzy=lz=x = J(zoycz)=0dx)oyoz.

Then
20(z) =26(1) +0(1)z, =€ A

Moreover, if
0(1)e Z(X)={zx € X : ax =xa for all a € A},

then ¢ is a *x-multiplier.
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Proof . Put any a € A,,, €' is a unitary for each ¢t € R and

ezta Oe—zta <>€nia — 63125(1 _ e—zta _ e—Szta + ezta.

Therefore,
6(€3ita _ efita _ 673ita 4 eita) — 5(6ita Oefita <>eita)
— 5(6ita) o efita o 6ita
—_ eita(s(eita)eita o 6(eita)* o efita(;(eita)*efita + 5(6ita). (31)
It follows from (3.1)) with ¢ = 0 that §(1) = 6(1)*. By taking derivative of equation (3.1)) at ¢ = 0 and noted that
0(1) = 46(1)*, we deduce that
30(a) =ad(1) +6(L)a+d(a)*, a€ As. (3.2)
Since §(1) is self-adjoint, from (3.2) we get

d(a) =0(a)", a€ Ag.

As in the proof of Theorem [2.1] we can see that §(z*) = §(z)*, for all z € A. Now it follows from (3.2]) that

20(a) =ad(l)+d6(l)a, a€ Ag,.

One can show that
20(z) =206(1) +0(1)z, =€ A

If §(1) € Z(X), then §(z) = §(1)x = z6(1), and hence ¢ is a *-multiplier. O
It is clear that A’, the dual of A, is a Banach A-bimodule with the following module structures:

(fa)b:f(ab)7 (af)b:f(ba)a a,beA,fEA/.
Therefore, if A is commutative, then f-a = a- f, and so we obtain the next result.

Corollary 3.2. Let § : A — A’ be a continuous linear map. If A is commutative, then ¢ is a *-multiplier if and only

! d(xoyox)=d(x)oyoux,

for all z,y € A with zy = 1.

Theorem 3.3. Let 6 : A — X be a continuous linear map satisfying
d(xoyoz)=d(x)oyoz—xzod(y)ozt+azoyod(z),

for all x,y,z € A with xy =1,z = 2. Then

20(z) =26(1) +6(L)z, z € A.
Moreover, if §(1) € Z(X), then ¢ is a x-multiplier.

Proof . Let a € A,,, and take x = € and y = e~ "%, Then for each t € R, we have
6(63ita _ 673ita 4 6ita _ 67ita) —_ eitaé(eita)eita + 5(eita) o 67ita6(eita)*efita o 5(6ita)*
o 5(67ita)*e2ita + ef2ita6(efita) o (efita[;(efita)* + efita(;(efita))eita
4 (e2ita o 672”(1)6(6““) + 5(6ita)*(e2ita o 672ita). (33)
Taking ¢t = 0 in (3.3]), we conclude that §(1) = §(1)*. By taking derivative of equation (3.3)) at ¢ = 0 and using

5(1) = 6(1)*, we arrive at
26(a) =6(1)a + ad(1).
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Since §(1) is self-adjoint, we get
0(a) =6(a)*, a€ Ag.

The equality above imply that 6(z*) = é(x)*, for all x € A, and hence § is self-adjoint. Now one can show that

20(x) =x0(1) +d(1)x, z€ A

If 6(1) € Z(X), then §(z) = 6(1)z = (1), and hence ¢ is a x-multiplier. [J

4 Characterization of homomorphisms

In this section, we prove that there is no nonzero continuous linear map ¢ : A — B between Banach x-algebras
with the property that ¢(x o y) = ¢(z) ¢ #(y) for all z,y € A with zy = 1.

Theorem 4.1. Let ¢ : A — B be a continuous linear map satisfying
ny€A, ay=1 = d(@oy) =)o (y).
Then ¢ is identically zero.

Proof . Put any a € A,,, €' is a unitary for each ¢t € R. Therefore,
(b(eQita _ e—Qita) _ d)(e—ita o eita)

_ ¢(e—ita)*¢(eita) _ ¢(eita)*¢(e—ita). (41)
By taking derivative of equation at t, we obtain
2¢(a62ita 4 a€72ita) — ¢(a67ita)*¢(eita) 4 (b(efita)*qﬁ(aeita) 4 d)(aeita)*(b(efita) 4 d)(eita)*qs(aeita). (42)

Taking t =0 and @ = 1 in (4.2]), we thus get

Therefore, ¢(1) = ¢(1)* and hence ¢(1) is an idempotent in B. Put ¢ = 0 in (4.2), we get
2¢(a) = ¢(a)* (1) + ¢(1)¢(a). (4.3)

From (4.3]), we arrive at
¢(a) = gf)(a)*, a € Agq.

For any x € A, there are a,b € A, such that x = a + ib. So,
p(z") = ¢(a) —ip(b)" = o(x)",
for all x € A. Thus, ¢ is self-adjoint. Now it follows from that
2¢(a) = ¢(a)o(1) + ¢(1)¢(a). (4.4)

By taking derivative of equation (4.2)) at ¢ = 0, we obtain

In particular, ¢(1) = ¢(1)¢(1) = 0, and thus by (4.4),
pla) =0, a€ Ag.

Consequently, ¢(z) =0, for all x € A. O
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Theorem 4.2. Let ¢ : A — B be a continuous linear map satisfying
r,y,z€A, wzy=lz=2 = ¢xoyoz)=7d(x)ooy) o d(z).

Then
4p(x) = (x)p(1)* + 20(1)p(2)p(1) + ¢(1)*4(z), z € A.

Moreover, if ¢ is surjective and ¢(1) is idempotent, then ¢(1) is the identy of B.

Proof . Let a € Ay, x = € and y = e~ for each t € R. Then

ezta o e—zta o ezta _ e3zta _ e—Szta + ezta _ e—lt{l.

Thus, we get
¢(e3ita _ 673ita + eita _ efita) — ¢(eita Oefita <>eita)
= 9(e") 0 Ble ") 0 p(e™)
— ¢(€7ita)*¢(6ita)¢(6ita) o ¢(6ita)*¢(€7ita)¢(6ita)

o gb(eim)*gb(eim)*gb(e*im) + ¢(eita)*¢(67im)*¢(6ita).

By taking derivative of equation at t = 0, we obtain
A¢(a) = ¢(a)"d(1)d(1) + ¢(1)"d(a)p(1) + ¢(1)"d(a) ¢(1) + (1) (1) " d(a).

Puta=11in 7 to get
20(1) = ¢(1)"¢(1)o(1) + ¢(1)"p(1)*(1).

Therefore, ¢(1) = ¢(1)* and so (4.6) imply that
4g(a) = ¢(a)*¢(1)* + ¢(1)p(a)d(1) + ¢(1)¢(a)* ¢(1) + ¢(1)*¢(a).
From , we deduce that

Thus, by we obtain
4¢(a) = ¢(a)p(1)* + 20(1)é(a)p(1) + 6(1)*é(a).

For any x € A, there are a,b € Ag, such that z = a + ib. Hence

46(z) = ¢(2)¢(1)* + 26(1)p(2)d(1) + ¢(1)*4(x), x € A.

(4.8)

Now suppose that ¢ is surjective and ¢(1) is an idempotent. By multiplying (4.8) on the left and right by ¢(1),

respectively, we deduce

6(z) = 6(2)6(1) = p()o(a), = € A,

The surjectivity of ¢ now implies that ¢(1) is the identy of B. O
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