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Abstract

This study aims for the global existence and blow-up of solutions for a class of nonlinear viscoelastic higher-order
p(z)-Laplacian equations. First, we prove the global existence of solutions in the appropriate range of the variable
exponents and next, by using different methods, we prove the blow-up of solutions with positive and negative initial
energy. Our results are new, and it is the first time that taken into consideration, extending and improving the earlier
results in the literature, such as (Bol. Soc. Mat. Mex.., 2023, https://doi.org/10.1007 /s40590-023-00551-x).

Keywords: global existence, blow-up, higher-order, viscoelastic, p(x)-Laplacian
2020 MSC: Primary 35A01; Secondary 35B44, 351.35

1 Introduction

In this work, we consider the following viscoelastic higher-order p(z)-Laplacian equation with variable-exponent
logarithmic source term in Q x (0, 00)

t
U + (—A)%u+ (—A)pu — / gt — ) (=A)*u(s)ds 4+ uy = |u" 2y 1n |ul, (1.1)
0

with the following initial-boundary conditions

u(z,0) = uo(x), wu(x,0)=ui(x), reN (1.2)
g@:o, i=0,1,2,-,a—1, 2€d%t>0 (1.3)
V’L

where o > 1 is a natural number, Q is a bounded domain of R™(n > 1) with smooth boundary 99 so that the

d'u

divergence theorem could be applied v is unit outward normal vector on 02 and 37 denotes the i-order normal

derivation of u. Here, (—A)z‘(I)u is higher-order p(x)-Laplacian operator defined as

()5 yu = D(|DulP™) =2 D)

[e3
p(z
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where D denotes the gradient operator, that is D. = V. = (8%1, 8%2, e ,%). Moreover, D¥. = AJ. if a = 2§ and
D®. = DAJ. if @ = 2j + 1. The following additional properties are assumed on the variable exponents and the kernel

of the memory:

(A1) The functions p(-),m(-) and ¢(-) are measurable on €2, such that:

2§p1§p(ﬂﬁ)§pz<7n2, n=>3
2
2<m1<m(x)<m2<7n2, n>3
n
2n
2<Q1<CI($)§(]2<72, n=>3

with

p1 :=essinf p(x), po := esssupp(z),
z€eQ z€Q

my = essinf m(z), mqy := esssupm(z),
T€Q z€Q

q1 = essinf ¢(x), g2 := esssupq(x).
e Q)

(A2) Kernel of the memory g is a non-increasing and non-negative function satisfying

oo

g(t) >0, ¢t <-gt), 1 —/ g(t)dt =£>0.
0
Study of the behavior of solutions for p-Laplacian type equations attracted great deal of attention in the last decade.
Regarding the analysis of this type of equations, we mention the work of Benaissa and Mokeddem [3], where studied
decay properties of solutions for the following nonlinear wave equation of p-Laplacian type with a weak nonlinear
dissipation

v — div(|VulP ™2V u) — o(t)div(|V o' |[P2V,u') = 0 in © x [0, 4o00]
u=0, on I' x [0, 4+o00]
w(x,0) = up(z), u'(z,0)=u(z) on

where 2 is a bounded domain of R™ with a smooth boundary I' = 92 and o is a positive function. In another study,
Pei et. al [I7] investigated the following quasilinear wave equation with Kelvin-Voigt damping

uy — Apu — Auy = f(u),
in a bounded domain 2 C R*® where Ayu is the nonlinear p-Laplacian operator, p > 2 in which

Apu = div(|VulP~2Vu).

They proved the existence of local weak solutions and extended the local weak solutions to global solutions when
the damping term dominated the source in an appropriate sense. Moreover, a blow-up result has been proved for
solutions with negative initial total energy.

Raposo et. al [24] studied the global solution, uniqueness and asymptotic behavior of the following nonlinear equation

U — Apu = Au — g * Au,

such that g * Au is a memory damping term that is
t
g* Au :/ g(t — 7)Au(r)dr.
0

They constructed the global solution by means of the Faedo-Galerkin approximations whereas the initial data is
in appropriated set of stability created from the Nehari manifold and the asymptotic behavior has been obtained by
using a result of P. Martinez based on new inequality that generalizes the results of Haraux and Nakao. For more
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information about the p-Laplacian equations we refer to [14] 15l 27, 32, B6] and references therein. Recently, Zu et. al
[37] considered the following quasilinear wave equation of p-Laplacian type with 2 < p < 3

Uy — Apu — Auy = lu|" " u,

they obtained an energy estimate for the solutions and proved a blow-up result for the solutions with arbitrarily
positive initial energy. Moreover, estimate of the lifespan of the solutions has been showed.

It is known that the logarithmic nonlinearity arises in a lot of different areas of sciences. This type of nonlinearity
was introduced in the nonrelativistic wave equations describing spinning particles moving in an external electromag-
netic field and also in the relativistic wave equation for spinless particles. With all those specific underlying meaning
in physics,the global-in-time well-posedness of solution to the problem of evolution equation with such logarithmic
type nonlinearity captures lots of attention. Piskin and Irkiil [20] proved the local existence of the solutions for the
following p-Laplacian equation with logarithmic nonlinearity

ugy — div([VulP72Vu) — Au+ up = kuln |ul,

where p > 2 is a constant number and k is the smallest positive constant. Next, the same authors in [21] investigated
the following equation
uyy — Au — div(|Vu|P72Vu) — Auy + |ug|* 2wy = |ulP~2uln |ul,

and proved the finite time blow up of solutions with negative initial energy when initial data satisfy some suitable
conditions. Ferreira et. al [10] considered a Petrovsky type viscoelastic equation

t
gy + APy — / g(t — 8)A2u(s)ds + |ug| ™ 2uy = |u[P~?uln|ul,
0

and proved that any solution with initial data blows up in finite time provided that E(0) < E;. Recently, Pereira
et. al [I8] investigated the existence, uniqueness, exponential decay, and blow-up behavior of the viscoelastic beam
equation involving the p-Laplacian operator, strong damping, and a logarithmic source term, given by

¢
g + A%u— Apu + / g(t — 8)Au(s)ds — Auy = |u|"*uln |ul,
0

and by using the Faedo—Galerkin approximation, they established the existence and uniqueness result for the global

solutions, taking into account that the initial data must belong to an appropriate stability set created from the Nehari
manifold. Also, the exponential decay of solutions has been proved based on Nakao’s method and they proved the
blow-up of solutions by using the concavity argument. For more information regarding the equations with logarithmic
nonlinearity see the selected works [2 [6] [8, 19 [33].

Numerous researchers have investigated equations characterized by nonstandard growth conditions, specifically
those involving variable exponents in nonlinearities, due to their significant theoretical and practical implications. For
example, Boudjeriou [4] considered the following class of heat equation involving p(x)-Laplacian with variable-exponent
logarithmic nonlinearity

"2 log(|ul), (1.4)

by using the concavity method he proved that the local solutions blow-up in finite time under suitable conditions.
Also, he applied the potential well theory combined with the Pohozaev manifold to prove the global existence result.
In another study, Zeng et. al [35] considered in the presence of strong damping term —Auwu; and proved the
existence of the global solution by using the potential well method and the logarithmic inequality. In addition, the
sufficient conditions of the blow-up have been obtained by concavity method. Recently, Bu et. al [7] studied the
existence of solutions for the following Kirchhoff-type equations driven by the p(z)-Laplacian:

ug — Dpyu = |u

My, 2)—
(=), 0 = AP 2y n |n| + g(z,m, Vu),
where A;\f;()’”) denotes the p(x)-Kirchhoff-type operator expressed as
My (» x
(=8),0" 1 = =My@)Dpy, M) = /Q V[P de.

Using a topological approach based on the Galerkin method together with fixed point theorem, they obtained
the existence of the finite-dimensional approximate solutions, generalized solutions, and strong generalized solutions.
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Kafini and Noor [I3] considered the following delayed nonlinear wave equation with logarithmic variable-exponent
nonlinearity

gy — A+ gy (2, 1) ug ™72 (2, 1) 4 poug (2, t — 7)|ug |72 (2, t — 7) = wlu[P® 2 In |ul¥,

and proved a global existence result under sufficient conditions on the initial data only without imposing the Sobolev
Logarithmic Inequality. After that, they established global results of exponential and polynomial types according to
the range values of the exponents. At the end, a numerical study that supports their theoretical results has been
given. In another study, Pan et. al [I6] investigated the following a pseudoparabolic equation problem with variable
exponents and logarithmic nonlinear term

up — Ay — div(|VuP @ ~2Vu) = [u|?® 2y 1n |ul.

By using the energy functional and the classical potential well, they obtained the global existence and blow-up results
of weak solutions with variable exponents.

Boughamsa and Ouaoua [5] considered a boundary value problem related to the following nonlinear higher-order wave
equation with variable-exponent nonlinearity

t
Mot + (—A)™n — /0 g(t — s)(—A)™n(s)ds + n, = |n|P 2.

They proved the existence and uniqueness of the local solution under suitable conditions for the relaxation function
g and viable-exponent p(-), using a method, which is a mixture of the Faedo-Galarkin and Banach fixed point theo-
rem.Also the blow up of solutions in finite time has been obtained and given a two-dimensional numerical example to
illustrate the blow-up result. Recently, Shahrouzi [29] considered the following viscoelastic higher-order p(x)-Laplacian
equation with variable-exponent logarithmic source term

g+ (=A) ut (= A)pyu = (9O (=) u)(t) + |ue[ "2y = 0| P uln ful.

(0%
p(z
He proved the global existence of solutions in the appropriate range of the variable exponents and next, by using
Martinez’s approach, the asymptotic stability of solutions has been established.
In several mathematical models we face higher-order partial differential equations. For example it can be found
in Fluid Dynamics, Mechanics, Biology, Electromagnetism, image processing, where three-dimensional problems are
represented on surfaces, for instance in the case of thin geometries, modeled as membranes, plates or shells, depending
on the structure of the original domain. This leads to defining surface partial differential equations which often
involve high-order differential operators. Ye [34] studied the following initial-boundary value problem of higher-order
nonlinear viscoelastic wave equation

t
uy + (—A)Mu — / g(t — 8)(=A)"u(s)ds = |u|P~2u, (z,t) € Q x RT,
0
u(z,0) = uo(x), u(z,0)=wui(x), x € Q,
%:0, i=0,1,2,...,m—1, (z,t) € 90 x R*,
v

and proved the existence of global weak solutions for this problem by using the Galerkin method. Meanwhile, under
suitable conditions on relaxation function g(-) and the positive initial energy as well as non-positive initial energy, he
proved that the solution blows up in the finite time and obtained the lifespan estimates of solutions. Next, Pigkin and
Irkiil [22] investigated the following nonlinear higher-order wave equation

¢
gt + [Puy + Pug] + Pu+u — / g(t — s)Puds + w, = wln |ul*,
0

where P = (=A)™, (m > 1 and m € N). By using Faedo-Galerkin method and a logarithmic Sobolev inequality, they
proved local existence general decay of solutions. see also [23], 25].

Regarding equations with variable-exponent nonlinearity, Shahrouzi [26] studied the solution behavior of the fol-
lowing viscoelastic equation involving the m(z)-Laplacian operator

t
Uy — Au — div(|Vu|™ @ V) 4 / g(t — 7)Au(T)dr + h(z, t,u, Vu) + Bu; = |uP@u,
0
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with nonlinear boundary conditions. Under appropriate conditions, He proved a general decay result associated to
solution energy. It is also shown that regarding arbitrary positive initial energy, solutions blow-up in a finite time.
For more information on the problems with variable-exponent nonlinearities we refer to [28], B0, [31].

Inspired by the previous studies, to the best of our knowledge, the present paper is the first to study the global
existence and blow-up of solutions to the initial-boundary value problem (1.1)-(1.3)) which involves the higher-order
viscoelastic p(z)-Laplacian equation and variable-exponent logarithmic source term.

The rest of the paper is organized as follows. In section 2, some definitions and Lemmas about the variable-exponent
Lebesgue space, LP()(Q), the Sobolev space, WP()(Q) are presented and used, for the main results. Section 3 proves
the global existence of solutions for the problem |D and next, in section 4, the blow-up of solutions with
positive and negative initial energy are proved.

2 Preliminaries

To prove our results for the problem (1.1))-(1.3), we need to present some theories about the function spaces
with variable-exponents as Lebesuge and Sobolev (See [1l 9]). Suppose that € is a subset of R™ and the function
p: Q — [1,00] is measurable. The variable exponent Lebesgue space is defined by:

LP@(Q) = {u| u is measurable in  and / |Au(z)|P® dx < oo for some A > 0}.
Q

The Lebesgue space, Lp(')(ﬂ), is equipped with the below Luxembourg-type norm:

ol = o >o] [ #0021}

Lemma 2.1. [9] Let Q be a bounded domain in R"

(i) the space (LP()(Q),]].|lp() is a Banach space, and its conjugate space is L) (), where ﬁ + ﬁ =1

(ii) For any f € LP()(Q) and g € LIV (), the generalized Holder inequality holds

/Q Jgdz

The following formula is used to determine the relationship between the modular [ | f P(®)dg and the norm

11
< < i ) I llpollgllacy < 201 F llpcy 1gllqc)-
P q1

min([| £]2%), [ £122,) < /Q PO de < max (|| £I08 ), 1F122)-
The variable-exponent Sobolev space W'P()(Q) is defined by
WhPO(Q) = {u e LPO(Q) : V,u exists and |V u| € LPO(Q)}.
This space is a Banach space with respect to the norm
ullwrro ) = lullpey + 1Vaullp)-

Furthermore, let Wol’p(')(Q) be the closure of C§°(2) in W'P()(Q) with respect to the norm |[ul[1 (). For u €

VVO1 P (')(Q), an equivalent norm is defined as

ullipey = IVaullpey-

Let the log-Holder continuity condition be satisfied by the variable component p(.)

[p(z) — p(y) , for all z,y € Q with |z —y| < J,

<4
log |z -y

where A >0 and 0 < § < 1.
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Lemma 2.2. (Sobolev-Poincaré inequality) Suppose that € is a bounded domain of R™ and the log-Holder condition
is satisfied by p(-). Then we have Hg () — LPO)(Q) and

llullpey < el D%ul|p(y, for all uw € Hg (€2), (2.1)
where ¢, = ¢(p1,p2,|Q]) > 0.

For completeness, the local existence result for the problem (1.1)-(1.3]) is stated as follows. This theorem could be
proved by the Faedo-Galerkin approximation method that has been used [I1] [12].

Theorem 2.3. (Local existence) Let (ug,u1) € H(Q) x L*(Q) be given. Assume that (A1) and (A2) are satisfied;
then the problem (1.1))-(1.3)) has at least one weak solution such that

ue C((0,7), Hy () N LY (Q) N LI1O(9Q),
u, € C((0,7), HS () N L*(Q).

The energy of the system is defined by
E(1) :lHutH2 + 1(1 - /tg(s)ds)D“qu +/ L|Dau|p(w)dx
2 2 0 o p(z)
1

1
+ |u|q($)dm—/ —— || 1n |u|de, (2.2)
o ¢%(x) o q()

where t
(g Du)(0) = [ a(t = 9)ID"ut) = Duls) s

Lemma 2.4. (Monotonicity of energy) Assume that u(z,t) be a local solution of (1.1)-(1.3). Then, along the solution,
E(¢) is a nonincreasing functional.

Proof . Multiplying equation (|1.1)) by w; and integrating it over 2, we easily get
(0% 1 o
E'(t) = = [[ue]|® — g(0) | Dul)* + 59"+ Du)(),

and by using hypotheses (A2), desired result could be obtained for any weak solution. [J

3 Global existence

To prove the global existence of solutions for the problem (|L.1])-(1.3)), we define:

I(t):(l—/0 g(s)ds> ||D°‘u||2+(g*Dau)(t)—|—/Q|D“u|p(x)d$—/9\u|qm In |u|dz, (3.1)
and
. tss | l*au Lo‘u”(”)x
50 =5 (1= [ atods ) Ipul + 5o Do) + [ Dol a

1 1
+/ |1 d: —/ —— u|?®) In |u|dz. (3.2)
o ¢*(z) (@)
From the definitions (3.1)) and (3.2), we have E(t) = &|ju¢[|® + J(t).

Lemma 3.1. Under the assumptions of Theorem we assume that 7(0) > 0, p2 < ¢; and moreover, for some 6 > 0

Cly (E@O)) ™ o (EONT . (BEONF
Y1 = g ( 70[ ) max C*,O (")/06) 5 C*,G (’M) < & (33)
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where C, ¢ is the best constant of the embedding H*(Q) < LI")+0(Q) and

ol @1 =2 q¢—p2
Yo i=miny —, , <
% 2q DP2q1

1
5"
Then, we have

I(t) >0, for all ¢t € [0, 7).

Proof . By using the continuity of u(¢) and since I(0) > 0, thus there exists a time T* < T such that
I(t) >0, for all t € [0, 7).

Now, under the condition (A1) and from the definition of J(¢) in (3.2), we deduce that

1 t 1 1
J(t) 25(1 - / g(s)ds)HD“uHZ + i(g * Dau)(t) 4+ — |Dau|p(m)dx
0

P2 Jo
1 (@) 1 (@)
+ = [ |[u|"de — — [ |u|"" In|u|dx.
4 Ja q1 Jo

From the definition of I(¢), we obtain

q1 — 2 ¢ a q1 — 2 a
102220 [ gs)as)| Dol + B2 g Du)ie)
201 0 21

— 1 1
+ u/ Do) dgs 4 7/ 1@ da + L 1(8), vt € 0, 7%].
P2q1 Jo 4 Ja q1

Thanks to the assumptions of Lemma (3.1 on the variable-exponents and ~yy, we get
t
30 230 ((1 = [ gDl + (g5 Dou)®) + [ D"zt [ uftlac).
0 Q Q

Inequality (3.4) yields

t
E(0) = E(t) = J(t) = (1 —/ g(s)ds)| D*ul|* = yol|| D*ul|?,
0
and therefore, we have
E0
Do) < 2O
Yol

Suppose that
O = {uju e W' (Q),0<u<1}, and Q= {ujuc Wo ' (Q),u> 1},
and thus, it is easy to see that for any u € Q3 and # > 0, we have 0 < v %Inu < é. Consequently, we deduce

/|u|q(x)ln|u\dx:/ |u|q(z)ln|u|da:—|—/ |7 In |u|dz
Q (o

Qg

g/ [ul?®) n |u|dz
Q2

<i |u|q(ar)+0dx < i/ |u|(1(:c)+0dm
el Qs ~ el Q

1 q1+0 q2+6
Se—g max{ </Q |u|q(z)+0dz> , (/Q |u|q(m)+9dx> }

1 0 0
Seie max{cg};r ”DaquthO’ CZ?OJF ”Daquere}

1 0 _ 0 _
:@max{cff [Du|F072, O || D |22} | DYl

aa+6-2

q1+6—2
1 E0)\ "> ONEE
< a+0 [ Z\Y) q2+0 [ Z\Y) Dull2.
_89 ma‘x{c*ﬂ < ’YOK > ,O*,G ’YOK }” UH




8 Shahrouzi

where C. g is the best constant of embedding H(Q) < LY®+?(Q) and (3.5) has been used. Utilizing (3.3) into (3.6)),
we obtain
/ (10 In Juldzx < 7 |\ D%l ?. (3.7)
Q
At this point, we shall prove that I(t) > 0, V¢ € [0,7%]. For this goal, we have

¢
I(t) = (1 —/ g(s)ds> | DYul|® + (g * D*u)(t) +/ | D%u[P®) dy; —/ |u|?®) In |u|dz
0 Q Q
>( =) IDul® + (g * Du)(t) + / | Dl d, (3-8)
Q
where (A2) and (3.7)) have been used. Therefore, since 1 < ¢ we deduce
I(t) >0, Ytel0,T7].

By repeating this procedure, T* extended to T. [J At this point, we state and prove the global existence result as
follows:

Theorem 3.2. Let u(z,t) be the local solution of (1.1)-(1.3)). Under the assumption of Lemma u(z,t) is global.
Proof . By virtue of (3.2) and(3.4)), we obtain
1
E(t) =gllu]* + T ()
1
>gllul? + 0 (D%l + (g 0200 + [ D%+ [ Juloas )
o o

2t (P + D% + g D200 + [ (Do [ o).
Q Q

Thus, we get
2 a, (|12 @ « (z) (z) E(t)
l[wel|* + [1D%ul|” + (g * D*u)(t) + | |Du["Pdx+ [ |u|"de < —.
Q Q Yol
Hence, considering the nonincreasingness of E(t), we get
2 a, (|12 «a «a (z) (z) E(O)
[lwel|® + (| DYul||* + (g x DYu)(t) + [ |D%u|”'""dx+ [ |u|T"dz < ol (3.9)
Q Q 0

and this shows that the local solution u(z,t) of (1.1)-(1.3)) is global and bounded. O

4 Blow-up results

This section aims at proving the blow-up of solutions for the problem (|1.1)-(1.3). Firstly, we show that the
solutions with positive initial energy blow-up at infinite time when ¢; > max{p2,2 + (¢ + 1)%c2} and [, g(s)ds <

r (@2 a—2-(s+D)%c
mln{ qi—2q1+2’ q1—2

Poincaré inequality (Lemma [2.2]). Next, we shall prove that the solutions with negative initial energy blow-up at a

2
=1 where ¢ is a small enough positive number and ¢, is the best constant in Sobolev-

2
2 oe_Sx
finite time when ¢; > max{ps, 2e + %*} and fooo g(s)ds < (11211%7 where € is a positive number satisfying 1 < € < Z—;.

4.1 blow-up at infinite time with E(0) > 0

In this part we are going to prove the blow up of solutions for the problem (|1.1)-(1.3) with positive initial energy.
To prove this result, we assume that:
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(B1) For sufficiently small € > 0

q1 > max{py, 2 + (¢ + 1)%c?},

[ otoyds < ming B0 D 22 LA
0 i —2q1 +2’ Q1 —2 ’

where ¢, is the best constant in Sobolev-Poincaré inequality (Lemma[2.2). Our main result with positive initial energy

reads in the following theorem:

Theorem 4.1. Suppose that the assumptions of Theorem and (B1) hold. Moreover, E(0) > 0 is a given initial

energy level. If we choose initial data wug, u; satisfying

/%@mmm>ﬂmm
Q 13
then the solution of (1.1)-(1.3) blows up at infinite time, i.e.

lim (||D%? + [Ju¢]|?) = +oo.
t——+oo

Proof . Define
H(t)= / uupdx — ﬂE(t)7
Q g

where E(t) satisfy (2.2]) and ¢ is a small enough positive constant. Differentiating H (), we obtain

H'(t

~—

:HUtH2+/ Uuttdl’—ﬂEl(t)
Q g
Z|\ut\|2+/uuttd1:,

Q

where Lemma has been used. By using (A1) and for any € > 0, (4.3) is rewritten as:

H(t) 2eH () + (1+ )l + (2 - 1)1 - / 9(s)ds)]| D

+ (7 _1 / ‘Dau|p(w d$+ 5 (g*Da CI1 / |U|Q(z

—(e+1) /Q uupdx +/O g(t —s) /Q Du(D%u(s) — D%u)dxds.

At this point, taking into account Young and Sobolev-Poincaré inequalities to get the following estimates:

IR e e
Q
24+ 1) o
<%HD ul? + ]
t -2 1—
/ gt — ) [ Dou(D*u(s) — Dowydeds| <L L2 pay)2 1 (g D°u)(1)
0 Q 4 ( 2)¢
Applying (4.5) and (4.6]) into ) to obtain
200 (e+1)%2 o
H'(1) z»sH<t>+q1||ut||2+[‘Q14 e L2k

q1
+-47—1./ D% M@dx+( ) g% Du)(t +47/‘u“@d@

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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where (A2) has been used. Now, we apply assumptions of Theorem since we have H(0) > 0, therefore, inequality

(4.7) get to us
(1) > eH (1) (48)

and hence we conclude that
H(t) > e H(0), Vt>0.

This shows that the functional H(t) exponentially growth when time goes to infinity.
It is easy to see that

uurdx — qg—lE(t) < / uupde.
Q

e"H(0) < H(t) = /

Q

Thanks to the estimation (4.5)), thus there exists a constant C' such that

eTH(0) < H(t) < C (|IDu)® + [lue?) - (4.9)

Thus inequality (4.9) shows that

: «@ 2 2\
Jim (1Dl + ) = +oo,

and proof of Theorem [£.1]is completed. O

4.2 blow-up at finite time with E(0) < 0

In the last part we shall prove the blow up of solutions for the problem (L.1)-(1.3) with negative initial energy. For
this goal, we assume that:
(B2) Forany 1 <e < L

2
c
q1 > max{ps, 2¢ + 5*},

2
> —2e—%
/ gls)ds < L= "2

0 q1

where ¢, is the best constant in Sobolev-Poincaré inequality (Lemma|2.2)). Now we are in a position to state and prove
our blow-up result as follows:

Theorem 4.2. Let the conditions of Theorem [2.3]and (B2), are satisfied. Assume that £(0) < 0. Then the solutions
of the problem (|1.1)-(1.3) blows up in finite time 7%, and

l1—0c

THF< —
nol'7=7(0)

A

)

where 0 < o < 1 and T'(¢) is given in (4.12)).
Proof . Define ¢(t) = —FE(t) and thus by using Monotonicity of energy Lemma we arrive at
W (t) = —E'(t) > |luel?, (4.10)

then negative initial energy and (4.10) gives () > 1(0) > 0. Also, by definition (t), it is easy to see that

1 1
W(t S/—uq(x)lnudxg—/uq(:’:)lnudm. 4.11
(t) Qq(ﬁ)\l |ul o Ql\ |yl (4.11)
Definefor 0 <o < 1
I(t) qul_”(t)—l—s/ wugd, (4.12)
Q
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where € is a positive constant satisfying (B2). By taking a derivative of (4.12]) and using (1.1]), we get
T(8) =(1 — oW () (£) + el +€/ wtiggde
Q

=(1 =)' ()7 () + efluel* — (1 — /O g(s)ds)| D*ul|?

—5/ \Dau|p($)dx+5/ || 1n|u|dx—5/ uupdx
Q Q Q

Iy

t
+ E/ g(t — 3)/ D*u(D%u(s) — DYu)dxds .
0 Q
Iz

By using (A2), Young and Sobolev-Poincaré inequalities, we could estimate I; and I as

2
C
1] <ellue® + =D ull?,

and

< _ (e} 2 €
Bl <=1 = 1Dl + 7= |

|
—<(1 - O D°ul? + - / /Otwgu—swg(t—s)(mu(s)—D%)ds)de

<e(1 —€)||D>ul|* + 4(1i 0 /Q /Otg(t — s)ds) (/Ot g(t — s)ds (D%u(s) — D%u)? ds) dx

<e(1 - ID™u|* + S (g * D™w)(@).

Combination of (4.14) and (4.15) into (4.13)), yields

t 2
/() >(1 — o) () (1) — g/ﬂ |DuP@) de: — e[(1 — /0 g(s)ds) +1— £+ *] 1D
— Z(g x D%u)(t) + E/Q |u|q(’”) In |u|dz.

Taking into account the definition of the (t), conditions (A1) and (A2), it follows that
2

L'(t) 2q10(t) + (1= o) (DY~ (8) + T e + [(q; —o)1= [ ats)dn — 1) = | 1D"ul?

201 —
+ M(g * DY) (t) + (2 - 5)/ | D[P dg; 4 (e — 1)/ |9 In |u|da.
4 D2 Q Q

On the other hand, by using (4.11)) we have
€= 1) [ Jul nfulds > a1(= - Du()
Q

Therefore, we get

I(0) Zget(t) + (1= )/ (0077 (1) + %
" [(% —e)i- /O g(s)ds) —e(1 =€) — %*] 1D%ul?

(g% Du)(t) + (1L — 2 / | Do) .
4 D2 Q

11

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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From the assumption of Theorem [£:2] we know that ¢; > 2¢ and therefore we have

t 2 2
q1 Cy q1 Ci
— —¢)(1—- ds) —e(1—=0)— =X >(Z= -l —e(1-4) - =
(B -a0- [ s —s-0-F > - —c1-0-5
¢l c
B £ & 4.1
5 i (4.19)
Using (4.19) into (4.18)), we deduce
oy, 4 @l A\ [ 1pa
(0 200 + (1= 0 @)+ Dlul? + (B - ) a2
2 —
$ T e Doy (1) + (B - 5)/ | D[P da.
4 P2 Q
At this point, assumption (B2) guaranties that there exists positive constant ¢; such that
U'(t) 2qiep(t) + ea([Jue|* + [|D%ul]?). (4.20)

Therefore we deduce that T'(¢) > T'(0) > 0, for all ¢ > 0. Now, by using the definition of I'(¢), Hélder and Young
inequalities, we have

I (1) =[o1() + < /Q wupdz] ™

<27 (w(t)—f—ellff/uutd:dllo)
Q

where (4.20)) has been used and
_ min{gqie, c1}

Tt max{1,cs}

Therefore )
I'(t) > nl'T=7 (t). (4.21)
Integrating (4.21)) from 0 to ¢, we deduce
o 1
Pt=o(t) > —————.
71=(0) - {25
This shows that solutions blow up in finite time 7™ = 1}1%(0), and proof of Theorem has been completed. [J
nol1-7
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