
تعداد نشریات | 21 |
تعداد شمارهها | 651 |
تعداد مقالات | 9,502 |
تعداد مشاهده مقاله | 68,336,312 |
تعداد دریافت فایل اصل مقاله | 47,843,744 |
Synthesis and Investigation of Different Properties of K2FeO4/ZnO and Its GO-Based Nanocomposites | ||
Progress in Physics of Applied Materials | ||
دوره 6، شماره 1 - شماره پیاپی 10، مرداد 2026، صفحه 43-55 اصل مقاله (1.08 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2025.38094.1151 | ||
نویسندگان | ||
Azam Hashemi1؛ Mahmoud Naseri* 1؛ Mohammad Mahdi Shahidi2؛ Hossein Mojtabazadeh3؛ Nasrin Salehi4؛ Mahshid Chireh1 | ||
1Department of Physics, Faculty of Science, Malayer University, Malayer, Iran | ||
2UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Muckleneuk Ridge, Pretoria, 392, South Africa | ||
3Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran | ||
4Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran | ||
تاریخ دریافت: 24 خرداد 1404، تاریخ بازنگری: 18 تیر 1404، تاریخ پذیرش: 19 تیر 1404 | ||
چکیده | ||
This paper presents significant findings regarding the impact of ZnO and graphene oxide (GO) doping on the structural and electrical properties of potassium ferrate nanostructures. The samples were synthesized using a thermal treatment method at temperatures of 773, 873, and 973 K. The structural characteristics, optical and magnetic properties of the synthesized samples were analyzed using various techniques. The photocatalytic activity of K2FeO4/ZnO nanoparticles under visible light irradiation was investigated using methylene blue (MB) degradation as a probe reaction. The results indicated a significant enhancement in photocatalytic activity when GO was incorporated into the K2FeO4/ZnO nanocomposite. The dielectric constant and dielectric loss were measured at room temperature across a frequency range of 4 to 8 MHz using an LCR meter. Our findings reveal that the addition of graphene oxide (GO) did not result in a significant enhancement in dielectric permittivity compared to potassium ferrate/ZnO nanocomposites. Therefore, potassium ferrate-based nanocomposites, given their favorable dielectric properties, are promising candidates for a wide range of applications, including devices operating at microwave frequencies, various optical and microelectronic applications, and as materials for microwave absorption. | ||
کلیدواژهها | ||
Nanoferrate؛ Thermal treatment؛ Dielectric؛ Graphene oxide؛ Photocatalytic | ||
مراجع | ||
[1] Zahid, M., Touili, S., Mezzane, D., Gouné, M., Uršič, H., Šadl, M., Elamraoui,Y., Hoummada,Kh.,Kutnjak,Z. and El Marssi, M. 2023. Dielectric and energy storage properties of surface-modified BaTi 0.89 Sn 0.11 O3@ polydopamine nanoparticles embedded in a PVDF-HFP matrix. RSC advances, 13(37), pp.26041-26049.
[2] Ciobanu, R. C., Damian, R. F., Schreiner, C. M., Aradoaei, M., Sover, A. and Raichur, A. M. 2023. Simulation of Dielectric Properties of Nanocomposites with Non-Uniform Filler Distribution. Polymers, 15(7), p.1636.
[3] Qiao, X., Zhang, X., Wu, D., Chao, X. and Yang, Z. 2018. Influence of Bi nonstoichiometry on the energy storage properties of 0.93 KNN–0.07 Bi x MN relaxor ferroelectrics. Journal of Advanced Dielectrics, 8(06), p.1830006.
[4] Shaheen, K., Shah, Z., Arshad, T., Ma, L., Liu, M., Wang, Y., Cui., J. and Suo, H. 2020. Electrical, dielectric and photocatalytic applications of iron-based nanocomposites. Applied Physics A, 126, pp.1-10.
[5] Pan, W., Cao, M., Hao, H., Yao, Z., Yu, Z. and Liu, H. 2020. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 40(1), pp.49-55.
[6] Wahba, A. M., and Mohamed, M. B. 2014. Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0. 8Ni0. 2Fe2O4 ferrite. Ceramics International, 40(4), pp.6127-6135.
[7] Sadasivuni, K. K., Ponnamma, D., Kumar, B., Strankowski, M., Cardinaels, R., Moldenaers, P., Thoms., S. and Grohens, Y. 2014. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Composites Science and Technology, 104, pp.18-25.
[8] Mehmood, K., Rehman, A. U., Amin, N., Morley, N. A. and Arshad, M. I. 2023. Graphene nanoplatelets/Ni-Co-Nd spinel ferrite composites with improving dielectric properties. Journal of Alloys and Compounds, 930, pp.167335.
[9] Chireh, M., Naseri, M., Rahimi, M., Soleymani, A. R., 2024. Synthesis ZnO/RGO nanocomposite: Structural characteristics and antifungal/antibacterial properties. Progress in Physics of Applied Materials, 4, pp.77-81.
[10] Prasad, R., Bhattacharyya, A. and Nguyen, Q. D. 2017. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in Microbiology, 8, p.1014.
[11] Rodríguez-González, V., Terashima, C., and Fujishima, A. 2019. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, pp.49-67.
[12] Amiri, H., Nabizadeh, R., Martinez, S. S., Shahtaheri, S. J., Yaghmaeian, K., Badiei, A., and Naddafi, K., 2018. Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and environmental safety, 147, pp.919-925.
[13] El-Saeid, M. H., BaQais, A., & Alshabanat, M., 2022. Study of the photocatalytic degradation of highly abundant pesticides in agricultural soils. Molecules, 27(3), p.634.
[14] Anajafi, Z., Naseri, M., Hashemi, A. and Neri, G., 2023. Structural and photocatalytic properties of CeFeO3 and CeFeO3/GO nanostructures. Journal of Sol-Gel Science and Technology, 105(1), pp.116-126.
[15] Hashemi, A., Naseri, M. and Chireh, M. 2021. Evaluation of physical properties, mechanism and photocatalytic activities of potassium ferrate nanostructures as an adsorbent for MB dye under UV light. Applied Physics A, 127(10), p.743.
[16] Chireh, M., Karam, Z. M., Naseri, M., Jafarinejad-Farsangi, S. and Ghaedamini, H. 2022. Synthesis, characterization and cytotoxicity study of graphene/doped ZnO/SiO2 nanocomposites. Applied PhysicsA, 128(4), p.307.
[17] Omar, F. S., Nay Ming, H., Hafiz, S. M. and Ngee, L. H. 2014. Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. International Journal of Photoenergy, 2014(1), p.176835.
[18] Chireh, M., Naseri, M., and Kamalianfar, A. 2020. 57Fe Mossbauer spectroscopy investigation of NiFe2O4 and MnFe2O4 ferrite nanoparticles prepared by thermal treatment method. Applied Physics A, 126(7), p.543.
[19] Zulfiqar Ahmed, M. N., Chandrasekhar, K. B., Jahagirdar, A. A., Nagabhushana, H. and Nagabhushana, B. M. 2015. Photocatalytic activity of nanocrystalline ZnO, α-Fe2O3 and ZnFe2O4/ZnO. Applied Nanoscience, 5, pp.961-968.
[20] Zamani, M., Naderi, E., Aghajanzadeh, M., Naseri, M., Sharafi, A. and Danafar, H. 2019. Co1−XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study. Journal of molecular liquids, 274, pp.60-67.
[21] Chireh, M., Naseri, M., &Ghaedamini, H. 2021. Enhanced microwave absorption performance of graphene/doped Li ferrite nanocomposites. Advanced Powder Technology, 32(12), pp.4697-4710.
[22] Salimi, N., Mohammadi-Manesh, E., Ahmadvand, N., Danafar, H. and Ghiasvand, S. 2024. Curcumin-Loaded by Fe3O4/GO and Fe3O4/ZnO/GO Nanocomposites for Drug Delivery Applications: Synthesis, Characterization and Anticancer Assessment. Journal of Inorganic and Organometallic Polymers and Materials, 34(3), pp.1256-1271.
[23] Safari, M., Naseri, M., Naderi, E. and Esmaeili, E. 2022. Magnetically targeted delivery of Quercetin-loaded Ca1–x Mn x Fe2O4nanocarriers: synthesis, characterization and in vitro study on HEK 293-T and MCF-7 cell lines. Applied Physics A, 128(6), p.486.
[24] Liu, P., Yao, Z. and Zhou, J. 2015. Preparation of reduced graphene oxide/Ni0. 4Zn0. 4Co0. 2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceramics International, 41(10), pp.13409-13416.
[25] Naseri, M., 2015. Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method. Journal of Magnetism and Magnetic Materials, 392, 107-113.
[26] Safari, M., Naseri, M., Esmaeili, E., and Naderi, E. 2023. Green synthesis by celery seed extract and improvement of the anticancer activity of quercetin-loaded rGO/Ca1-xMnxFe2O4 nanocarriers using UV light in breast cancer cells. Molecular Structure, 1281, p.135059.
[27] Mathai, J., Jose, A. K., Anjana, M. P., Aleena, P. A., Kunjumon, J., Ittyachan, R. and Sajan, D. 2023. Substantial effect of Cr doping on the third-order nonlinear optical properties of ZnO nanostructures. Optical Materials, 142, p.114128.
[28] Chireh, M., Naseri, M., andGhiasvand, S. 2019.Enhanced photocatalytic and antibacterial activities of RGO/LiFe5O8 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 385, p.112063.
[29] Mojtabazadeh, H., & Safaei-Ghomi, J. 2025. High conductivity graphite paste for radio frequency identification tag with wireless hydrogen sensor based on CeO2–Fe2O3–graphene oxide. RSC Advances, 15(16), pp.12773–12784.
[30] Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T., and Sapcharoenkun, C. 2020. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Applied sciences, 10(3), p.993.
[31] Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., and Wang, X. 2020. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), p.546.
[32] Tewari, C., Tatrari, G., Kumar, S., Pathak, M., Rawat, K. S., Kim, Y. N., and Sahoo, N. G. 2023. Can graphene-based composites and membranes solve current water purification challenges-a comprehensive review. Desalination, 567, p.116952.
[33] Ahmad, H., Fan, M., and Hui, D. 2018. Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, pp.270-280.
[34] Shahriari, E., Raeisi, M., & Alamdari, S. 2025. Simulation and Fabrication of Three-Layer SnO2/Ag/SnO2 Nanostructure Coating for Energy Storage. Progress in Physics of Applied Materials, 5(1), pp.17-22.
[35] Mousavi-Ebadi, M., Safaei-Ghomi, J., & Mojtabazadeh, H. 2025. Anchoring cobalt nanoparticles on to the grafted mono(6-ethylene-diamino-6-deoxy)-β-cyclodextrin to magnetic chitosan for enhanced catalytic performance of the synthesis of pyrano[2,3-c]pyrazole-3-carboxylates. Carbohydrate Polymer Technologies and Applications, pp.100923.
[36] Mojtabazadeh, H., & Safaei-Ghomi, J. 2025. Sustainable electrochemical depolymerization of chitosan into glucosamine hydrochloride using N-hydroxyphthalimide as a redox catalyst. Carbohydrate Polymers, pp.124008.
[37] Gu, L., Zhang, H., Jiao, Z., Li, M., Wu, M., & Lei, Y. 2016. Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts. RSC advances, 6(71), pp.67039–67048.
[38] Hashemi, A., Tavafi, H., Naseri, M., Mojtabazadeh, H., Abedi, M., & Tork, N. 2024. Structural and antibacterial properties of AgFe2O4 and Fe3O4 nanoparticles, and their nanocomposites. Progress in Physics of Applied Materials, 4(1), pp.37–46.
[39] kafi ahmadi, L., & khademinia, s. 2022. Fabrication of 3,4-dihydropyrimidin-2-(1H)-ones/thione compounds via Cu2V2O7 nanocatalyst synthesized by solid state method. Progress in Physics of Applied Materials, 2(1), pp.49-56.
[40] Anajafi, Z., Naseri, M., Hashemi, A., & Neri, G. 2023. Structural and photocatalytic properties of CeFeO3 and CeFeO3/GO nanostructures. Journal of Sol-Gel Science and Technology, 105(1), pp.116–126. | ||
آمار تعداد مشاهده مقاله: 9 تعداد دریافت فایل اصل مقاله: 9 |