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Abstract

Let R be a commutative ring with identity, M be an unitary R-module, let S(M) be the set of all submodules
of M and ϕ : S(M) → S(M) ∪ {∅} be a function. A proper submodule N of M is called ϕ-pimary submodule if
rx ∈ N \ ϕ(N) where r ∈ R and x ∈ M , implies that x ∈ N or r ∈

√
(N : M). In this work, ϕ-primary submodules

are studied, and some results are obtained.

Keywords: ϕ-prime ideal, ϕ-primary ideal, ϕ-prime submodule, ϕ-primary submodule
2020 MSC: Primary: 13C05; Secondary: 13C13

1 Introduction

In this work, all rings are commutative with identity, and modules are unitary. Let M be an R-module, and N be
a submodule of M . The ideal {r ∈ R | rM ⊆ N } will be denoted by (N : M) and ideal (0 : M) will be denoted by
Ann(M). Anderson and Bataineh in [1] introduced various generalizations of prime ideals. Let ϕ′ : I(R) → I(R)∪{∅}
be a function where I(R) is the set of all ideals of R. Then a proper ideal I of R is ϕ′-prime if for a, b ∈ R, ab ∈ R\ϕ(I)
implies a ∈ R or b ∈ R. If ϕ′(I) = ∅ (resp. ϕ′(I) = 0, ϕ′(I) = I2, ϕ′(I) = Im and ϕ′(I) =

⋂∞
m=1 I

m), then ideal I is
called a prime ideal (resp. weakly prime ideal, almost prime ideal, m-almost prime ideal and ω-prime ideal).

Zamni in [10] extended this concept to ϕ-prime submodule. For a function ϕ : S(M) → S(M) ∪ {∅}, a proper
submodule N of M is called a prime submodule relative to ϕ or ϕ-prime submodule if whenever r ∈ R, x ∈ M , and
rx ∈ N \ϕ(N), then x ∈ N or r ∈ (N : M). Without loss of generality, throughout this work we will assume ϕ(N) ⊆ N .
If ϕ(N) = ∅ (resp. ϕ(N) = 0, ϕ(N) = (N : M)N , ϕ(N) = (N : M)m−1N and ϕ(N) =

⋂∞
m=1(N : M)mN), then

submodule N is called a prime submodule (resp. weakly prime submodule, almost prime submodule, m-almost prime
submodule, and ω-prime submodule). Some properties of generalizations of prime submodules have been studied in
[5],[7] and [8].

Now, we extend this concept to a primary relative to ϕ or ϕ-primary submodules, i.e., a proper submodule N of
M is ϕ-primary if for every r ∈ R, x ∈ M and rx ∈ N \ ϕ(N) implies x ∈ N or r ∈

√
(N : M). If ϕ(N) = ∅ (resp.

ϕ(N) = 0, ϕ(N) = (N : M)N , ϕ(N) = (N : M)m−1N and ϕ(N) =
⋂∞

m=1(N : M)mN), then submodule N is called
a primary submodule (resp. weakly primary submodule, almost primary submodule, m-almost primary submodule,
and ω-primary submodule). We denote the set of ϕ-primary submodules of M by Primϕ(M) and denote the set of
ϕ-prime submodules of M by Specϕ(M). Let Specϕ(R) denote the set of ϕ-prime ideals of R and Primϕ(R) denote
the set of ϕ-primary ideals of R. We are given some properties of ϕ-primary submodules and we obtain relationships
among function ϕ, various modules and the other concepts. Some of the finding in this study have been inspired by
the research cited as [10] and [1].
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2 Properties of ϕ-pimary ideal and ϕ-pimary submodules

In this section, we introduce and study several propostions and corollaries of ϕ-pimary submodules.

Proposition 2.1. Let ϕ : I(R) → I(R) ∪ {∅} be a function where I(R) is the set of all ideals of R such that√
ϕ(Q) ⊆ ϕ(Q). If Q ∈ Primϕ(R), then

√
Q ∈ Specϕ(R).

Proof . Let a, b ∈ R with ab ∈
√
Q \ ϕ(

√
Q), so ab ∈

√
Q and ab /∈ ϕ(

√
Q). Since ϕ(Q) ⊆ ϕ(

√
Q), ab /∈ ϕ(Q). Also,

since
√
ϕ(Q) ⊆ ϕ(Q), ab /∈

√
ϕ(Q). Thus (ab)m /∈ ϕ(Q) for each m ∈ N . On the other hand, ab ∈

√
Q implies

(ab)n ∈ Q, for some n ∈ Z+. Therefore anbn ∈ Q \ ϕ(Q). Since Q ∈ Primϕ(R), so an ∈ Q or (bn)k ∈ Q, for some
k ∈ N. Thus a ∈

√
Q or b ∈

√
Q, i.e.,

√
Q ∈ Specϕ(R). □

Corollary 2.2. Let ϕ : I(R) → I(R)∪{∅} be a function where I(R) is the set of all ideals of R and ϕ(Q) be a radical
ideal. If Q ∈ Primϕ(R), then

√
Q ∈ Specϕ(R).

Proof . Since
√
ϕ(Q) = ϕ(Q), by Proposition 2.1, the proof is clear. □

Proposition 2.3. Let ϕ : S(M) → S(M) ∪ {∅} be a function where S(M) is the set of all submodules of M such
that (ϕ(N) : m) ⊆ ϕ((N : M)) for all m ∈ M . If N ∈ Primϕ(M), then (N : M) ∈ Primϕ(R).

Proof . Suppose that a, b ∈ R with ab ∈ (N : M) \ ϕ((N : M)) and a /∈ (N : M). We show that b ∈
√
(N : M).

We have ab ∈ (N : M) and ab /∈ ϕ((N : M)), so abm ∈ N for all m ∈ M . Since (ϕ(N) : m) ⊆ ϕ((N : M)), hence
ab /∈ (ϕ(N) : m), so abm /∈ ϕ(N). Then abm ∈ N \ ϕ(N). Now, let m /∈ N . Since N ∈ Primϕ(M) and a /∈ (N : M),

am /∈ N and hence b ∈
√
(N : M). Therefore (N : M) ∈ Primϕ(R). □

Proposition 2.4. Let f : R → S be a ring homomorphism and ϕ1 : I(R) → I(R) ∪ {∅}, ϕ2 : I(S) → I(S) ∪ {∅} be
two functions such that f−1(ϕ2(J)) ⊆ ϕ1(f

−1(J)) for all ideal J of R. If P ∈ Specϕ2
(S), then f−1(P ) ∈ Specϕ1

(R).

Proof . Assume that ab ∈ f−1(P ) \ ϕ1(f
−1(P )), where a, b ∈ R and P ∈ Specϕ2

(S), then ab ∈ f−1(P ) and
ab /∈ ϕ1(f

−1(P )). Since f−1(ϕ2(P )) ⊆ ϕ1(f
−1(P )), ab /∈ f−1(ϕ2(P )), and so f(ab) /∈ ϕ2(P ). It follows that f(a)f(b) ∈

P \ ϕ2(P ). Since P ∈ Specϕ2(S), f(a) ∈ P or f(b) ∈ P and hence a ∈ f−1(P ) or b ∈ f−1(P ). This implies that
f−1(P ) ∈ Specϕ1(R). □

Proposition 2.5. Let f : M → M ′ be an R-module epimorphism, ϕ : S(M) → S(M) ∪ {∅} and ϕ′ : S(M ′) →
S(M ′) ∪ {∅} be two functions with (ϕ′(N ′) : f(m)) ⊆ (ϕ(f−1(N ′) : m) for each m ∈ M where N ′ is a submodule M ′

and N ′ ∈ Primϕ′(M ′). Then f−1(N ′) ∈ Primϕ(M).

Proof . Let rm ∈ f−1(N ′) \ ϕ(f−1(N ′)) where r ∈ R, m ∈ M . Then rm ∈ f−1(N ′) and rm /∈ ϕ(f−1(N ′)),
hence rf(m) ∈ N ′ and r /∈ (ϕ(f−1(N ′)) : m). Since (ϕ′(N ′) : f(m)) ⊆ (ϕ(f−1(N ′)) : m) for each m ∈ M ,
r /∈ (ϕ′(N ′) : f(m)). It follows that rf(m) ∈ N ′ \ ϕ′(N ′). Since N ′ ∈ Primϕ′(M ′), f(m) ∈ N ′ or r ∈

√
(N ′ : M ′).

Thus m ∈ f−1(N ′) or rn ∈ (N ′ : M ′) for some n ∈ N. Assuming rn ∈ (N ′ : M ′), we have rnM ′ ⊆ N ′ and
hence rnf(M) ⊆ N ′. Thus f−1(f(rnM)) ⊆ f−1(N ′) and so rnM ⊆ f−1(N ′) and hence rn ∈ (f−1(N ′) : M). So
r ∈

√
(f−1(N ′) : M). Therefore, f−1(N ′) ∈ Primϕ(M). □

The following proposition is stated for ϕ-prime submodules of M (see [10, Theorem 2.12 part (i)]). We assert it
for ϕ-primary submodules of M .

Proposition 2.6. Let M be an R-module, K and N be two submodules of M with K ⊆ N . Let ϕ : S(M) →
S(M) ∪ {∅} and ϕK : S(M/K) → S(M/K) ∪ {∅} be defined by ϕK(N/K) = (ϕ(N) +K)/K with K ⊆ ϕ(N). Then
the following statements hold.

(1) If N ∈ Primϕ(M), then N/K ∈ PrimϕK
(M/K).

(2) If N/K ∈ PrimϕK
(M/K), then N ∈ Primϕ(M).

Proof . (1) Let m ∈ M/K and r ∈ R with rm ∈ N/K \ ϕK(N/K), where m = m + K for some m ∈ M . So,
rm +K ∈ N/K and rm +K /∈ ϕK(N/K) and hence rm ∈ N . By the definition of ϕK , this gives that rm /∈ ϕ(N).
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Therefore rm ∈ N \ ϕ(N). Since N ∈ Primϕ(M), so m ∈ N or r ∈
√
(N : M). Assuming m ∈ N , we have

m = m + K ∈ N/K and rn ∈ (N : M) for some n ∈ N, implies that rn(m + K) = rnm + K ∈ N/K. Thus
rn ∈ (N/K : M/K) and r ∈

√
(N/K : M/K). So N/K ∈ PrimϕK

(M/K).

(2) Let r ∈ R and m ∈ M with rm ∈ N \ ϕ(N).Then rm ∈ N and rm /∈ ϕ(N). Since K ⊆ ϕ(N), rm + K /∈
(ϕ(N) + K)/K. Thus r(m + K) ∈ N/k \ ϕK(N/K). Since N/K ∈ PrimϕK

(M/K), hence m + K ∈ N/K or
rn ∈ (N/K : M/K) for some n ∈ N. It follows that m ∈ N or rn ∈ (N : M). Thus N ∈ Primϕ(M). □

Corollary 2.7. Let ϕ : S(M) → S(M)∪{∅} be a function and N be a proper submodule of M . Then N is a ϕ-pimary
submodule of M if and only if N/ϕ(N) is a weakly primary submodule of M/ϕ(N).

Proof . It is straightforward. □

Let S be a multiplicatively closed subset of R and S−1R be a ring of fractions. Let ϕ : S(R) → S(R) ∪ {∅} be a
function and define S−1ϕ : S(S−1R) → S(S−1R) ∪ {∅} by S−1ϕ(Qe) = ϕ(Q)e where Qe is an extension ideal of Q
with Q ∩ S = ∅ (i.e., let ι : R → S−1R be a canonical ring homomorphism by ι(r) = r

1 , the extension Qe of Q to be
the ideal S−1Rι(Q) generated by ι(Q) in S−1R. Now, we state the following proposition.

Proposition 2.8. Let ϕ : S(R) → S(R) ∪ {∅} be a function and S−1ϕ : S(S−1R) → S(S−1R) ∪ {∅} by S−1ϕ(Qe) =
ϕ(Q)e. If Q ∈ Primϕ(R), then Qe ∈ PrimS−1ϕ(S

−1R).

Proof . Let a
s ,

b
t ∈ S−1R with a

s
b
t ∈ Qe \ S−1ϕ(Qe). We have ab

st ∈ Qe and ab
st /∈ S−1ϕ(Qe) = ϕ(Q)e. Then there

exists u ∈ S such that uab ∈ Q and uab /∈ ϕ(Q), so uab ∈ Q \ ϕ(Q). Since Q ∈ Primϕ(R), ua ∈ Q or b ∈
√
Q. This

shows that ua
us ∈ Qe or b

t ∈
√
Q

e
=

√
Qe, as required.

Let S be a multiplicatively closed subset of R and S−1R be a ring of fractions.Then every submodule of S−1M
is in the form of S−1N for some submodule N of M (see [9]). Let N(S) = {m ∈ M : ∃s ∈ S, sm ∈ N}, it is easy
to show that N(S) is a submodule of M containing N and S−1(N(S)) = S−1(N). Let ϕ : S(M) → S(M) ∪ {∅}
be a function and define S−1ϕ : S(S−1M) → S(S−1M) ∪ {∅} by S−1ϕ(S−1N) = S−1(ϕ(N(S)) if ϕ(N(S)) ̸= ∅ and
S−1ϕ(S−1N) = ∅ if ϕ(N(S)) = ∅. Since ϕ(N) ⊆ N , so S−1ϕ(S−1N) ⊆ S−1N . □

Theorem 2.9. Let M be an R-module and S be a multiplicatively closed subset of R. Let ϕ : S(M) → S(M) ∪ {∅}
be a function such that S−1(ϕ(N)) ⊆ S−1ϕ(S−1N). Let N be a ϕ-pimary submodule of M such that (N : M) be a
prime ideal of R and

√
(N : M) ∩ S = ∅. Then S−1N ∈ PrimS−1ϕ(S

−1M).

Proof . Let r
s ∈ S−1R and m

t ∈ S−1M with r
s
m
t ∈ S−1N \ S−1ϕ(S−1N). We have rm

st ∈ S−1N and rm
st /∈

S−1ϕ(S−1N). Since S−1(ϕ(N)) ⊆ S−1ϕ(S−1N), rm
st /∈ S−1(ϕ(N)). Therefore vrm /∈ ϕ(N) for each v ∈ S. On the

other hand, rm
st ∈ S−1N implies that urm ∈ N for some u ∈ S and hence urm ∈ N \ ϕ(N). Since N is a ϕ-primary

submodule, m ∈ N or ur ∈
√
(N : M). Since u ∈ S and

√
(N : M)∩S = ∅, so u /∈

√
(N : M) and hence un /∈ (N : M)

for every n ∈ N. It follows that ukrk ∈ (N : M) for some k ∈ N. Since uk /∈ (N : M) and (N : M) is a prime ideal,

rk ∈ (N : M) and hence rk

sk
∈ S−1(N : M). Since S−1(N :R M) ⊆ (S−1N :S−1R S−1M), rk

sk
∈ (S−1N :S−1R S−1M)

and thus r
s ∈

√
(S−1N :S−1R S−1M). Hence S−1N is a S−1ϕ-primary submodule of S−1M . □

Definition 2.10. A proper submodule N of M is said semiprime, if rkm ∈ N for each r ∈ R, m ∈ M and k ∈ N,
then rm ∈ N .

For more details concerning ϕ-semiprime submodules of an R-module refer to [4].

Proposition 2.11. Let ϕ : S(M) → S(M) ∪ {∅} be a function and N be a semiprime submodule of M . If N is a
ϕ-primary submodule of M , then N is a ϕ-prime submodule of M .

Proof . Let r ∈ R and m ∈ M with rm ∈ N \ ϕ(N). Assume that x /∈ N , since N is a ϕ-primary submodule of
M , so r ∈

√
(N : M). It follows that rkM ⊆ N for some k ∈ N and hence rkm ∈ N for each m ∈ M . Since N is a

semiprime submodule of M , so rm ∈ N for each m ∈ M . Thus r ∈ (N : M), therefore N ∈ Specϕ(M). □

Definition 2.12. Let N be a submodule of M . Then N is called relatively divisible submodule denoted by RD-
submodule, if rN = N ∩ rM for each r ∈ R. R-module M is said prime module, if rx = 0 where r ∈ R and x ∈ M ,
then r ∈ Ann(M) or x = 0.
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Now, with respect to above definition, we assert the following proposition.

Proposition 2.13. Let M be a prime module, ϕ : S(M) → S(M)∪ {∅} be a function and N be a proper submodule
of M . If N is an RD- submodule of M with Ann(M) ⊆ (ϕ(N) : M), then N ∈ Primϕ(M).

Proof . Let r ∈ R and x ∈ M with rx ∈ N \ ϕ(N). Since N is an RD-submodule, rN = N ∩ rM and hence
rx ∈ N ∩ rM . It follows that rx = rn for some n ∈ N , therefore, r(x− n) = 0. Since M is prime, hence r ∈ Ann(M)
or x−n = 0. But r ∈ Ann(M), since Ann(M) ⊆ (ϕ(N) : M), r ∈ (ϕ(N) : M) and hence rx ∈ ϕ(N) which contradicts
with our assumption. Thus x− n = 0 and so x ∈ N . Therefore N ∈ Primϕ(M). □

Let R = R1 ×R2 and M = M1 ×M2 be an R-module where Ri is a commutative ring and Mi is an Ri-module for
i = 1, 2. Each proper submodule of M1 ×M2 can be represented in the form of N1 ×N2 for some proper submodule
N1 of M1 and N2 of M2. Moreover Q = Q1 ×Q2 is a primary submodule of M1 ×M2 if and only if Q = Q1 ×M2 or
Q = M1 ×Q2 for some pimary submodule Q1 of M1 and Q2 of M2. Now, let ϕ : S(M1 ×M2) → S(M1 ×M2) ∪ {∅}
and ϕi : S(Mi) → S(Mi) ∪ {∅} be functions with ϕ(N1 ×N2) = ϕ1(N1) × ϕ2(N2) for i = 1, 2.We state the following
proposition that some properties of this concept have been investigated for ϕ-prime submodules of M1 ×M2 (see [10],
Corollary 2.5 and Proposition 2.6).

Proposition 2.14. Let M = M1×M2 be an R1×R2-module, Qi be a proper submodule of Mi and ϕ : S(M1×M2) →
S(M1×M2)∪{∅} and ϕi : S(Mi) → S(Mi)∪{∅} be functions with ϕ(Q1×Q2) = ϕ1(Q1)×ϕ2(Q2) and ϕi(Mi) = Mi for
i = 1, 2. If Q1 ∈ Primϕ1(M1) (Q2 ∈ Primϕ2(M2)), then Q1×M2 ∈ Primϕ(M1×M2) (M1×Q2 ∈ Primϕ(M1×M2)).

Proof . Let (r1, r2) ∈ R1×R2 and (x1, x2) ∈ M1×M2 with (r1, r2)(x1, x2) ∈ Q1×M2 \ϕ(Q1×M2). So (r1x1, r2x2) ∈
Q1 × M2 and (r1x1, r2x2) /∈ ϕ1(Q1) × ϕ2(M2) = ϕ1(Q1) × M2 and hence r1x1 ∈ Q1 and r1x1 /∈ ϕ1(Q1). Since Q1

is a ϕ1-primary submodule of M1, therefore x1 ∈ Q1 or r1 ∈
√

(Q1 :R1
M1). If x1 ∈ Q1, then (x1, x2) ∈ Q1 × M2.

Thus Q1 × M2 ∈ Primϕ(M1 × M2). On the other hand, if r1 ∈
√
(Q1 :R1

M1), then rn1 ∈ (Q1 :R1
M1) for some

n ∈ N. It follows that (rn1 , r
n
2 ) ∈ (Q1 :R1 M1) × (M2 :R2 M2), so (rn1 , r

n
2 ) ∈ (Q1 × M2 :R1×R2 M1 × M2) and hence

(r1, r2) ∈
√
(Q1 ×M2 :R1×R2 M1 ×M2). Consequently Q1 ×M2 ∈ Primϕ(M1 ×M2). □

Corollary 2.15. Let the situation be as described Proposition 2.14. If Q1 × M2 ∈ Primϕ(M1 × M2) (M1 × Q2 ∈
Primϕ(M1 ×M2)), then Q1 ∈ Primϕ1(M1) (Q2 ∈ Primϕ2(M2)).

Firstly, assume that M be a free R-module. We assert the next theorem in connection with ϕ′-primary ideal Q of
R and ϕ-primary submodule QM of M .

Theorem 2.16. Let M be a free R-module with a basis {xα}α∈Ω, ϕ : S(M) → S(M)∪{∅} and ϕ′ : I(R) → I(R)∪{∅}
be two functions where I(R) is the set of all ideals of R. If Q is a ϕ′-primary ideal of R with ϕ′(Q)M ⊆ ϕ(QM), then
QM is a ϕ-primary submodule of M .

Proof . Since Q is proper ideal of R, QM is a proper submodule of M . Assume that r ∈ R and x ∈ M with
rx ∈ QM \ ϕ(QM), so rx ∈ QM and rx /∈ ϕ(QM) with x =

∑
f.s rαxα (rα ∈ R, xα ∈ {xα}α∈Ω ). Since M is a free

R-module with a basis {xα}α∈Ω, QM = {
∑

f.s sixi | si ∈ Q, xi ∈ {xα}α∈Ω }. It follows that rx =
∑

f.s r(rαxα) =∑
f.s sixi. Thus sα = rrα ∈ Q for all α ∈ Ω. But rrα /∈ ϕ′(Q) for all α ∈ Ω, otherwise rrα ∈ ϕ′(Q), so rrαxα ∈ ϕ′(Q)xα

for all xα ∈ {xα}α∈Ω. Therefore r
∑

f.s rαxα ∈ ϕ′(Q)M , since ϕ′(Q)M ⊆ ϕ(QM), r
∑

f.s rαxα ∈ ϕ(QM). This is a

contradiction. We showed that rrα ∈ Q \ ϕ′(Q) for all α ∈ Ω. Since Q is a ϕ′-primary ideal of R, r ∈ Q or rα ∈
√
Q.

If r ∈ Q, then rx ∈ QM . For let rα ∈
√
Q, we have rnα ∈ Q and hence rnα ∈ (QM :R M). Thus rα ∈

√
(QM :R M).

Consequently, QM ∈ Primϕ(M). □

An R-module M is called a multiplication R-module if for every submodule N of M , N = IM for some ideal I of
R. It is easily seen that if N is a submodule of M , then N = (N : M)M (see [3, 6]).

Remark 2.17. Let M be a free multiplication R-module and N be a proper submodule of M . Let ϕ : S(M) →
S(M) ∪ {∅} and ϕ′ : I(R) → I(R) ∪ {∅} be two functions where I(R) is the set of all ideals of R. If (N : M is a
ϕ′-primary ideal of R with ϕ′((N : M))M ⊆ ϕ((N : M)M), then N is a ϕ-primary submodule of M .

Theorem 2.18. Let M be a free multiplication R-module and N be a proper submodule of M . If N is a almost
primary submodule of M such that (N : M)2 is a prime ideal of R, then N is a primary submodule of M .
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Proof . Let r ∈ R and x ∈ M with rx ∈ N . If rx /∈ (N : M)N , then rx ∈ N \ (N : M)N . Since N is a almost
primary submodule of M , x ∈ N or r ∈

√
(N : M) and hence N is a primary submodule of M . Now, assume that

rx ∈ (N : M)N . Since N = (N : M)M , rx ∈ (N : M)2M . Suppose that rx /∈
√
(N : M), we prove that x ∈ N . Since

M is a free R-module with a basis {xα}α∈Ω, x =
∑

f.s rαxα where rα ∈ R and xα ∈ {xα}α∈Ω. Since rx ∈ (N : M)2M ,

rx =
∑

f.s(rrα)xα =
∑

f.s r
′
αxα where r′α ∈ (N : M)2 for all α ∈ Ω. It follows that rrα = r′α for all α ∈ Ω and hence

rrα ∈ (N : M)2. Since r /∈
√

(N : M) and (N : M) ⊆
√

(N : M), r /∈ (N : M) and hence r /∈ (N : M)2. Since
(N : M)2 is a prime ideal of R, rα ∈ (N : M)2 for all α ∈ Ω. This shows that x =

∑
f.s rαxα ∈ (N : M)2M , since

(N : M)2M ⊆ (N : M)M = N , x ∈ N and this completes the proof. □

Corollary 2.19. Let M be a free multiplication R-module and Q be a proper ideal of R such that (QM : M)2 is a
prime ideal of R. If QM almost primary submodule of M , then QM is a primary submodule of M .

Proof . Apply Theorem 2.16. □
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