ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2025.34300.5120

Maps on Banach *-algebras acting at the identity products

Abbas Zivari-Kazempour*, Ahmad Minapoor

Department of Mathematics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran

(Communicated by Ali Jabbari)

Abstract

Let A be a unital Banach *-algebra with unit 1, and X be a Banach *-A-bimodule. In this paper, we determining continuous linear maps $\delta: A \longrightarrow X$ that satisfy one of the following conditions:

$$\delta(x \diamond y) = \delta(x) \diamond y,$$

$$\delta(x \diamond y \diamond x) = \delta(x) \diamond y \diamond x,$$

for all $x, y \in A$ with xy = 1, where $x \diamond y = x^*y - y^*x$. We also characterize continuous linear maps $\phi : A \longrightarrow B$ which behave like homomorphisms at the identity products.

Keywords: Commuting map, Multiplier, self-adjoint, Banach *-algebra

2020 MSC: Primary 46L05; Secondary 47B47, 15A86

1 Introduction and Preliminaries

Let A be an associative algebra over $\mathbb C$ and let X be an A-bimodule. A linear map $\delta: A \longrightarrow X$ is called a *left multiplier* (right multiplier) if for all $x, y \in A$,

$$\delta(xy) = \delta(x)y, \quad (\delta(xy) = x\delta(y)),$$

and δ is called a *multiplier* if it is both left and right multiplier. If A is unital, then δ is a left multiplier if and only if δ is of the form $\delta(x) = \delta(1)x$.

A linear map $\delta: A \longrightarrow X$ is called *commuting map* if $[\delta(x), x] = 0$, for every $x \in A$, where [x, y] = xy - yx is the Lie product.

Obviously, each multiplier is a commuting map; however, there exist commuting maps which are not multipliers. Bresar [3] proved that every commuting additive map δ on a prime ring A is of the form

$$\delta(x) = \lambda x + \mu(x), \quad x \in A,$$

where λ is an element in C, the extended centroid of A, and μ is an additive map from A into C. Recall that a ring A is called *prime* if $aAb = \{0\}$ implies that a = 0 or b = 0.

Email addresses: zivari@abru.ac.ir, zivari6526@gmail.com (Abbas Zivari-Kazempour), shp_np@yahoo.com (Ahmad Minapoor)

Received: May 2024 Accepted: January 2025

^{*}Corresponding author

A linear map δ is called a *derivation* if $\delta(xy) = \delta(x)y + x\delta(y)$, for all $x, y \in A$. Moreover, δ is called a *Jordan derivation* if $\delta(x^2) = \delta(x)x + x\delta(x)$, for every $x \in A$.

We say that a map δ is a *left multiplier* at a given point $w \in A$, if

$$x, y \in A, \quad xy = w \implies \delta(xy) = \delta(x)y.$$
 (1.1)

This type of map has been discussed by several authors. For example, it is shown [16] that if A is a unital C^* -algebra, X is a unital Banach A-bimodule and $\delta: A \longrightarrow X$ is a continuous linear map satisfying (1.1) with w = 0, then δ is a left multiplier. The same result was obtained [15] at the identity products. Left multiplier at zero product on a prime ring studied in [4]. For characterization of linear maps, especially, multipliers, derivations and homomorphisms at a given point $w \in A$, see for example [4, 6, 17, 18] and references therein.

Let A be a *-algebra. For $x, y \in A$, define $[x, y]_* = xy - yx^*$ and $x \bullet y = xy + yx^*$ for skew Lie product and Jordan *-product, respectively. These products are fairly meaningful and important in some research topics, see [1, 8].

A linear map δ from *-algebra A into *-A-bimodule X is said to be a Jordan *-derivation or a skew Lie derivation if δ is self-adjoint, i.e., $\delta(x^*) = \delta(x)^*$ and for all $x, y \in A$,

$$\delta(x \bullet y) = \delta(x) \bullet y + x \bullet \delta(y), \text{ or } \delta([x, y]_*) = [\delta(x), y]_* + [x, \delta(y)]_*.$$

Furthermore, δ is called a Jordan triple *-derivation or a skew Lie triple derivation if

$$\delta(x \bullet y \bullet z) = \delta(x) \bullet y \bullet z + x \bullet \delta(y) \bullet z + x \bullet y \bullet \delta(z),$$

or

$$\delta(\left[[x,y]_*,z\right]_*) = \left[\left[\delta(x),y\right]_*,z\right]_* + \left[[x,\delta(y)]_*,z\right]_* + \left[[x,y]_*,\delta(z)\right]_*,\tag{1.2}$$

for all $x, y, z \in A$. Yu and Zhang [13] proved that every nonlinear skew Lie derivation on factor von Neumann algebras is an additive *-derivation. The analogous result was obtained for skew Lie triple derivation [7].

Taghavi et al. [11] proved that every nonlinear Jordan *-derivation between factor von Neumann algebras is an additive *-derivation. Nonlinear Jordan triple *-derivation between von Neumann algebras is discussed in [14].

In [9], the authors introduced the new *n*-tuple product $x \diamond y = x^*y - y^*x$, and then under certain conditions, characterized maps that preserve the product $a \diamond b$ between factor von Neumann algebras are additive *-derivation. The same authors in [10] proved that if A is a unital prime *-algebra that possesses a nontrivial projection and $\delta: A \longrightarrow A$ is a nonlinear map which $\delta(\alpha \frac{1}{2})$ is self-adjoint map for all $\alpha \in \{1, i\}$ and satisfies

$$\delta(x \diamond y \diamond z) = \delta(x) \diamond y \diamond z + x \diamond \delta(y) \diamond z + x \diamond y \diamond \delta(z),$$

for all $x, y, z \in A$, then δ is additive *-derivation.

Wang and Fei [12] proved that if A is a C^* -subalgebra of B, then every continuous linear map $\delta:A\longrightarrow B$ satisfying (1.2), for all $x,y,z\in A$ with xy=1 and x=z is a *-derivation. Moreover, they studied Jordan *-homomorphism between two unital C^* -algebras. See also [5], for more results concerning characterization of maps on C^* -algebras.

Motivated by these studies, in this paper, we consider the problem of determining a continuous linear map δ from a Banach *-Algebra A into a Banach *-A-bimodule X satisfying

$$x, y \in A$$
, $xy = 1 \implies \delta(x \diamond y) = \delta(x) \diamond y$,

or

$$x,y,z\in A, \quad xy=1,z=x \implies \delta(x\diamond y\diamond z)=\delta(x)\diamond y\diamond z,$$

where $x \diamond y = x^*y - y^*x$ and $x \diamond y \diamond z = (x \diamond y) \diamond z$. We also investigate a continuous linear map $\phi: A \longrightarrow B$ satisfying $\phi(x \diamond y) = \phi(x) \diamond \phi(y)$, for all $x, y \in A$ with xy = 1.

Throughout this paper, A is a unital Banach *-algebra with unit 1, and X is a unital Banach *-A-bimodule. Recall that an element $a \in A$ is self-adjoint if $a = a^*$, and it is unitary if $aa^* = a^*a = 1$. The set of all self-adjoint elements in A will be denoted by A_{sa} .

2 Characterization of commuting maps

In this section, we characterize continuous linear maps on Banach *-algebras which behaving like multipliers at the identity products. We commence with the following result.

Theorem 2.1. Let $\delta: A \longrightarrow X$ be a continuous linear map satisfying

$$x, y \in A$$
, $xy = 1 \implies \delta(x \diamond y) = \delta(x) \diamond y$.

Then δ is a commuting *-map.

Proof. Put any $a \in A_{sa}$, e^{-ita} is a unitary for each $t \in \mathbb{R}$ and $e^{-ita} \diamond e^{ita} = e^{2ita} - e^{-2ita}$. Thus, we have

$$\begin{split} \delta(e^{2ita} - e^{-2ita}) &= \delta(e^{-ita} \diamond e^{ita}) \\ &= \delta(e^{-ita}) \diamond e^{ita} \\ &= \delta(e^{-ita})^* e^{ita} - e^{-ita} \delta(e^{-ita}). \end{split}$$

By taking derivative of above equation at t, we obtain that

$$\delta(2ae^{2ita} + 2ae^{-2ita}) = \delta(ae^{-ita})^*e^{ita} + \delta(e^{-ita})^*ae^{ita} + ae^{-ita}\delta(e^{-ita}) + e^{-ita}\delta(ae^{-ita}). \tag{2.1}$$

Taking t=0 and a=1 in (2.1), we conclude that $\delta(1)=\delta(1)^*$. Again put t=0 in (2.1) and using $\delta(1)=\delta(1)^*$, we arrive at

$$\delta(a) = \delta(a)^*, \quad a \in A_{sa}.$$

For each $x \in A$, there exist $a, b \in A_{sa}$ such that x = a + ib. Hence,

$$\delta(x^*) = \delta(a) - i\delta(b) = \delta(x)^*.$$

Therefore, δ is self-adjoint. Taking derivative of (2.1) in t=0 yields that

$$2\delta(a)a + \delta(1)a^2 = a^2\delta(1) + 2a\delta(a) \quad a \in A_{sa}. \tag{2.2}$$

Replacing a by a + 1 in (2.2), we get

$$a\delta(1) = \delta(1)a, \quad a \in A_{sa}. \tag{2.3}$$

From (2.2) and (2.3), we have

$$\delta(a)a = a\delta(a) \quad a \in A_{sa}.$$

Put any $a, b \in A_{sa}$, then

$$\delta(a)b + \delta(b)a = a\delta(b) + b\delta(a).$$

For any $x \in A$, there are $a, b \in A_{sa}$ such that x = a + ib. So,

$$\delta(x)x = \delta(a)a - \delta(b)b + i(\delta(a)b + \delta(b)a)$$

= $a\delta(a) - b\delta(b) + i(a\delta(b) + b\delta(a))$
= $x\delta(x)$.

for all $x \in A$. Therefore, δ is a commuting *-map. \square

From Theorem 2.1 and [3, Theorem A] we have the following result.

Corollary 2.2. Let $\delta: A \longrightarrow A$ be a continuous linear map satisfying

$$x, y \in A, \quad xy = 1 \implies \delta(x \diamond y) = \delta(x) \diamond y.$$

If A is prime, then

$$\delta(x) = \lambda x + \mu(x), \quad x \in A,$$

where λ is an element in C and μ is a continuous linear map from A into C.

Theorem 2.3. Let $\delta: A \longrightarrow X$ be a continuous linear map satisfying

$$x, y \in A$$
, $xy = 1 \implies \delta(x \diamond y) = \delta(x) \diamond y - y \diamond \delta(x)$.

Then δ is a commuting *-map.

Proof. Let $a \in A_{sa}$, and take $x = e^{-ita}$ and $y = e^{ita}$, for each $t \in \mathbb{R}$. Then we have

$$\delta(e^{2ita} - e^{-2ita}) = \delta(e^{-ita} \diamond e^{ita})$$

$$= \delta(e^{-ita}) \diamond e^{ita} - e^{ita} \diamond \delta(e^{-ita})$$

$$= 2\delta(e^{-ita})^* e^{ita} - 2e^{-ita}\delta(e^{-ita}). \tag{2.4}$$

It follows from (2.4) with t=0 that $\delta(1)=\delta(1)^*$. By taking derivative of equation (2.4) at t, we obtain

$$\delta(ae^{2ita} + ae^{-2ita}) = \delta(ae^{-ita})^*e^{ita} + \delta(e^{-ita})^*ae^{ita} + ae^{-ita}\delta(e^{-ita}) + e^{-ita}\delta(ae^{-ita}). \tag{2.5}$$

Taking t=0 and a=1 in (2.5), we conclude that $\delta(1)=0$. Again put t=0 in (2.5) and using $\delta(1)=0$, we get

$$\delta(a) = \delta(a)^*, \quad a \in A_{sa}.$$

Now one can show that $\delta(x^*) = \delta(x)^*$ for all $x \in A$. By taking derivative of equation (2.5) at t, we obtain

$$2\delta(a^{2}e^{2ita} - a^{2}e^{-2ita}) = \delta(a^{2}e^{-ita})^{*}e^{ita} + 2\delta(ae^{-ita})^{*}ae^{ita} + \delta(e^{-ita})^{*}a^{2}e^{ita} - a^{2}e^{-ita}\delta(e^{-ita}) - 2ae^{-ita}\delta(ae^{-ita}) - e^{-ita}\delta(a^{2}e^{-ita}).$$
(2.6)

Taking t = 0 in (2.6), we get

$$\delta(a)a = a\delta(a), \quad a \in A_{sa}.$$

As in the proof of Theorem 2.1, we can see that $\delta(x)x = x\delta(x)$, for all $x \in A$. \square

The corollary below follows from Theorem 2.1 and [2, Theorem 2.1].

Corollary 2.4. Let A be a von Neumann algebra and $\delta: A \longrightarrow A$ be a continuous linear map satisfying

$$x, y \in A$$
, $xy = 1 \implies \delta(x \diamond y) = \delta(x) \diamond y - y \diamond \delta(x)$.

Then

$$\delta(x) = cx + \mu(x), \quad x \in A,$$

where $c \in Z(A)$, the centre of A, and μ is a continuous linear map from A into Z(A).

It should be pointed out that in Corollary 2.4, in fact $c = -\mu(1)$. Indeed,

$$0 = \delta(1) = c + \mu(1),$$

and so $\mu(x) = \delta(x) + \mu(1)x$, for all $x \in A$.

3 Characterization of multipliers

This section devoted to the problem of characterizing continuous linear maps which are necessary *-multipliers.

Theorem 3.1. Let $\delta: A \longrightarrow X$ be a continuous linear map satisfying

$$x, y, z \in A, \quad xy = 1, z = x \implies \delta(x \diamond y \diamond z) = \delta(x) \diamond y \diamond z.$$

Then

$$2\delta(x) = x\delta(1) + \delta(1)x, \quad x \in A.$$

Moreover, if

$$\delta(1) \in Z(X) = \{x \in X : ax = xa \text{ for all } a \in A\},$$

then δ is a *-multiplier.

Proof. Put any $a \in A_{sa}$, e^{ita} is a unitary for each $t \in \mathbb{R}$ and

$$e^{ita} \diamond e^{-ita} \diamond e^{ita} = e^{3ita} - e^{-ita} - e^{-3ita} + e^{ita}$$

Therefore,

$$\delta(e^{3ita} - e^{-ita} - e^{-3ita} + e^{ita}) = \delta(e^{ita} \diamond e^{-ita} \diamond e^{ita})$$

$$= \delta(e^{ita}) \diamond e^{-ita} \diamond e^{ita}$$

$$= e^{ita} \delta(e^{ita}) e^{ita} - \delta(e^{ita})^* - e^{-ita} \delta(e^{ita})^* e^{-ita} + \delta(e^{ita}). \tag{3.1}$$

It follows from (3.1) with t = 0 that $\delta(1) = \delta(1)^*$. By taking derivative of equation (3.1) at t = 0 and noted that $\delta(1) = \delta(1)^*$, we deduce that

$$3\delta(a) = a\delta(1) + \delta(1)a + \delta(a)^*, \quad a \in A_{sa}. \tag{3.2}$$

Since $\delta(1)$ is self-adjoint, from (3.2) we get

$$\delta(a) = \delta(a)^*, \quad a \in A_{sa}.$$

As in the proof of Theorem 2.1, we can see that $\delta(x^*) = \delta(x)^*$, for all $x \in A$. Now it follows from (3.2) that

$$2\delta(a) = a\delta(1) + \delta(1)a, \quad a \in A_{sa}.$$

One can show that

$$2\delta(x) = x\delta(1) + \delta(1)x, \quad x \in A.$$

If $\delta(1) \in Z(X)$, then $\delta(x) = \delta(1)x = x\delta(1)$, and hence δ is a *-multiplier. \square

It is clear that A', the dual of A, is a Banach A-bimodule with the following module structures:

$$(f \cdot a)b = f(ab), \quad (a \cdot f)b = f(ba), \quad a, b \in A, f \in A'.$$

Therefore, if A is commutative, then $f \cdot a = a \cdot f$, and so we obtain the next result.

Corollary 3.2. Let $\delta: A \longrightarrow A'$ be a continuous linear map. If A is commutative, then δ is a *-multiplier if and only if

$$\delta(x \diamond y \diamond x) = \delta(x) \diamond y \diamond x,$$

for all $x, y \in A$ with xy = 1.

Theorem 3.3. Let $\delta: A \longrightarrow X$ be a continuous linear map satisfying

$$\delta(x \diamond y \diamond z) = \delta(x) \diamond y \diamond z - x \diamond \delta(y) \diamond z + x \diamond y \diamond \delta(z),$$

for all $x, y, z \in A$ with xy = 1, z = x. Then

$$2\delta(x) = x\delta(1) + \delta(1)x, \quad x \in A.$$

Moreover, if $\delta(1) \in Z(X)$, then δ is a *-multiplier.

Proof. Let $a \in A_{sa}$, and take $x = e^{ita}$ and $y = e^{-ita}$. Then for each $t \in \mathbb{R}$, we have

$$\delta(e^{3ita} - e^{-3ita} + e^{ita} - e^{-ita}) = e^{ita}\delta(e^{ita})e^{ita} + \delta(e^{ita}) - e^{-ita}\delta(e^{ita})^*e^{-ita} - \delta(e^{ita})^*$$

$$-\delta(e^{-ita})^*e^{2ita} + e^{-2ita}\delta(e^{-ita}) - (e^{-ita}\delta(e^{-ita})^* + e^{-ita}\delta(e^{-ita}))e^{ita}$$

$$+ (e^{2ita} - e^{-2ita})\delta(e^{ita}) + \delta(e^{ita})^*(e^{2ita} - e^{-2ita}). \tag{3.3}$$

Taking t = 0 in (3.3), we conclude that $\delta(1) = \delta(1)^*$. By taking derivative of equation (3.3) at t = 0 and using $\delta(1) = \delta(1)^*$, we arrive at

$$2\delta(a) = \delta(1)a + a\delta(1).$$

Since $\delta(1)$ is self-adjoint, we get

$$\delta(a) = \delta(a)^*, \quad a \in A_{sa}.$$

The equality above imply that $\delta(x^*) = \delta(x)^*$, for all $x \in A$, and hence δ is self-adjoint. Now one can show that

$$2\delta(x) = x\delta(1) + \delta(1)x, \quad x \in A.$$

If $\delta(1) \in Z(X)$, then $\delta(x) = \delta(1)x = x\delta(1)$, and hence δ is a *-multiplier. \square

4 Characterization of homomorphisms

In this section, we prove that there is no nonzero continuous linear map $\phi: A \longrightarrow B$ between Banach *-algebras with the property that $\phi(x \diamond y) = \phi(x) \diamond \phi(y)$ for all $x, y \in A$ with xy = 1.

Theorem 4.1. Let $\phi: A \longrightarrow B$ be a continuous linear map satisfying

$$x, y \in A, \quad xy = 1 \implies \phi(x \diamond y) = \phi(x) \diamond \phi(y).$$

Then ϕ is identically zero.

Proof. Put any $a \in A_{sa}$, e^{ita} is a unitary for each $t \in \mathbb{R}$. Therefore,

$$\phi(e^{2ita} - e^{-2ita}) = \phi(e^{-ita} \diamond e^{ita})$$

$$= \phi(e^{-ita})^* \phi(e^{ita}) - \phi(e^{ita})^* \phi(e^{-ita}). \tag{4.1}$$

By taking derivative of equation (4.1) at t, we obtain

$$2\phi(ae^{2ita} + ae^{-2ita}) = \phi(ae^{-ita})^*\phi(e^{ita}) + \phi(e^{-ita})^*\phi(ae^{ita}) + \phi(ae^{ita})^*\phi(e^{-ita}) + \phi(e^{ita})^*\phi(ae^{ita}). \tag{4.2}$$

Taking t = 0 and a = 1 in (4.2), we thus get

$$\phi(1) = \phi(1)^* \phi(1).$$

Therefore, $\phi(1) = \phi(1)^*$ and hence $\phi(1)$ is an idempotent in B. Put t = 0 in (4.2), we get

$$2\phi(a) = \phi(a)^*\phi(1) + \phi(1)\phi(a). \tag{4.3}$$

From (4.3), we arrive at

$$\phi(a) = \phi(a)^*, \quad a \in A_{sa}.$$

For any $x \in A$, there are $a, b \in A_{sa}$ such that x = a + ib. So,

$$\phi(x^*) = \phi(a) - i\phi(b)^* = \phi(x)^*,$$

for all $x \in A$. Thus, ϕ is self-adjoint. Now it follows from (4.3) that

$$2\phi(a) = \phi(a)\phi(1) + \phi(1)\phi(a). \tag{4.4}$$

By taking derivative of equation (4.2) at t = 0, we obtain

$$\phi(1)\phi(a^2) = 0, \quad a \in A_{sa}.$$

In particular, $\phi(1) = \phi(1)\phi(1) = 0$, and thus by (4.4),

$$\phi(a) = 0, \quad a \in A_{sa}.$$

Consequently, $\phi(x) = 0$, for all $x \in A$. \square

Theorem 4.2. Let $\phi: A \longrightarrow B$ be a continuous linear map satisfying

$$x, y, z \in A, \quad xy = 1, z = x \implies \phi(x \diamond y \diamond z) = \phi(x) \diamond \phi(y) \diamond \phi(z).$$

Then

$$4\phi(x) = \phi(x)\phi(1)^2 + 2\phi(1)\phi(x)\phi(1) + \phi(1)^2\phi(x), \quad x \in A.$$

Moreover, if ϕ is surjective and $\phi(1)$ is idempotent, then $\phi(1)$ is the identy of B.

Proof. Let $a \in A_{sa}$, $x = e^{ita}$ and $y = e^{-ita}$ for each $t \in \mathbb{R}$. Then

$$e^{ita} \diamond e^{-ita} \diamond e^{ita} \equiv e^{3ita} - e^{-3ita} + e^{ita} - e^{-ita}$$

Thus, we get

$$\phi(e^{3ita} - e^{-3ita} + e^{ita} - e^{-ita}) = \phi(e^{ita} \diamond e^{-ita} \diamond e^{ita})
= \phi(e^{ita}) \diamond \phi(e^{-ita}) \diamond \phi(e^{ita})
= \phi(e^{-ita})^* \phi(e^{ita}) \phi(e^{ita}) - \phi(e^{ita})^* \phi(e^{-ita}) \phi(e^{ita})
- \phi(e^{ita})^* \phi(e^{ita})^* \phi(e^{-ita}) + \phi(e^{ita})^* \phi(e^{-ita})^* \phi(e^{ita}).$$
(4.5)

By taking derivative of equation (4.5) at t = 0, we obtain

$$4\phi(a) = \phi(a)^*\phi(1)\phi(1) + \phi(1)^*\phi(a)\phi(1) + \phi(1)^*\phi(a)^*\phi(1) + \phi(1)^*\phi(1)^*\phi(a). \tag{4.6}$$

Put a = 1 in (4.6), to get

$$2\phi(1) = \phi(1)^*\phi(1)\phi(1) + \phi(1)^*\phi(1)^*\phi(1).$$

Therefore, $\phi(1) = \phi(1)^*$ and so (4.6) imply that

$$4\phi(a) = \phi(a)^*\phi(1)^2 + \phi(1)\phi(a)\phi(1) + \phi(1)\phi(a)^*\phi(1) + \phi(1)^2\phi(a). \tag{4.7}$$

From (4.7), we deduce that

$$\phi(a) = \phi(a)^*, \quad a \in A_{sa}.$$

Thus, by (4.6) we obtain

$$4\phi(a) = \phi(a)\phi(1)^2 + 2\phi(1)\phi(a)\phi(1) + \phi(1)^2\phi(a).$$

For any $x \in A$, there are $a, b \in A_{sa}$ such that x = a + ib. Hence

$$4\phi(x) = \phi(x)\phi(1)^2 + 2\phi(1)\phi(x)\phi(1) + \phi(1)^2\phi(x), \quad x \in A.$$
(4.8)

Now suppose that ϕ is surjective and $\phi(1)$ is an idempotent. By multiplying (4.8) on the left and right by $\phi(1)$, respectively, we deduce

$$\phi(1)\phi(x) = \phi(1)\phi(x)\phi(1),$$

$$\phi(x)\phi(1) = \phi(1)\phi(x)\phi(1).$$

Therefore, $\phi(1)$ commutes with $\phi(x)$, for all $x \in A$. From (4.8), we get

$$\phi(x) = \phi(x)\phi(1) = \phi(1)\phi(x), \quad x \in A.$$

The surjectivity of ϕ now implies that $\phi(1)$ is the identy of B. \square

References

- [1] Z. Bai and S. Du, Maps preserving product $XY YX^*$ on von Neumann algebras, J. Math. Anal. Appl. **386** (2012), no. 1, 103–109.
- [2] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 501–510.
- [3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.
- [4] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. R. Soc. Edinb. Sect. A. 137 (2007), 9–21.
- [5] A. Essaleh and A. Peralta, Linear maps on C*-algebras which are derivations or triple derivations at a point, Linear Algebra Appl. **538** (2018), 1–21.
- [6] H. Ghahramani and W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal. 12 (2021), 1–12.
- [7] C. Li, F. Zhao, and Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (English Series) 32 (2016) 821–830.
- [8] L. Molnar, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234.
- [9] M. Shavandi and A. Taghavi, Maps preserving n-tuple $a^*b b^*a$ derivations on factor von Neumann algebras, Publ. Inst. Math. 113 (2023), no. 127, 131–140.
- [10] M. Shavandi and A. Taghavi, Nonlinear triple product $a^*b b^*a$ derivations on *-algebras, Surv. Math. Appl. 19 (2024), 67–78.
- [11] A. Taghavi, H. Rohi, and V. Darvish, Nonlinear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), 426–439.
- [12] Z. Wang and X. Fei, Maps on C*-algebras are skew Lie triple derivations or homomorphisms at one point, Aims Math. 8(11) (2023), 25564–25571.
- [13] W. Yu and J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979–1991.
- [14] F. Zhao and C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Math. Slovaca 68 (2018), 163—170.
- [15] A. Zivari-Kazempour, Characterization of n-Jordan multipliers, Vietnam J. Math. 50 (2022), 87–94.
- [16] A. Zivari-Kazempour, Characterizing n-multipliers on Banach algebras through zero products, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 1, 1071–1078.
- [17] A. Zivari-Kazempour, Characterization of Jordan homomorphisms and Jordan derivations, Khayyam J. Math. 10 (2024), no. 1, 1–9.
- [18] A. Zivari-Kazempour and A. Bodaghi, Generalized derivations and generalized Jordan derivations on C*-algebras through zero products, J. Math. 2022 (2022), Article ID 3386149, 1–6.