Int. J. Nonlinear Anal. Appl. 16 (2025) 10, 125–129

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2024.33810.5051



# Some results on $\phi$ -primary submodules

Mohammad Hosein Moslemi Koopaeia, Masoud Zolfagharib,\*

<sup>a</sup>Department of Mathematics, Roudehen Branch, Islamic Azad University, Roudehen, Iran

#### Abstract

Let R be a commutative ring with identity, M be an unitary R-module, let  $\mathcal{S}(M)$  be the set of all submodules of M and  $\phi: \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function. A proper submodule N of M is called  $\phi$ -pimary submodule if  $rx \in N \setminus \phi(N)$  where  $r \in R$  and  $x \in M$ , implies that  $x \in N$  or  $r \in \sqrt{(N:M)}$ . In this work,  $\phi$ -primary submodules are studied, and some results are obtained.

Keywords:  $\phi$ -prime ideal,  $\phi$ -primary ideal,  $\phi$ -prime submodule,  $\phi$ -primary submodule

2020 MSC: Primary: 13C05; Secondary: 13C13

## 1 Introduction

In this work, all rings are commutative with identity, and modules are unitary. Let M be an R-module, and N be a submodule of M. The ideal  $\{r \in R \mid rM \subseteq N\}$  will be denoted by (N:M) and ideal (0:M) will be denoted by Ann(M). Anderson and Bataineh in [1] introduced various generalizations of prime ideals. Let  $\phi': \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$  be a function where  $\mathcal{I}(R)$  is the set of all ideals of R. Then a proper ideal I of R is  $\phi'$ -prime if for  $a,b \in R, ab \in R \setminus \phi(I)$  implies  $a \in R$  or  $b \in R$ . If  $\phi'(I) = \emptyset$  (resp.  $\phi'(I) = 0$ ,  $\phi'(I) = I^2$ ,  $\phi'(I) = I^m$  and  $\phi'(I) = \bigcap_{m=1}^{\infty} I^m$ ), then ideal I is called a prime ideal (resp. weakly prime ideal, almost prime ideal, m-almost prime ideal and  $\omega$ -prime ideal).

Zamni in [10] extended this concept to  $\phi$ -prime submodule. For a function  $\phi: \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$ , a proper submodule N of M is called a prime submodule relative to  $\phi$  or  $\phi$ -prime submodule if whenever  $r \in R$ ,  $x \in M$ , and  $rx \in N \setminus \phi(N)$ , then  $x \in N$  or  $r \in (N:M)$ . Without loss of generality, throughout this work we will assume  $\phi(N) \subseteq N$ . If  $\phi(N) = \emptyset$  (resp.  $\phi(N) = 0$ ,  $\phi(N) = (N:M)N$ ,  $\phi(N) = (N:M)^{m-1}N$  and  $\phi(N) = \bigcap_{m=1}^{\infty} (N:M)^m N$ ), then submodule N is called a prime submodule (resp. weakly prime submodule, almost prime submodule, m-almost prime submodule, and  $\omega$ -prime submodule). Some properties of generalizations of prime submodules have been studied in [5],[7] and [8].

Now, we extend this concept to a primary relative to  $\phi$  or  $\phi$ -primary submodules, i.e., a proper submodule N of M is  $\phi$ -primary if for every  $r \in R$ ,  $x \in M$  and  $rx \in N \setminus \phi(N)$  implies  $x \in N$  or  $r \in \sqrt{(N:M)}$ . If  $\phi(N) = \emptyset$  (resp.  $\phi(N) = 0$ ,  $\phi(N) = (N:M)N$ ,  $\phi(N) = (N:M)^{m-1}N$  and  $\phi(N) = \bigcap_{m=1}^{\infty} (N:M)^m N$ ), then submodule N is called a primary submodule (resp. weakly primary submodule, almost primary submodule, m-almost primary submodule, and  $\omega$ -primary submodule). We denote the set of  $\phi$ -primary submodules of M by  $\mathcal{S}pec_{\phi}(M)$ . Let  $\mathcal{S}pec_{\phi}(R)$  denote the set of  $\phi$ -primary ideals of R and  $\mathcal{P}rim_{\phi}(R)$  denote the set of  $\phi$ -primary ideals of R. We are given some properties of  $\phi$ -primary submodules and we obtain relationships among function  $\phi$ , various modules and the other concepts. Some of the finding in this study have been inspired by the research cited as [10] and [1].

Email addresses: mh.mk1351@iau.ac.ir (Mohammad Hosein Moslemi Koopaei), mzolfaghari@semnan.ac.ir (Masoud Zolfaghari)

<sup>&</sup>lt;sup>b</sup>Department of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran

<sup>\*</sup>Corresponding author

## 2 Properties of $\phi$ -pimary ideal and $\phi$ -pimary submodules

In this section, we introduce and study several propostions and corollaries of  $\phi$ -pimary submodules.

**Proposition 2.1.** Let  $\phi: \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$  be a function where  $\mathcal{I}(R)$  is the set of all ideals of R such that  $\sqrt{\phi(Q)} \subseteq \phi(Q)$ . If  $Q \in \mathcal{P}rim_{\phi}(R)$ , then  $\sqrt{Q} \in \mathcal{S}pec_{\phi}(R)$ .

**Proof**. Let  $a,b \in R$  with  $ab \in \sqrt{Q} \setminus \phi(\sqrt{Q})$ , so  $ab \in \sqrt{Q}$  and  $ab \notin \phi(\sqrt{Q})$ . Since  $\phi(Q) \subseteq \phi(\sqrt{Q})$ ,  $ab \notin \phi(Q)$ . Also, since  $\sqrt{\phi(Q)} \subseteq \phi(Q)$ ,  $ab \notin \sqrt{\phi(Q)}$ . Thus  $(ab)^m \notin \phi(Q)$  for each  $m \in \mathbb{N}$ . On the other hand,  $ab \in \sqrt{Q}$  implies  $(ab)^n \in Q$ , for some  $n \in \mathbb{Z}^+$ . Therefore  $a^nb^n \in Q \setminus \phi(Q)$ . Since  $Q \in \mathcal{P}rim_{\phi}(R)$ , so  $a^n \in Q$  or  $(b^n)^k \in Q$ , for some  $k \in \mathbb{N}$ . Thus  $a \in \sqrt{Q}$  or  $b \in \sqrt{Q}$ , i.e.,  $\sqrt{Q} \in \mathcal{S}pec_{\phi}(R)$ .  $\square$ 

Corollary 2.2. Let  $\phi: \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$  be a function where  $\mathcal{I}(R)$  is the set of all ideals of R and  $\phi(Q)$  be a radical ideal. If  $Q \in \mathcal{P}rim_{\phi}(R)$ , then  $\sqrt{Q} \in \mathcal{S}pec_{\phi}(R)$ .

**Proof**. Since  $\sqrt{\phi(Q)} = \phi(Q)$ , by Proposition 2.1, the proof is clear.  $\square$ 

**Proposition 2.3.** Let  $\phi : \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function where  $\mathcal{S}(M)$  is the set of all submodules of M such that  $(\phi(N) : m) \subseteq \phi((N : M))$  for all  $m \in M$ . If  $N \in \mathcal{P}rim_{\phi}(M)$ , then  $(N : M) \in \mathcal{P}rim_{\phi}(R)$ .

**Proof**. Suppose that  $a,b \in R$  with  $ab \in (N:M) \setminus \phi((N:M))$  and  $a \notin (N:M)$ . We show that  $b \in \sqrt{(N:M)}$ . We have  $ab \in (N:M)$  and  $ab \notin \phi((N:M))$ , so  $abm \in N$  for all  $m \in M$ . Since  $(\phi(N):m) \subseteq \phi((N:M))$ , hence  $ab \notin (\phi(N):m)$ , so  $abm \notin \phi(N)$ . Then  $abm \in N \setminus \phi(N)$ . Now, let  $m \notin N$ . Since  $N \in \mathcal{P}rim_{\phi}(M)$  and  $a \notin (N:M)$ ,  $am \notin N$  and hence  $b \in \sqrt{(N:M)}$ . Therefore  $(N:M) \in \mathcal{P}rim_{\phi}(R)$ .  $\square$ 

**Proposition 2.4.** Let  $f: R \to S$  be a ring homomorphism and  $\phi_1: \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$ ,  $\phi_2: \mathcal{I}(S) \to \mathcal{I}(S) \cup \{\emptyset\}$  be two functions such that  $f^{-1}(\phi_2(J)) \subseteq \phi_1(f^{-1}(J))$  for all ideal J of R. If  $P \in \mathcal{S}pec_{\phi_2}(S)$ , then  $f^{-1}(P) \in \mathcal{S}pec_{\phi_1}(R)$ .

**Proof**. Assume that  $ab \in f^{-1}(P) \setminus \phi_1(f^{-1}(P))$ , where  $a, b \in R$  and  $P \in \mathcal{S}pec_{\phi_2}(S)$ , then  $ab \in f^{-1}(P)$  and  $ab \notin \phi_1(f^{-1}(P))$ . Since  $f^{-1}(\phi_2(P)) \subseteq \phi_1(f^{-1}(P))$ ,  $ab \notin f^{-1}(\phi_2(P))$ , and so  $f(ab) \notin \phi_2(P)$ . It follows that  $f(a)f(b) \in P \setminus \phi_2(P)$ . Since  $P \in \mathcal{S}pec_{\phi_2}(S)$ ,  $f(a) \in P$  or  $f(b) \in P$  and hence  $a \in f^{-1}(P)$  or  $b \in f^{-1}(P)$ . This implies that  $f^{-1}(P) \in \mathcal{S}pec_{\phi_1}(R)$ .  $\square$ 

**Proposition 2.5.** Let  $f: M \to M'$  be an R-module epimorphism,  $\phi: \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  and  $\phi': \mathcal{S}(M') \to \mathcal{S}(M') \cup \{\emptyset\}$  be two functions with  $(\phi'(N'): f(m)) \subseteq (\phi(f^{-1}(N'): m)$  for each  $m \in M$  where N' is a submodule M' and  $N' \in \mathcal{P}rim_{\phi'}(M')$ . Then  $f^{-1}(N') \in \mathcal{P}rim_{\phi}(M)$ .

**Proof**. Let  $rm \in f^{-1}(N') \setminus \phi(f^{-1}(N'))$  where  $r \in R$ ,  $m \in M$ . Then  $rm \in f^{-1}(N')$  and  $rm \notin \phi(f^{-1}(N'))$ , hence  $rf(m) \in N'$  and  $r \notin (\phi(f^{-1}(N')) : m)$ . Since  $(\phi'(N') : f(m)) \subseteq (\phi(f^{-1}(N')) : m)$  for each  $m \in M$ ,  $r \notin (\phi'(N') : f(m))$ . It follows that  $rf(m) \in N' \setminus \phi'(N')$ . Since  $N' \in \mathcal{P}rim_{\phi'}(M')$ ,  $f(m) \in N'$  or  $r \in \sqrt{(N' : M')}$ . Thus  $m \in f^{-1}(N')$  or  $r^n \in (N' : M')$  for some  $n \in \mathbb{N}$ . Assuming  $r^n \in (N' : M')$ , we have  $r^nM' \subseteq N'$  and hence  $r^nf(M) \subseteq N'$ . Thus  $f^{-1}(f(r^nM)) \subseteq f^{-1}(N')$  and so  $r^nM \subseteq f^{-1}(N')$  and hence  $r^n \in (f^{-1}(N') : M)$ . So  $r \in \sqrt{(f^{-1}(N') : M)}$ . Therefore,  $f^{-1}(N') \in \mathcal{P}rim_{\phi}(M)$ .  $\square$ 

The following proposition is stated for  $\phi$ -prime submodules of M (see [10, Theorem 2.12 part (i)]). We assert it for  $\phi$ -primary submodules of M.

**Proposition 2.6.** Let M be an R-module, K and N be two submodules of M with  $K \subseteq N$ . Let  $\phi : \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  and  $\phi_K : \mathcal{S}(M/K) \to \mathcal{S}(M/K) \cup \{\emptyset\}$  be defined by  $\phi_K(N/K) = (\phi(N) + K)/K$  with  $K \subseteq \phi(N)$ . Then the following statements hold.

- (1) If  $N \in \mathcal{P}rim_{\phi}(M)$ , then  $N/K \in \mathcal{P}rim_{\phi_K}(M/K)$ .
- (2) If  $N/K \in \mathcal{P}rim_{\phi_K}(M/K)$ , then  $N \in \mathcal{P}rim_{\phi}(M)$ .

**Proof**. (1) Let  $\overline{m} \in M/K$  and  $r \in R$  with  $r\overline{m} \in N/K \setminus \phi_K(N/K)$ , where  $\overline{m} = m + K$  for some  $m \in M$ . So,  $rm + K \in N/K$  and  $rm + K \notin \phi_K(N/K)$  and hence  $rm \in N$ . By the definition of  $\phi_K$ , this gives that  $rm \notin \phi(N)$ .

Therefore  $rm \in N \setminus \phi(N)$ . Since  $N \in \mathcal{P}rim_{\phi}(M)$ , so  $m \in N$  or  $r \in \sqrt{(N:M)}$ . Assuming  $m \in N$ , we have  $\overline{m} = m + K \in N/K$  and  $r^n \in (N:M)$  for some  $n \in \mathbb{N}$ , implies that  $r^n(m+K) = r^nm + K \in N/K$ . Thus  $r^n \in (N/K:M/K)$  and  $r \in \sqrt{(N/K:M/K)}$ . So  $N/K \in \mathcal{P}rim_{\phi_K}(M/K)$ .

(2) Let  $r \in R$  and  $m \in M$  with  $rm \in N \setminus \phi(N)$ . Then  $rm \in N$  and  $rm \notin \phi(N)$ . Since  $K \subseteq \phi(N)$ ,  $rm + K \notin (\phi(N) + K)/K$ . Thus  $r(m + K) \in N/k \setminus \phi_K(N/K)$ . Since  $N/K \in \mathcal{P}rim_{\phi_K}(M/K)$ , hence  $m + K \in N/K$  or  $r^n \in (N/K : M/K)$  for some  $n \in \mathbb{N}$ . It follows that  $m \in N$  or  $r^n \in (N : M)$ . Thus  $N \in \mathcal{P}rim_{\phi}(M)$ .  $\square$ 

Corollary 2.7. Let  $\phi : \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function and N be a proper submodule of M. Then N is a  $\phi$ -pimary submodule of M if and only if  $N/\phi(N)$  is a weakly primary submodule of  $M/\phi(N)$ .

**Proof** . It is straightforward.  $\square$ 

Let S be a multiplicatively closed subset of R and  $S^{-1}R$  be a ring of fractions. Let  $\phi: \mathcal{S}(R) \to \mathcal{S}(R) \cup \{\emptyset\}$  be a function and define  $S^{-1}\phi: \mathcal{S}(S^{-1}R) \to \mathcal{S}(S^{-1}R) \cup \{\emptyset\}$  by  $S^{-1}\phi(Q^e) = \phi(Q)^e$  where  $Q^e$  is an extension ideal of Q with  $Q \cap S = \emptyset$  (i.e., let  $\iota: R \to S^{-1}R$  be a canonical ring homomorphism by  $\iota(r) = \frac{r}{1}$ , the extension  $Q^e$  of Q to be the ideal  $S^{-1}R\iota(Q)$  generated by  $\iota(Q)$  in  $S^{-1}R$ . Now, we state the following proposition.

**Proposition 2.8.** Let  $\phi: \mathcal{S}(R) \to \mathcal{S}(R) \cup \{\emptyset\}$  be a function and  $S^{-1}\phi: \mathcal{S}(S^{-1}R) \to \mathcal{S}(S^{-1}R) \cup \{\emptyset\}$  by  $S^{-1}\phi(Q^e) = \phi(Q)^e$ . If  $Q \in \mathcal{P}rim_{\phi}(R)$ , then  $Q^e \in \mathcal{P}rim_{S^{-1}\phi}(S^{-1}R)$ .

**Proof**. Let  $\frac{a}{s}$ ,  $\frac{b}{t} \in S^{-1}R$  with  $\frac{a}{s}\frac{b}{t} \in Q^e \setminus S^{-1}\phi(Q^e)$ . We have  $\frac{ab}{st} \in Q^e$  and  $\frac{ab}{st} \notin S^{-1}\phi(Q^e) = \phi(Q)^e$ . Then there exists  $u \in S$  such that  $uab \in Q$  and  $uab \notin \phi(Q)$ , so  $uab \in Q \setminus \phi(Q)$ . Since  $Q \in \mathcal{P}rim_{\phi}(R)$ ,  $ua \in Q$  or  $b \in \sqrt{Q}$ . This shows that  $\frac{ua}{us} \in Q^e$  or  $\frac{b}{t} \in \sqrt{Q}^e = \sqrt{Q^e}$ , as required.

Let S be a multiplicatively closed subset of R and  $S^{-1}R$  be a ring of fractions. Then every submodule of  $S^{-1}M$  is in the form of  $S^{-1}N$  for some submodule N of M (see [9]). Let  $N(S) = \{m \in M : \exists s \in S, sm \in N\}$ , it is easy to show that N(S) is a submodule of M containing N and  $S^{-1}(N(S)) = S^{-1}(N)$ . Let  $\phi : \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function and define  $S^{-1}\phi : \mathcal{S}(S^{-1}M) \to \mathcal{S}(S^{-1}M) \cup \{\emptyset\}$  by  $S^{-1}\phi(S^{-1}N) = S^{-1}(\phi(N(S)))$  if  $\phi(N(S)) \neq \emptyset$  and  $S^{-1}\phi(S^{-1}N) = \emptyset$  if  $\phi(N(S)) = \emptyset$ . Since  $\phi(N) \subseteq N$ , so  $S^{-1}\phi(S^{-1}N) \subseteq S^{-1}N$ .  $\square$ 

**Theorem 2.9.** Let M be an R-module and S be a multiplicatively closed subset of R. Let  $\phi: \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function such that  $S^{-1}(\phi(N)) \subseteq S^{-1}\phi(S^{-1}N)$ . Let N be a  $\phi$ -pimary submodule of M such that (N:M) be a prime ideal of R and  $\sqrt{(N:M)} \cap S = \emptyset$ . Then  $S^{-1}N \in \mathcal{P}rim_{S^{-1}\phi}(S^{-1}M)$ .

**Proof .** Let  $\frac{r}{s} \in S^{-1}R$  and  $\frac{m}{t} \in S^{-1}M$  with  $\frac{r}{s}\frac{m}{t} \in S^{-1}N \setminus S^{-1}\phi(S^{-1}N)$ . We have  $\frac{rm}{st} \in S^{-1}N$  and  $\frac{rm}{st} \notin S^{-1}\phi(S^{-1}N)$ . Since  $S^{-1}(\phi(N)) \subseteq S^{-1}\phi(S^{-1}N)$ ,  $\frac{rm}{st} \notin S^{-1}(\phi(N))$ . Therefore  $vrm \notin \phi(N)$  for each  $v \in S$ . On the other hand,  $\frac{rm}{st} \in S^{-1}N$  implies that  $urm \in N$  for some  $u \in S$  and hence  $urm \in N \setminus \phi(N)$ . Since N is a  $\phi$ -primary submodule,  $m \in N$  or  $ur \in \sqrt{(N:M)}$ . Since  $u \in S$  and  $\sqrt{(N:M)} \cap S = \emptyset$ , so  $u \notin \sqrt{(N:M)}$  and hence  $u^n \notin (N:M)$  for every  $n \in \mathbb{N}$ . It follows that  $u^k r^k \in (N:M)$  for some  $k \in \mathbb{N}$ . Since  $u^k \notin (N:M)$  and (N:M) is a prime ideal,  $r^k \in (N:M)$  and hence  $\frac{r^k}{s^k} \in S^{-1}(N:M)$ . Since  $S^{-1}(N:R) \subseteq (S^{-1}N:S^{-1}R)$ ,  $\frac{r^k}{s^k} \in (S^{-1}N:S^{-1}R)$  and thus  $\frac{r}{s} \in \sqrt{(S^{-1}N:S^{-1}R)}$ . Hence  $S^{-1}N$  is a  $S^{-1}\phi$ -primary submodule of  $S^{-1}M$ .  $\square$ 

**Definition 2.10.** A proper submodule N of M is said semiprime, if  $r^k m \in N$  for each  $r \in R$ ,  $m \in M$  and  $k \in \mathbb{N}$ , then  $rm \in N$ .

For more details concerning  $\phi$ -semiprime submodules of an R-module refer to [4].

**Proposition 2.11.** Let  $\phi : \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function and N be a semiprime submodule of M. If N is a  $\phi$ -primary submodule of M, then N is a  $\phi$ -prime submodule of M.

**Proof**. Let  $r \in R$  and  $m \in M$  with  $rm \in N \setminus \phi(N)$ . Assume that  $x \notin N$ , since N is a  $\phi$ -primary submodule of M, so  $r \in \sqrt{(N:M)}$ . It follows that  $r^kM \subseteq N$  for some  $k \in \mathbb{N}$  and hence  $r^km \in N$  for each  $m \in M$ . Since N is a semiprime submodule of M, so  $rm \in N$  for each  $m \in M$ . Thus  $r \in (N:M)$ , therefore  $N \in \mathcal{S}pec_{\phi}(M)$ .  $\square$ 

**Definition 2.12.** Let N be a submodule of M. Then N is called relatively divisible submodule denoted by RD-submodule, if  $rN = N \cap rM$  for each  $r \in R$ . R-module M is said prime module, if rx = 0 where  $r \in R$  and  $x \in M$ , then  $r \in Ann(M)$  or x = 0.

Now, with respect to above definition, we assert the following proposition.

**Proposition 2.13.** Let M be a prime module,  $\phi : \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  be a function and N be a proper submodule of M. If N is an RD- submodule of M with  $Ann(M) \subseteq (\phi(N) : M)$ , then  $N \in \mathcal{P}rim_{\phi}(M)$ .

**Proof**. Let  $r \in R$  and  $x \in M$  with  $rx \in N \setminus \phi(N)$ . Since N is an RD-submodule,  $rN = N \cap rM$  and hence  $rx \in N \cap rM$ . It follows that rx = rn for some  $n \in N$ , therefore, r(x - n) = 0. Since M is prime, hence  $r \in Ann(M)$  or x - n = 0. But  $r \in Ann(M)$ , since  $Ann(M) \subseteq (\phi(N) : M)$ ,  $r \in (\phi(N) : M)$  and hence  $rx \in \phi(N)$  which contradicts with our assumption. Thus x - n = 0 and so  $x \in N$ . Therefore  $N \in \mathcal{P}rim_{\phi}(M)$ .  $\square$ 

Let  $R = R_1 \times R_2$  and  $M = M_1 \times M_2$  be an R-module where  $R_i$  is a commutative ring and  $M_i$  is an  $R_i$ -module for i = 1, 2. Each proper submodule of  $M_1 \times M_2$  can be represented in the form of  $N_1 \times N_2$  for some proper submodule  $N_1$  of  $M_1$  and  $N_2$  of  $M_2$ . Moreover  $Q = Q_1 \times Q_2$  is a primary submodule of  $M_1 \times M_2$  if and only if  $Q = Q_1 \times M_2$  or  $Q = M_1 \times Q_2$  for some pimary submodule  $Q_1$  of  $M_1$  and  $Q_2$  of  $M_2$ . Now, let  $\phi : \mathcal{S}(M_1 \times M_2) \to \mathcal{S}(M_1 \times M_2) \cup \{\emptyset\}$  and  $\phi_i : \mathcal{S}(M_i) \to \mathcal{S}(M_i) \cup \{\emptyset\}$  be functions with  $\phi(N_1 \times N_2) = \phi_1(N_1) \times \phi_2(N_2)$  for i = 1, 2. We state the following proposition that some properties of this concept have been investigated for  $\phi$ -prime submodules of  $M_1 \times M_2$  (see [10], Corollary 2.5 and Proposition 2.6).

**Proposition 2.14.** Let  $M = M_1 \times M_2$  be an  $R_1 \times R_2$ -module,  $Q_i$  be a proper submodule of  $M_i$  and  $\phi : \mathcal{S}(M_1 \times M_2) \to \mathcal{S}(M_1 \times M_2) \cup \{\emptyset\}$  and  $\phi_i : \mathcal{S}(M_i) \to \mathcal{S}(M_i) \cup \{\emptyset\}$  be functions with  $\phi(Q_1 \times Q_2) = \phi_1(Q_1) \times \phi_2(Q_2)$  and  $\phi_i(M_i) = M_i$  for i = 1, 2. If  $Q_1 \in \mathcal{P}rim_{\phi_1}(M_1)$  ( $Q_2 \in \mathcal{P}rim_{\phi_2}(M_2)$ ), then  $Q_1 \times M_2 \in \mathcal{P}rim_{\phi}(M_1 \times M_2)$  ( $M_1 \times Q_2 \in \mathcal{P}rim_{\phi}(M_1 \times M_2)$ ).

**Proof .** Let  $(r_1, r_2) \in R_1 \times R_2$  and  $(x_1, x_2) \in M_1 \times M_2$  with  $(r_1, r_2)(x_1, x_2) \in Q_1 \times M_2 \setminus \phi(Q_1 \times M_2)$ . So  $(r_1x_1, r_2x_2) \in Q_1 \times M_2$  and  $(r_1x_1, r_2x_2) \notin \phi_1(Q_1) \times \phi_2(M_2) = \phi_1(Q_1) \times M_2$  and hence  $r_1x_1 \in Q_1$  and  $r_1x_1 \notin \phi_1(Q_1)$ . Since  $Q_1$  is a  $\phi_1$ -primary submodule of  $M_1$ , therefore  $x_1 \in Q_1$  or  $r_1 \in \sqrt{(Q_1 :_{R_1} M_1)}$ . If  $x_1 \in Q_1$ , then  $(x_1, x_2) \in Q_1 \times M_2$ . Thus  $Q_1 \times M_2 \in \mathcal{P}rim_{\phi}(M_1 \times M_2)$ . On the other hand, if  $r_1 \in \sqrt{(Q_1 :_{R_1} M_1)}$ , then  $r_1^n \in (Q_1 :_{R_1} M_1)$  for some  $n \in \mathbb{N}$ . It follows that  $(r_1^n, r_2^n) \in (Q_1 :_{R_1} M_1) \times (M_2 :_{R_2} M_2)$ , so  $(r_1^n, r_2^n) \in (Q_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)$  and hence  $(r_1, r_2) \in \sqrt{(Q_1 \times M_2 :_{R_1 \times R_2} M_1 \times M_2)}$ . Consequently  $Q_1 \times M_2 \in \mathcal{P}rim_{\phi}(M_1 \times M_2)$ . □

Corollary 2.15. Let the situation be as described Proposition 2.14. If  $Q_1 \times M_2 \in \mathcal{P}rim_{\phi}(M_1 \times M_2)$   $(M_1 \times Q_2 \in \mathcal{P}rim_{\phi}(M_1 \times M_2))$ , then  $Q_1 \in \mathcal{P}rim_{\phi_1}(M_1)$   $(Q_2 \in \mathcal{P}rim_{\phi_2}(M_2))$ .

Firstly, assume that M be a free R-module. We assert the next theorem in connection with  $\phi'$ -primary ideal Q of R and  $\phi$ -primary submodule QM of M.

**Theorem 2.16.** Let M be a free R-module with a basis  $\{x_{\alpha}\}_{{\alpha}\in\Omega}$ ,  $\phi: \mathcal{S}(M)\to \mathcal{S}(M)\cup\{\emptyset\}$  and  $\phi': \mathcal{I}(R)\to \mathcal{I}(R)\cup\{\emptyset\}$  be two functions where  $\mathcal{I}(R)$  is the set of all ideals of R. If Q is a  $\phi'$ -primary ideal of R with  $\phi'(Q)M\subseteq\phi(QM)$ , then QM is a  $\phi$ -primary submodule of M.

**Proof**. Since Q is proper ideal of R, QM is a proper submodule of M. Assume that  $r \in R$  and  $x \in M$  with  $rx \in QM \setminus \phi(QM)$ , so  $rx \in QM$  and  $rx \notin \phi(QM)$  with  $x = \sum_{f,s} r_{\alpha}x_{\alpha}$  ( $r_{\alpha} \in R$ ,  $x_{\alpha} \in \{x_{\alpha}\}_{\alpha \in \Omega}$ ). Since M is a free R-module with a basis  $\{x_{\alpha}\}_{\alpha \in \Omega}$ ,  $QM = \{\sum_{f,s} s_i x_i \mid s_i \in Q, x_i \in \{x_{\alpha}\}_{\alpha \in \Omega}\}$ . It follows that  $rx = \sum_{f,s} r(r_{\alpha}x_{\alpha}) = \sum_{f,s} s_i x_i$ . Thus  $s_{\alpha} = rr_{\alpha} \in Q$  for all  $\alpha \in \Omega$ . But  $rr_{\alpha} \notin \phi'(Q)$  for all  $\alpha \in \Omega$ , otherwise  $rr_{\alpha} \in \phi'(Q)$ , so  $rr_{\alpha}x_{\alpha} \in \phi'(Q)x_{\alpha}$  for all  $x_{\alpha} \in \{x_{\alpha}\}_{\alpha \in \Omega}$ . Therefore  $r \sum_{f,s} r_{\alpha}x_{\alpha} \in \phi'(Q)M$ , since  $\phi'(Q)M \subseteq \phi(QM)$ ,  $r \sum_{f,s} r_{\alpha}x_{\alpha} \in \phi(QM)$ . This is a contradiction. We showed that  $rr_{\alpha} \in Q \setminus \phi'(Q)$  for all  $\alpha \in \Omega$ . Since Q is a  $\phi'$ -primary ideal of R,  $r \in Q$  or  $r_{\alpha} \in \sqrt{Q}$ . If  $r \in Q$ , then  $rx \in QM$ . For let  $r_{\alpha} \in \sqrt{Q}$ , we have  $r_{\alpha}^{n} \in Q$  and hence  $r_{\alpha}^{n} \in (QM :_{R} M)$ . Thus  $r_{\alpha} \in \sqrt{(QM :_{R} M)}$ . Consequently,  $QM \in \mathcal{P}rim_{\phi}(M)$ .  $\square$ 

An R-module M is called a multiplication R-module if for every submodule N of M, N = IM for some ideal I of R. It is easily seen that if N is a submodule of M, then N = (N : M)M (see [3, 6]).

**Remark 2.17.** Let M be a free multiplication R-module and N be a proper submodule of M. Let  $\phi: \mathcal{S}(M) \to \mathcal{S}(M) \cup \{\emptyset\}$  and  $\phi': \mathcal{I}(R) \to \mathcal{I}(R) \cup \{\emptyset\}$  be two functions where  $\mathcal{I}(R)$  is the set of all ideals of R. If (N:M) is a  $\phi'$ -primary ideal of R with  $\phi'((N:M))M \subseteq \phi((N:M)M)$ , then N is a  $\phi$ -primary submodule of M.

**Theorem 2.18.** Let M be a free multiplication R-module and N be a proper submodule of M. If N is a almost primary submodule of M such that  $(N:M)^2$  is a prime ideal of R, then N is a primary submodule of M.

**Proof**. Let  $r \in R$  and  $x \in M$  with  $rx \in N$ . If  $rx \notin (N:M)N$ , then  $rx \in N \setminus (N:M)N$ . Since N is a almost primary submodule of M,  $x \in N$  or  $r \in \sqrt{(N:M)}$  and hence N is a primary submodule of M. Now, assume that  $rx \in (N:M)N$ . Since N = (N:M)M,  $rx \in (N:M)^2M$ . Suppose that  $rx \notin \sqrt{(N:M)}$ , we prove that  $x \in N$ . Since M is a free R-module with a basis  $\{x_{\alpha}\}_{\alpha \in \Omega}$ ,  $x = \sum_{f.s} r_{\alpha}x_{\alpha}$  where  $r_{\alpha} \in R$  and  $x_{\alpha} \in \{x_{\alpha}\}_{\alpha \in \Omega}$ . Since  $rx \in (N:M)^2M$ ,  $rx = \sum_{f.s} r'_{\alpha}x_{\alpha}$  where  $r'_{\alpha} \in (N:M)^2$  for all  $\alpha \in \Omega$ . It follows that  $rr_{\alpha} = r'_{\alpha}$  for all  $\alpha \in \Omega$  and hence  $rx_{\alpha} \in (N:M)^2$ . Since  $rx_{\alpha} \in (N:M)^2$ . Since  $rx_{\alpha} \in (N:M)^2$  is a prime ideal of  $rx_{\alpha} \in (N:M)^2$  for all  $rx_{\alpha} \in \Omega$ . This shows that  $rx_{\alpha} \in (N:M)^2M$ , since  $rx_{\alpha} \in (N:M)^2M \subseteq (N:M)^2M$ , and this completes the proof.  $rx_{\alpha} \in (N:M)^2M$ 

Corollary 2.19. Let M be a free multiplication R-module and Q be a proper ideal of R such that  $(QM : M)^2$  is a prime ideal of R. If QM almost primary submodule of M, then QM is a primary submodule of M.

**Proof** . Apply Theorem 2.16.  $\square$ 

### References

- [1] D.D. Anderson and E. Batanieh, Generalizations of prime ideals, Commun. Algebra 36 (2008), 686–696.
- [2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [3] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
- [4] M. Ebrahimpour and F. Mirzaee, On  $\phi$ -semiprime submodules, J. Korean Math. Soc. **54** (2017), no. 4, 1099–1108.
- [5] M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iran. Math. Soc. **39** (2013), no. 5, 919–939.
- [6] Z.A. El-Best and P.F. Smith. Multiplication modules, Comm. Algebra 16 (1998), no. 4, 755–779.
- [7] C.P. Lu, Prime submodules of modules, Commun. Math. Univ. Sancti Pauli 33 (1984), 61–69.
- [8] R.L. McCasland and M.E. Moore, Prime submodules, Commun. Algebra 20 (1992), 1803–1817.
- [9] R. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 2000.
- [10] N. Zamani,  $\phi$ -prime submodules, Glasgow Math. J. **52** (2010), no. 2, 253–259.