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 The aim of this research is to investigate the thermal and mechanical responses in an 

isotropic piezo-thermoelastic semi-infinite medium that is subjected to a moving heat 

source. The exploration has been carried out in the context of two-temperature Moore-

Gibson-Thomson generalized thermoelasticity with memory-dependent derivative (MDD). 

The two-temperature approach is adopted to discern the separate evolution of temperature 

gradients, while a memory-dependent derivative is employed to capture the historical 

behavior of the material. The resulting system of partial differential equations is 

systematically solved in the transformed domain of Laplace using the state space approach, 

an advanced mathematical technique. The Fourier series expansion technique for numerical 

Laplace inversion is used to derive the solution for various thermophysical quantities in the 

real space-time domain. Parametric studies are conducted to explore the influence of the 

heat source speed and the parameter related to the memory-dependent derivative on the 

material’s response. The outcomes of this work are presented graphically for a better 

understanding of the impacts of the parameters considered. Applications of this work 

extend to diverse areas, including material science, structural engineering, and thermal 

management systems. 

 

Nomenclature 

𝑐𝑖𝑗𝑘𝑙    Isothermal elastic parameters  

ℎ𝑖𝑗𝑘     piezoelectric moduli  

𝛾𝑖𝑗      Thermal elastic coupling tensor  

𝑝𝑖       pyroelectric moduli  

𝜖𝑖𝑗      dielectric moduli  

𝜆, µ    Lame’s constants 

𝜎𝑖𝑗      Stress tensor  

𝑒𝑖𝑗       Strain tensor  

𝑢𝑖       Displacement component vector 

𝜌        Material density  

𝛼𝑡       Thermal expansion coefficient  

𝛾        Thermal coupling parameter  

𝜃0     Reference temperature 

𝜃      Increase of thermodynamic temperature        

above 𝜃0  

𝑎𝑖𝑗     Temperature discrepancy tensor  

𝜙      Conductive temperature  

𝜑      Electric potential charge  

𝐸𝑖      Electric field component vector  

𝐷𝑖      Electric displacement  

𝑐𝐸      Specific heat at constant strain  

𝜔      Delay time parameter  
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𝐾𝑖𝑗    Thermal conductivity tensor  

𝐾𝑖𝑗
∗    Tensor for additional material constant  

𝜚𝑒     Free charge of the medium  

𝑄      Heat source 

1. Introduction 

Classical thermoelasticity theory suffers from 
two major imperfections. Firstly, the non-
appearance of an elastic term in the heat 
conduction equation leads to failure in exploring 
heat generation due to elastic changes. Secondly, 
the parabolic nature of the heat conduction 
equation leads to the unrealistic observation of 
infinite speed of thermal signals. The first 
deficiency was addressed by Biot [1], who 
introduced an elastic term into the energy 
equation. This innovation resulted in the 
development of the classical coupled theory of 
thermoelasticity. However, despite this 
improvement, the second deficiency persisted in 
the form of the parabolic nature of the heat 
conduction equation, indicating non-feasible 
boundless speed of thermal wave propagation 
throughout the material. To address the second 
deficiency, various researchers have undertaken 
significant developments and modifications at 
different times, resulting in what is now known 
as the generalized theory of thermoelasticity. 
Pioneering contributions towards the 
formulation and advancement of these 
generalized thermoelastic theories were made 
by notable figures such as Lord and Shulman [2], 
Green and Lindsay [3], Green and Naghdi [4-6], 
Tzou [7], and S. K. Roy Choudhuri [8]. 
Comprehensive insights into these theories and 
their applications can be found in works by 
Hetnarski and Ignaczak [9] and 
Chandrasekharaiah [10]. Ismail et al. [11] have 
investigated the influence of variable thermal 
conductivity on generalized microelongation 
photo-thermoelasticity theory. Lotfy and El-Bary 
[12] have studied the effect of the magnetic field 
when the interaction between the microstretch 
(inner-structure) theory and the generalized 
magneto-photo-thermoelasticiy occurs. It is 
essential to note that the generalized theory of 
thermoelasticity is particularly valuable in 
addressing practical problems associated with 
high heat fluxes occurring within very short time 
intervals, which scenarios are commonly 
encountered in applications such as nuclear 
reactors, laser units, energy channels, and 
similar fields. 

The theory of heat conduction in an elastic 
body, as elucidated by Chen and Gurtin [13], 
Chen et al. [14-15], and Gurtin and Williams [16-
17], introduces the fundamental concept of two 
distinct temperatures: the conductive 
temperature and the thermodynamic 

temperature. The conductive temperature 
characterizes heat conduction originating from 
thermal processes within the body, capturing 
the transfer of heat energy through the material 
due to temperature gradients. In contrast, the 
thermodynamic temperature accounts for heat 
conduction arising from mechanical processes 
occurring between layers and particles within 
the elastic material. One of the main 
characteristics that separates classical 
thermoelasticity (CTE) from two-temperature 
thermoelasticity (2TT) is the temperature 
discrepancy parameter. Its presence accounts 
for non-equilibrium effects, and when 𝑎 = 0 
then the model seamlessly transitions to 
classical thermoelasticity (CTE). Youssef [18] 
has constructed the theory of two-temperature 
generalized thermoelasticity using the LS model 
and proved its uniqueness theorem. Building on 
this, El-Karamany and Ezzat [19] have 
introduced an analogous theory that utilises 
Green Naghdi model III, complemented by 
discussions on reciprocal and uniqueness 
theorems. Kumar et al. [20] have delved into the 
investigation of variational and reciprocal 
concepts within the framework of two-
temperature generalized thermoelasticity. Lotfy 
et al. [21] have studied the photothermal 
excitation process during hyperbolic two-
temperature theory for a magneto-thermoelastic 
semiconducting medium. Seth and Mallik [22] 
have investigated the thermoelastic interactions 
in a homogeneous, transversely isotropic infinite 
medium with a spherical cavity in the context of 
two temperature Lord-Shulman generalized 
theory of thermoelasticity, considering Eringen’s 
nonlocal theory and memory-dependent 
derivative. Kumar et al. [23] have examined the 
behavior of plane wave propagation through the 
interface of an elastic half-space and a 
transversely isotropic piezoviscothermoelastic 
half-space composed of dual phase lag and 
hyperbolic two-temperature theory. 

The exploration of coupling effects between 
different physical fields has become a significant 
area of research in materials science. This 
interdisciplinary approach has opened up new 
possibilities and applications, especially in the 
case of artificial materials like piezoelectric 
materials. The investigation of coupling effects 
for piezoelectric materials has led to numerous 
practical applications across different industries. 
The ability of this material to convert energy 
between different physical fields makes it 
valuable in various technological advancements 
and industrial applications. Kumari et al. [24] 
have studied the effect of gravity on piezo-
thermoelasticity in the context of a phase lag 
model with two-temperature theory. Gupta et al. 
[25] have developed an innovative mathematical 
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model to analyze the behavior of plane waves in 
piezo-thermoelastic materials and investigated 
the influence of moisture and temperature 
diffusivities as well as moisture content on the 
distribution of physical properties. 

The introduction of memory-dependent 
derivative (MDD) by Wang and Li [26], as an 
alternative to fractional order derivatives, 
represents a significant development in 
mathematical modeling and particularly in 
generalized thermoelastic theories. Memory-
dependent derivatives (MDD) are introduced as 
an integral form of a common derivative, 
incorporating a kernel function on a slipping 
interval. This integral nature of MDD, coupled 
with the inclusion of a kernel function, allows for 
a highly flexible representation of memory-
dependent effects. In contrast to fractional 
derivatives, where the order is fixed as a 
fraction, MDD offers a remarkable degree of 
flexibility. The ability to choose both the kernel 
function and delayed time intervals based on the 
specific characteristics of the system enhances 
the adaptability of the model, providing a 
tailored approach to capturing memory-
dependent behavior. According to Wang and Li 
[26], generalized thermoelastic theories utilizing 
MDD surpass those employing fractional 
derivatives in various aspects. The flexibility in 
choosing parameters and the integral form of 
MDD contribute to more accurate and versatile 
representations of physical systems. Notably, the 
order of the derivative in MDD is an integer, 
simplifying numerical calculations and 
enhancing computational efficiency compared to 
fractional order derivatives. This characteristic 
reflects the ease of implementation in numerical 
simulations. Furthermore, MDD is argued to 
better reflect the memory effect in physical 
systems. The ability to select the kernel function 
and delayed time intervals not only offers a 
more intuitive representation but also allows for 
a customizable portrayal of memory-dependent 
behavior. In essence, the definition of MDD is 
suggested to provide a more intuitive physical 
meaning, facilitating a deeper understanding of 
the underlying processes within the system. 

 The work of Yu et al. [27] introduces a novel 
generalized thermoelastic model that 
incorporates memory-dependent derivatives 
[26]. El-Karamany and Ezzat [28] have 
established variational principles, reciprocal 
theorems, and the uniqueness of solutions to 
account for the memory effect in a thermo-
diffusive medium. Biswas [29] has studied the 
effect of the three-phase-lag model in the 
context of memory-dependent derivatives for an 
orthotropic infinite medium. Using an 
eigenvalue technique, Seth et al. [30] have 
investigated the thermoelastic interactions in a 

transversely isotropic unbounded medium with 
memory having a line heat source. These studies 
collectively contribute to advancing our 
understanding of generalized thermoelasticity 
by incorporating memory-dependent derivatives 
into the models, enabling a more comprehensive 
analysis of complex physical phenomena. 
Several other investigations relating to the 
generalized theory of thermoelasticity involving 
MDD have been presented by Abouelregal et al. 
[31], Barak et al. [32], Mondal and Sur [33], 
Othman et al. [34], and Seth and Mallik [35].  

Moore-Gibson-Thomson thermoelasticity is a 
new mathematical framework of linear theory of 
thermoelasticity, introduced by R. Quintanilla 
[36]. He has further extended this theory for 
two-temperature thermoelasticity also [37]. 
Using the Moore-Gibson-Thomson theory of 
thermoelasticity, Bazarra et al. [38] have 
analyzed numerically a physical problem for a 
dielectric medium. Singh and Mukhopadhyay 
[39] have discussed the fundamental solution of 
the Moore-Gibson-Thomson theory of 
thermoelasticity. Lotfy et al. [40] have obtained 
an analytical solution for a semiconductor 
medium in the context of the Moore-Gibson-
Thomson theory of thermoelasticity. Using the 
Moore-Gibson-Thomson theory of 
thermoelasticity, Sur [41] has solved a 
generalized thermoelastic thick plate problem. 
For more applications of Moore-Gibson-
Thomson thermoelasticity on physical problems 
of various considerations, we may refer to 
Abouelregal et al. [42], El-Sapa et al. [43], Gupta 
et al. [44], Riadh et al. [45]. 

The potential function method was used to 
solve problems in thermoelasticity theory. 
However, there are a number of drawbacks to 
this, as listed by Bahar and Hetnarski [46]. 
Firstly, the boundary conditions for physical 
problems are directly related to the actual 
quantities being considered rather than the 
potential functions. Secondly, instead of focusing 
on the actual physical values, more rigorous 
assumptions must be established on the 
behaviour of potential functions. Finally, it was 
found that many integral representations of 
physical quantities are convergent in the 
classical sense, while their potential function 
representations only converge in the 
distributional sense. To overcome these 
difficulties, the state space approach is 
developed [46]. 

This research article delves into the 
exploration of a one-dimensional two-
temperature generalized Moore-Gibson-
Thomson problem for piezo-thermoelastic 
isotropic materials incorporating memory-
dependent derivative and subjected to a moving 
heat source with a constant velocity. The study 
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enriches the understanding of the thermal and 
mechanical response of a piezo-thermoelastic 
isotropic material, together with the 
aforementioned considerations. The two-
temperature approach is adopted to discern the 
separate evolution of temperature gradients, 
while memory-dependent derivatives are 
employed to capture the historical behavior of 
the material. The resulting system of partial 
differential equations is systematically solved in 
the transformed domain of Laplace using the 
state space approach, an advanced mathematical 
technique. Parametric studies are conducted to 
explore the influence of the heat source speed 
and the parameter related to the memory-
dependent derivative on the material’s response. 
The outcomes of this work are presented 
graphically for a better understanding of the 
impacts of the parameters considered. The 
outcomes of this research contribute valuable 
insights to the field of thermoelasticity, 
particularly in understanding the role of MDD in 
modeling the behavior of piezo-thermoelastic 
materials. We can achieve the results for an 
analogous problem [47] which uses integer-
order thermoelasticity theory as a special case of 
our own findings.  

2. Basic Governing Equations 

In a homogeneous anisotropic medium, the 
governing field equations for linear piezo-
thermoelastic interactions are [36-37, 48] 
(a) strain-displacement relations: 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), 𝑖, 𝑗 = 1,2,3,   (1) 

(b) the constitutive equations: 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑒𝑘𝑙  −  ℎ𝑖𝑗𝑘𝐷𝑘  −  𝛾𝑖𝑗𝜃,

𝑖, 𝑗, 𝑘, 𝑙 =  1, 2, 3, (2) 

(c) stress-equations of motion in presence of 
body forces 𝐹𝑖: 

𝜎𝑖𝑗,𝑗  +  𝐹𝑖  =  𝜌𝑢̈𝑖, 𝑖, 𝑗 =  1, 2, 3, (3) 

(d) Gauss’s equation and electric field relations:  

𝐷𝑖,𝑖 = 𝜚𝑒 , 𝐸𝑖 = ℎ𝑖𝑗𝑘𝑙𝑒𝑗𝑘 + 𝜖𝑖𝑘𝐷𝑘 − 𝑝𝑖𝜃,

𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3, (4) 

(e) the heat conduction equation for Moore- 
Moore-Gibson-Thompson thermoelasticity with 
two temperatures and memory-dependent 
derivative:   

(𝐾𝑖𝑗
𝜕

𝜕𝑡
+ 𝐾∗𝑖𝑗)𝜙,𝑖𝑗   

= (1 + 𝜔𝐷𝜔)(𝜌𝑐𝐸𝜃̈ + 𝛾𝜃0𝑒̈𝑖𝑗 − 𝜌𝑄̇),

𝑖, 𝑗 = 1, 2, 3, 

(5) 

 (f) relation between thermodynamic 
temperature 𝜃 and conductive temperature 𝜙: 

𝜙 − 𝜃 = 𝑎𝑖𝑗𝜙,𝑖𝑗 , 𝑖, 𝑗 = 1,2,3.         (6) 

3.  Formulation of the Problem 

We consider a homogeneous, isotropic piezo-
thermoelastic semi-infinite body whose 
boundary is assumed to be free from traction 
but is subjected to a thermal loading. We assume 
that the rectangular Cartesian coordinate system 
(𝑥, 𝑦, 𝑧) as the coordinate axes with 𝑥-axis 
pointing towards the medium and perpendicular 
to the bounding surface. Then the body occupies 
the region 𝑥 ≥  0. The direction of the 
piezoelectric is taken to be parallel to the x-axis. 
Considering a one-dimensional disturbance of 
the medium, the displacement vector 𝑢⃗ , the 
thermodynamic temperature 𝜃, and the 
conductive temperature 𝜙 can be taken in the 
following forms  

𝑢⃗ = (𝑢(𝑥, 𝑡), 0,0), 𝜃 = 𝜃(𝑥, 𝑡),  

𝜙 = 𝜙(𝑥, 𝑡).         
(7) 

Then the strain components in this case become 

𝑒𝑥𝑥 =
𝜕𝑢

𝜕𝑥
.                 (8) 

The cubical dilatation 𝑒 is given by 

𝑒 = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧 = 𝑒𝑥𝑥 =
𝜕𝑢

𝜕𝑥
.  (9) 

In the context of linear theory of generalized 
thermoelasticity without body forces, the 
constitutive equation, the equation of motion, 
and the heat equation can be written as 

𝜎𝑥𝑥  = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
− 𝛾𝜃 − ℎ𝐷,  (10) 

(𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2
− 𝛾

𝜕𝜃

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
,   (11) 

𝐾
𝜕2𝜙̇

𝜕𝑥2
+ 𝐾∗

𝜕2𝜙

𝜕𝑥2
= (1 + 𝜔𝐷𝜔) (𝜌𝑐𝐸

𝜕2𝜃

𝜕𝑡2
   

+ 𝛾𝜃0
𝜕2𝑒

𝜕𝑡2
− 𝜌

𝜕𝑄

𝜕𝑥
).          

(12) 

The relation between conductive temperature 
𝜙 and thermodynamic temperature 𝜃 is 

𝜙 − 𝜃 = 𝑎
𝜕2𝜙

𝜕𝑥2
.                       (13) 

The following non-dimensional variables are 
now introduced: 

𝑥′ = 𝑐0𝜈𝑥,  𝑢
′ = 𝑐0𝜈𝑢,  𝑡

′ = 𝑐0
2𝜈𝑡,  𝜃′ =

𝜃

𝜃0
,  
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𝜙′ =
𝜙

𝜃0
,  𝜔′ = 𝑐0

2𝜈𝜔, 𝜎𝑖𝑗
′ =

𝜎𝑖𝑗
(𝜆 + 2𝜇)

, 

𝐷′ =
ℎ

(𝜆 +2𝜇)
𝐷,  𝑒′ = 𝑒,  𝑄′ =

𝑄̇

𝑐𝐸𝜃0𝑐0
4 𝜈2

, 

where  𝑐0
2 =

𝜆+2µ

𝜌
  and 𝜈 =

𝜌𝑐𝐸

𝐾
 . 

Equations (10) − (13) can be expressed in 
non-dimensional form using the 
dimensionless variables with the primes 
omitted as follows: 

𝜎𝑥𝑥 =  𝑒 − 𝛼1𝜃 −  𝐷, (14) 

𝜕2𝑒

𝜕𝑥2
− 𝛼1

𝜕2𝜃

𝜕𝑥2
=
𝜕2𝑒

𝜕𝑡2
,            (15) 

𝜕2𝜙̇

𝜕𝑥2
+ 𝐶𝑇

2
𝜕2𝜙

𝜕𝑥2
= (1 + 𝜔𝐷𝜔) (

𝜕2𝜃

𝜕𝑡2
+ 𝜀

𝜕2𝑒

𝜕𝑡2

− 𝑄),   
(16) 

𝜙 − 𝜃 = 𝜂
𝜕2𝜙

𝜕𝑥2
,                       (17) 

𝛼1 =
𝛾𝜃0 

𝜆+2𝜇
, 𝐶𝑇 = √

𝐾∗

𝜌𝑐𝐸𝑐0
2   , 𝜀 =

𝛾

𝜌𝑐𝐸
, 𝜂 = 𝑎𝑐0

2 𝜈2.  

The conditions for initialisation and regularity 
are given by     

𝑒 = 𝜃 = 𝜙 = 0   at  𝑡 = 0, 
𝜕𝑒

𝜕𝑡
=

𝜕𝜃

𝜕𝑡
=

𝜕𝜙

𝜕𝑡
= 0 at  𝑡 = 0, 

𝑒 = 𝜃 = 𝜙 = 0 as 𝑥 → ∞, 𝑡 > 0. 
The problem is to solve the equations (14) −
(17) subjected to the following boundary 
conditions:  
(i) stress-free boundary: 

𝜎𝑥𝑥(0, 𝑡) = 0,                       (18) 

(ii) varying thermal load: 

𝜙(0, 𝑡) = 𝜙0 = 𝐹(𝑡),                                       (19) 

where 𝐹(𝑡) is a known function of time 𝑡. 
From now on, we consider the non-dimensional 
kernel function 𝐾(𝑡 −  𝜉) as follows [26]: 

𝑘(𝑡 − 𝜉) = 1 −
2𝑏

𝜔
(𝑡 − 𝜉) +

𝑎2

𝜔2
(𝑡 − 𝜉)2 

 =

{
 
 

 
 

 1,                                  𝑖𝑓 𝑎 = 𝑏 = 0,

1 − (
𝑡−𝜉

𝜔
) ,                       𝑖𝑓 𝑎 = 0, 𝑏 =

1

2
,

(1 −
𝑡−𝜉

𝜔
)
2

,                  𝑖𝑓   𝑎 = 𝑏 = 1,
  

       

𝑎 and 𝑏 being constants. 

4.  Analytical Solution in the Laplace-
Transform Domain 

To solve the problem, we utilise the Laplace 
transform, which is defined as 

𝑔̅ (𝑥, 𝑠) = ∫ 𝑔(𝑥, 𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
,  Re(𝑠) > 0 

on the equations (14) − (17), then we get 

𝜎𝑥𝑥= 𝑒̅ − 𝛼1𝜃̅ −
𝐷

𝑠
,                   (20) 

𝑑2𝑒̅

𝑑𝑥2
− 𝛼1

𝑑2𝜃̅

𝑑𝑥2
= 𝑠2𝑒̅,                  (21) 

(𝐶𝑇
2 + 𝑠)

𝑑2𝜙̅

𝑑𝑥2
= {1 + 𝐺(𝜔, 𝑠)}(𝑠2𝜃̅ + 𝜀𝑠2𝑒̅

− 𝑄̅),                 
(22) 

𝜙̅ − 𝜃̅ = 𝜂
𝑑2𝜙̅

𝑑𝑥2
,                       (23) 

where  

𝐺𝜔(𝑝) = 1 −
2𝑏

𝜔𝑝
+
2𝑎2

𝜔2𝑝2
 

−𝑒−𝑝𝜔 [(1 − 2𝑏 + 𝑎2) +
2(𝑎2 − 𝑏)

𝜔𝑝
+
2𝑎2

𝜔2𝑝2
]. 

The boundary conditions (18) and (19) in the 
transformed domain take the forms     

𝜎(0, 𝑠) = 𝜎𝑥𝑥 = 0,                                 (24) 

𝜙̅(0, 𝑠) = 𝜙̅0 = 𝐹̅(𝑠).                        (25) 

We assume that the medium is subjected to a 
moving heat source of constant strength that 
constantly releases energy while moving along 
the positive direction of the 𝑥-axis with a 
constant velocity 𝛼. The following non-
dimensional structure is assumed to be this 
moving heat source: 

𝑄 = 𝑄0𝐻(𝛼𝑡 − 𝑥),                                       (26) 

where 𝑄0 is the heat source strength (constant) 
and 𝐻(𝑡) is the Heaviside unit step function. 
Applying Laplace transform on equation (26), 
we have 

𝑄̅ =
𝑄0
𝑠
𝑒−

𝑠𝑥

𝛼 .                                               (27) 

From equations (22) and (27), we get 

(𝐶𝑇
2 + 𝑠)

𝑑2𝜙̅

𝑑𝑥2
= {1 + 𝐺(𝜔, 𝑠)} (𝑠2𝜃̅ + 𝜀𝑠2𝑒̅

−
𝑄0
𝑠
𝑒−

𝑠𝑥

𝛼 ).                      
(28) 

Using equation (23) in (28), we get 

𝜃̅ = (1 − 𝜂𝑚)𝜙̅ − 𝜂𝑚𝜀𝑒̅  −  𝜂𝛼2𝑒
−
𝑠𝑥

𝛼 , (29) 
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again from equations (23) and (29) 

𝑑2𝜙̅

𝑑𝑥2
= 𝑚𝜙̅ + 𝑚𝜀𝑒̅ + 𝛼2𝑒

−
𝑠𝑥

𝛼 ,                   (30) 

where 

𝑚 =
{1 + 𝐺(𝜔, 𝑠)}𝑠2

𝐶𝑇
2 + 𝑠 + 𝜂𝑠2{1 + 𝐺(𝜔, 𝑠)}

, 

  𝛼2  

=
𝑄0{1 + 𝐺(𝜔, 𝑠)}

𝑠[𝐶𝑇
2 + 𝑠 + 𝜂𝑠2{1 + 𝐺(𝜔, 𝑠)}]

.                       

 

Putting the value of 𝜃 from equation (29) in 
equation (21) and using equation (30) we have 

𝑑2𝑒̅

𝑑𝑥2
= 𝑀1𝑒̅ +  𝑀2𝜙̅ + 𝑀3𝑒

−
𝑠𝑥

𝛼 ,                   (31) 

where  

𝑀1 =
𝑠2 + 𝛼1𝜀(1 − 𝜂𝑚)𝑚

1 + 𝛼1𝜂𝑚𝜀
,𝑀2 =

𝛼1(1 − 𝜂𝑚)𝑚

1 + 𝛼1𝜂𝑚𝜀
,  

𝑀3 =
𝛼1𝛼2(1 − 𝜂𝑚) + 𝜂𝛼1𝛼2𝛼

2

1 + 𝛼1𝜂𝑚𝜀
. 

Equations (30) and (31) can be written in the 
form of a vector-matrix differential equation as 
follows 

𝑑2𝑋̅(𝑥, 𝑠)

𝑑𝑥2
= 𝑃(𝑠)𝑋̅(𝑥, 𝑠)  +  𝐹(𝑠)𝑒−

𝑠𝑥

𝛼 ,     (32) 

where  

𝑋̅(𝑥, 𝑠) = (
𝜙̅(𝑥, 𝑠)

𝑒̅(𝑥, 𝑠)
) , 𝑃(𝑠) = (

𝑚 𝜀𝑚
𝑀2 𝑀1

),   

𝑅(𝑠) = (
𝛼2
𝑀3 

). 

State Space Approach 

One way to express the formal solution to the 
system (32) is as follows: 

𝑋̅(𝑥, 𝑠) = 𝐶(𝑠)𝑒−√𝑃(𝑠) 𝑥  + 𝐷(𝑠)𝑒−ℎ𝑥,  (33) 

where  

𝐷(𝑠) = (
𝐷1
𝐷2
) = {ℎ2𝐼 − 𝑃(𝑠)}−1𝑅(𝑠),   

𝐼 =  (
1 0
0 1

) , 𝐶(𝑠) = 𝑋̅(0, 𝑠) −  𝐷(𝑠), 

ℎ =
𝑠

𝛼
 ,    𝑋̅(0, 𝑠) =  (

𝜙̅0
𝑒̅0
),   

𝜙̅0 = 𝐹̅(𝑠), 𝑒̅0  =  𝑒̅(0, 𝑠). 

The characteristic equation of the matrix  𝑃(𝑠) is 
given by 

𝜒2 − (𝑚 +𝑀1)𝜒 + (𝑚𝑀1 −𝑚𝑀2𝜀) = 0. 

The roots of the characteristic equation 𝜒1 and 
𝜒2 satisfy the relations:  

𝜒1 + 𝜒2 = 𝑚 +𝑀1    and   𝜒1 𝜒2 = 𝑚𝑀1 −𝑚𝑀2𝜀. 

The spectral decomposition of 𝑃(𝑠) takes the 
form 

𝑃(𝑠) =  𝜒1𝐸1  +  𝜒2𝐸2,                         (34) 

where 𝐸1, 𝐸2 are projectors of the matrix 𝑃(𝑠), 
given by 

𝐸1 =
1

𝜒1 − 𝜒2
(

𝑚 − 𝜒2 𝜀𝑚
(𝜒1 −𝑚)(𝜒2 −𝑚)

𝑚𝜀
𝜒1 −𝑚

), 

𝐸2 =
1

𝜒1 − 𝜒2
(

𝜒1 −𝑚 −𝜀𝑚
(𝜒1 −𝑚)(𝜒2 −𝑚)

𝑚𝜀
𝑚 − 𝜒2

). 

Then, we have 

𝑄(𝑠) = √𝑃(𝑠) = √𝜒1𝐸1 + √𝜒2𝐸2  

=
1

√𝜒1+√𝜒2
(
𝑚 + √𝜒1𝜒2 𝜀𝑚

𝑀2 𝑀1 + √𝜒1𝜒2
).      

(35) 

Now the solution (33) becomes 

𝑋̅(𝑥, 𝑠) =  𝐶(𝑠)𝑒−𝑄(𝑠)𝑥 +  𝐷(𝑠)𝑒−ℎ𝑥 .    (36) 

The Cayley-Hamilton theorem allows us to 
express the matrix exponential 𝑒𝑥𝑝(−𝑄(𝑠)𝑥) in 
equation (36) as  

𝑒𝑥𝑝(−𝑄(𝑠)𝑥) =  𝑎0(𝑥, 𝑠)𝐼 + 𝑎1(𝑥, 𝑠)𝑄(𝑠),    (37) 

where 𝑎0 , 𝑎1 are the coefficients depending on 𝑠, 
𝑥 to be determined from the equations 

𝑒𝑥𝑝(−𝐽1𝑥) =  𝑎0   +  𝑎1𝐽1,         (38) 

𝑒𝑥𝑝(−𝐽2𝑥)  =  𝑎0  +  𝑎1𝐽2, (39) 

where 𝐽1,  𝐽2 are the eigenvalues of the matrix 
Q(s).  
Solving (38) and (39), we get 𝑎0 and 𝑎1 as 
follows:  

𝑎0 =
𝐽1𝑒

−𝐽2𝑥   − 𝐽2𝑒
−𝐽1𝑥

𝐽1 − 𝐽2
, 𝑎1 =

𝑒−𝐽1𝑥   − 𝑒−𝐽2𝑥

𝐽1 − 𝐽2
. 

Hence, (37) can be written as 

𝑒𝑥𝑝(−𝑄(𝑠)𝑥) =  𝐿(𝑥, 𝑠) =  (𝑙𝑖𝑗(𝑥, 𝑠)) ,

𝑖, 𝑗 =  1, 2,  
(40) 

where      𝑙11 =
(𝐽1
2 − 𝑚)𝑒−𝐽2𝑥−(𝐽2

2 − 𝑚)𝑒−𝐽1𝑥

𝐽1
2−𝐽2

2 , 
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𝑙12 =
𝜀𝑚(𝑒−𝐽1𝑥 − 𝑒−𝐽2𝑥)

𝐽1
2 − 𝐽2

2 ,  𝑙21

=
𝑀2(𝑒

−𝐽1𝑥 − 𝑒−𝐽2𝑥)

𝐽1
2 − 𝐽2

2 , 

𝑙22 =
(𝐽1
2  −  𝑀1)𝑒

−𝐽2𝑥 − (𝐽2
2  −  𝑀1)𝑒

−𝐽1𝑥

𝐽1
2 − 𝐽2

2 . 

Using equation (40), we can write the solution of 
equation (36) in the following form 

(𝜙̅
𝑒̅
) = (

𝑙11 𝑙12
𝑙21 𝑙22

) (
𝑐1
𝑐2
) + (

𝐷1
𝐷2
) 𝑒−ℎ𝑥 ,      (41) 

𝑐1 = 𝜙̅0 − 𝐷1, 𝑐2 = 𝑒̅0 − 𝐷2,  

D1 =
α2(h

2 −M2) + mεM3

(h2 − J1
2)(h2 − J2

2)
,   

𝐷2 =
M3(h

2 −m) + α2M1

(h2 − J1
2)(h2 − J2

2)
. 

Hence, 

𝜙̅ = 𝜙1𝑒
−𝐽2𝑥 − 𝜙2𝑒

−𝐽1𝑥 ,             (42) 

𝑒̅ = 𝑒1𝑒
−𝐽2𝑥 − 𝑒2𝑒

−𝐽1𝑥,         (43) 

where  

𝜙1 =
(𝐽1
2 −𝑚)(𝜙̅0 − 𝐷1) − 𝜀𝑚(𝑒̅0 − 𝐷2)

𝐽1
2 − 𝐽2

2 , 

𝜙2 =
(𝐽2
2 −𝑚)(𝜙̅0 − 𝐷1) − 𝜀𝑚(𝑒̅0 − 𝐷2)

𝐽1
2 − 𝐽2

2 , 

𝑒1 =
(𝐽1
2 −𝑀1)(𝑒̅0 − 𝐷2) − 𝑀2(𝜙̅0 − 𝐷1)

𝐽1
2 − 𝐽2

2 , 

𝑒2 =
(𝐽2
2 −𝑀1)(𝑒̅0 − 𝐷2) − 𝑀2(𝜙̅0 − 𝐷1)

𝐽1
2 − 𝐽2

2 . 

Using equation (8), we get from equation (43) 

𝑒̅𝑥𝑥 = 𝑒1𝑒
−𝐽2𝑥 − 𝑒2𝑒

−𝐽1𝑥 .                  (44) 

Substituting equatiions (42) and (43) into 
equation (29), then we have 

𝜃̅ = 𝜃1𝑒
−𝐽2𝑥 − 𝜃2𝑒

−𝐽1𝑥 + 𝜃3𝑒
−ℎ𝑥 ,                     (45) 

where   

𝜃1 = (1 − 𝜂𝑚)𝜙1 − 𝜂𝑚𝜀𝑒1, 

𝜃2 = (1 − 𝜂𝑚)𝜙2 − 𝜂𝑚𝜀𝑒2, 

𝜃3 = (1 − 𝜂𝑚)𝐷1 − 𝜂𝑚𝜀𝐷2 − 𝜂𝛼2. 

Now the solution for stress 𝜎𝑥𝑥  is obtained from 
equation (20) by using equations (43) and 
(45) as follows 

𝜎𝑥𝑥 = 𝜎1𝑒
−𝐽2𝑥 − 𝜎2𝑒

−𝐽1𝑥 + 𝜎3𝑒
−ℎ𝑥  −

𝐷

𝑠
, (46) 

𝜎1 = 𝑒1 − 𝛼1𝜃1, 𝜎2 = 𝑒2 − 𝛼1𝜃2, 

𝜎3 = 𝐷2 − 𝛼1𝜃3. 

Integrating equation (44) and using the 
regularity condition, we get 

𝑢̅ =
𝑒2
𝐽1
𝑒−𝐽1𝑥 −

𝑒1
𝐽2
𝑒−𝐽2𝑥 −

𝐷2
ℎ
𝑒−ℎ𝑥 ,                 (47) 

which completes the solution in the Laplace 
transform domain.  
We now solve this problem for thermal shock. 

Thermal Shock Problem 

Let, 𝐹(𝑡)  =  𝐹0𝐻(𝑡) where 𝐹0 is constant and 
𝐻(𝑡) is the Heaviside unit step function. Taking 
the Laplace transform, we have 

𝜙̅0 = 𝐹̅(𝑠) =
𝐹0
𝑠
.               (48) 

Using boundary conditions (24), (25) on 
equations (20), (29) we get 

𝛼1𝜃̅0 = 𝑒̅0 −
𝐷

𝑠
, 

𝜃̅0 = (1 − 𝜂𝑚)𝜙̅0 − 𝜂𝑚𝜀𝑒̅0 − 𝜔𝜂, 

 for the determination of  𝑒̅0 and 𝜃̅0. 

Solving these,   

𝑒̅0 =
1

1 + 𝑚𝜂𝜀𝛼1
{
𝛼1(1 − 𝑚𝜂)𝐹0

𝑠
− 𝜂𝛼1𝛼2      

+
𝐷

𝑠
},           

(49) 

and 

𝜃̅0 =
1

1 + 𝑚𝜂𝜀𝛼1
  {
(1 − 𝑚𝜂)𝐹0

𝑠
 − 𝜂𝛼2

−
𝐷𝜂𝑚𝜀

𝑠
}.                  

(50) 

Thus, we get a complete solution of the thermal 
shock problem in the Laplace transform domain 
using the equations (48) and (49) into the 
equations (42), (44), (45), (46) and (47). 

From our results, one may derive all the results 
of [47] by taking 𝜔 → 0, 𝐷 = 0 and 𝐾𝑖𝑗 = 0. 

5.  Numerical Results and Discussion 

For a real space-time domain solution of the 
displacement component 𝑢, stress component 
𝜎𝑥𝑥 , strain component 𝑒𝑥𝑥 , conductive 
temperature 𝜙 and thermodynamic temperature 
𝜃, we have to apply the numerical inversion 
algorithm developed by Honig and Hirdes [49]. 
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For computational purposes, the physical data 
for the chosen material is given below [50] 

𝐾 = 386 N/Ks,  𝛼𝑡  = 1.78 ×  10−5 K −1, 

𝑐𝐸 = 383m2/K,  λ=7.76 ×  1010N/m2, µ =
3.86 ×  1010 N/m2,  𝜌 =  8, 954 kg/m3, 

𝜃0 = 293K, 𝐾∗=7.0, 𝐹0 = 1.0, 𝜂 = 0.5, 

𝜀 = 0.003887,   𝛼1 = 0.036991. 

The computations were carried out for 𝑡 =  1. 
For varying values of the delay time parameter 
𝜔 and the heat source speed 𝛼, the displacement, 
conductive temperature, thermodynamic 
temperature, thermal stress, and strain 
distributions are graphically depicted. 
Figures 1 − 5 are drawn to observe the effect of 
the heat source speed 𝛼 on the different 
thermophysical quantities when the electric 
displacement 𝐷 =  0.5, two temperature 
parameters 𝜂 =  0.5, delay time parameter 𝜔 =
 0.5 and the kernel function 𝐾(𝑡 −  𝜉) =  1 −
(𝑡−𝜉)

𝜔
 . 

Figure 1 demonstrates that the displacement 𝑢 
gets its maximum magnitude at the boundary 
(𝑥 = 0.0) of the semi-infinite medium and the 
magnitude of 𝑢 is larger for a smaller value of 𝛼. 
Effect of 𝛼 on 𝑢 appers in the region 0 ≤ 𝑥 ≤ 0.5 
(approx).  
 

 
 

Fig. 1. Variation of 𝑢 with respect to 𝑥. 

 

 
Fig. 2. Variation of 𝜙 with respect to 𝑥. 

From figure 2 we see that the conductive 
temperature 𝜙 satisfies our assumed boundary 

condition. Each curve is concave upward, and 
the magnitude of 𝜙 is larger for a smaller value 
of the heat source speed α in the interval 0 <
 𝑥 < 0.5. For a larger value of 𝛼, conductive 
temperature 𝜙 travels a smaller distance to 
vanish. For all curves, ϕ eventually approaches 
zero as x increases. This indicates that thermal 
disturbances do not propagate infinitely through 
the material; there is a limit beyond which 
temperature is essentially unaffected. 

 

Fig. 3. Variation of 𝜃 with respect to 𝑥. 

From figure 3 we see that thermodynamic 
temperature 𝜃 behaves oscillatory in 0 < 𝑥 <
0.5 (approx) and then decay to vanish.  
From Figure 4, we see that the stress component 
𝜎𝑥𝑥  satisfies the assumed boundary condition. 
As 𝛼 increases, the peak compressive stress 
becomes more negative in −0.5 < 𝑥 < −0.65. A 
faster-moving heat source implies a more rapid 
localized heating and thermal expansion. This 
rapid expansion, when constrained, generates 
higher rates of thermal strain, which in turn 
leads to greater magnitudes of induced stress. 
The material has less time to deform or dissipate 
heat, leading to a more intense stress response. 
After 𝑥 = 1.8, the magnitude of 𝜎𝑥𝑥  increases to 
become stable. 

 

Fig. 4. Variation of 𝜎𝑥𝑥  with respect to 𝑥. 

From Figure 5 it is found that the strain 
component 𝑒𝑥𝑥  gets its greatest magnitude at the 
bounding plane (𝑥 =  0.0). In the region 0.0 <
𝑥 < 0.3 (approx), the magnitude of 𝑒𝑥𝑥  is 
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largervaluessmaller value of 𝛼, but in 0.3 < 𝑥 <
1.8 (approx) reverse phenomena are observed. 

 

Fig. 5. Variation of 𝑒𝑥𝑥 with respect to 𝑥. 

From Figure 6 it is clear that, as 𝜔 increases 
from 0.5 to 1.5, the magnitude of the initial 
negative displacement at 𝑥 = 0 becomes 
significantly larger. Physically, this signifies that 
if the system is under a sustained load or has 
experienced a significant historical event, a 
longer memory means that the cumulative effect 
of that history is more strongly felt in the 
current displacement. Magnitude of 𝑢 decreases 
in the interval 0.0 ≤ 𝑥 ≤ 0.28 (approx) and 
variation of 𝑢 appears in the region 0.0 ≤ 𝑥 <
0.4 (approx). When the value of the delay time 
parameter 𝜔 is larger then the magnitude of 
displacement component 𝑢 is larger in 0.0 ≤ 𝑥 ≤
0.28 (approx). 

 

Fig. 6. Variation of 𝑢 with respect to 𝑥. 

 

Fig. 7. Variation of 𝜙 with respect to 𝑥. 

Figure 7 shows that the conductive temperature 
𝜙 satisfies our assumed boundary condition in 
all considerations. For lesser value of 𝜔 the 
magnitude of 𝜙 is smaller, and each curve is 
concave upward. Over a larger span of 𝑥, the 
conductive temperature 𝜙 disappears for a 
smaller value of 𝜔. 
From figure 8 we see that, magnitude of the 
thermodynamic temperature 𝜃 is larger for a 
larger value of 𝜔 in 0 < 𝑥 < 0.28 (approx). The 
effect of ω on θ appears in the region 0.0 ≤ 𝑥 ≤
0.3 (approx) and afterwards, with the increase 
of 𝑥, the magnitude of 𝜃 decreases to vanish for 
all choices of 𝜔. 

 

Fig. 8. Variation of 𝜃 with respect to 𝑥. 

Figure 9 shows that the stress 𝜎𝑥𝑥  satisfies our 
assumed boundary condition and they suddenly 
become compressive after 𝑥 = 0.2 (approx). We 
see that the magnitude of 𝜎𝑥𝑥  is greater for a 
greater value of ω in the region 𝑥 ≥ 0.2 (approx) 
and finally, they become stable. 

 

Fig. 9. Variation of 𝜎𝑥𝑥  with respect to x.  
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Fig. 10. Variation of 𝑒𝑥𝑥 with respect to 𝑥. 

Figure 10 shows that strain 𝑒𝑥𝑥  gets its 
maximum value at the boundary 𝑥 = 0.0. Strain 
gets its larger value for a larger value of 𝜔 in the 
interval 0.0 ≤ 𝑥 ≤ 0.3 (approx) and becomes 
negative near 𝑥 = 0.3 before vanishing.  

6. Conclusions 

The problem of investigating the thermophysical 
quantities like stress, strain, displacement, 
conductive temperature, and thermodynamic 
temperature in a semi-infinite piezo-
thermoelastic isotropic material is solved in the 
light of two temperature Moore-Gibson-
Thompson thermoelasticity based on MDD. State 
space approach has been used to obtain the 
solution of the problem in the transformed 
domain of Laplace. Numerical inversion of the 
transformed solution has been performed using 
a method due to Honig and Hirdes [49]. The 
analysis of the results obtained allows us to 
make the following conclusions: 
1. Thermophysical quantities like displacement, 
conductive temperature, thermodynamic 
temperature, and strain vanish travelling a 
certain distance in conformity with the 
generalized theory of thermoelasticity.  
2. Significant effect of the delay time parameter 
ω and the heat source speed 𝛼 are observed in 
the distribution of the thermophysical 
quantities. 
 3. The displacement component 𝑢 gets its 
maximum magnitude at the boundary 𝑥 =  0.0 
for every choice of the heat source speed 𝛼 and 
the delay time parameter 𝜔. 
4. Under all circumstances, the conductive 
temperature 𝜙 satisfies our assumed boundary 
condition. 
5. The conductive temperature 𝜙 is concave 
upward for every choice of the heat source 
speed 𝛼 and the delay time parameter 𝜔. 
6. The stress  𝜎𝑥𝑥  satisfies our assumed 
condition in all considerations, and after 
travelling some distance (after 𝑥 =  0.2) from 
origin, 𝜎𝑥𝑥  becomes compressive for every 
choice of the delay time parameter 𝜔 and the 
heat source speed 𝛼.  
7. For each combination of the delay time 
parameter 𝜔 and the heat source speed 𝛼, the 
strain 𝑒𝑥𝑥  reaches its maximum magnitude at the 
boundary 𝑥 =  0.0.  
8.  From our results, one may derive all the 
results of [47] by taking 𝜔 → 0,𝐷 = 0 and 𝐾𝑖𝑗 =

0. 
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