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MAXIMUM MODULUS OF THE DERIVATIVES OF A
POLYNOMIAL

AHMAD ZIREH

Abstract. For an arbitrary entire function f(z), let M(f,R) = max|z|=R |f(z)|
and m(f, r) = min|z|=r |f(z)|. If P (z) is a polynomial of degree n having no zeros
in |z| < k, k ≥ 1, then for 0 ≤ r ≤ ρ ≤ k, it is proved by Aziz et al. that

M(P ′, ρ) ≤ n
ρ+k{(

ρ+k
k+r )n[1− k(k−ρ)(n|a0|−k|a1|)n

(ρ2+k2)n|a0|+2k2ρ|a1| (
ρ−r
k+ρ )( k+rk+ρ )n−1]M(P, r)

−[ (n|a0|ρ+k2|a1|)(r+k)
(ρ2+k2)n|a0|+2k2ρ|a1| × [((ρ+kr+k )n − 1)− n(ρ− r)]]m(P, k)}.

In this paper, we obtain a refinement of the above inequality. Moreover, we obtain
a generalization of above inequality for M(P ′, R), where R ≥ k.

1. Introduction and preliminaries

For an arbitrary entire function f(z), let M(f,R) = max|z|=R |f(z)| and m(f, r) =
min|z|=r |f(z)|. Let P (z) be a polynomial of degree n, then according to a famous
result known as Bernstein’s inequality on the derivative of a polynomial, we have

M(P ′, 1) ≤ nM(P, 1). (1.1)

The result is best possible and equality holds for the polynomials having all its zeros
at the origin.
For polynomials having no zeros in |z| < 1, Erdös conjectured and later Lax [6]
proved that if P (z) 6= 0 in |z| < 1, then (1.1) can be replaced by

M(P ′, 1) ≤ n

2
M(P, 1). (1.2)

With equality for those polynomials, which have all their zeros on |z| = 1.
As an extension of (1.2) Malik [7] proved that if P (z) 6= 0 in |z| < k, k ≥ 1 then

M(P ′, 1) ≤ n

1 + k
M(P, 1). (1.3)

The result is best possible and equality holds for the polynomial P (z) = (z + k)n.
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Dewan and Bidkham [2] obtained a generalization of inequality (1.3) for the class
of polynomials P (z) =

∑n
j=0 ajz

j having no zeros in |z| < k, k ≥ 1, by proving

M(P ′, ρ) ≤ n
(ρ+ k)n−1

(1 + k)n
M(P, 1), (1.4)

where 1 ≤ ρ ≤ k. The result is best possible and equality holds for the polynomial
P (z) = (z + k)n.

Further, as a generalization of (1.4) Dewan and Mir [3] proved that if P (z) =∑n
j=0 ajz

j having no zeros in |z| < k, k ≥ 1 then for 0 ≤ r ≤ ρ ≤ k,

M(P ′, ρ) ≤ n
(ρ+ k)n−1

(k + r)n
{1− k(k − ρ)(n|a0| − k|a1|)n

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
(ρ− r)(k + r)n−1

(k + ρ)n
}M(P, r).

(1.5)

The result is best possible and equality holds for the polynomial P (z) = (z+ k)n.
Recently Aziz and Zargar [1] obtained a generalization of (1.5) and proved if P (z) =∑n

j=0 ajz
j having no zeros in |z| < k, k ≥ 1 then for 0 ≤ r ≤ ρ ≤ k,

M(P ′, ρ) ≤ n

ρ+ k
{(ρ+ k

k + r
)n[1− k(k − ρ)(n|a0| − k|a1|)n

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
(
ρ− r
k + ρ

)(
k + r

k + ρ
)n−1]M(P, r)

− [
(n|a0|ρ+ k2|a1|)(r + k)

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
× {((ρ+ k

r + k
)n − 1)− n(ρ− r)}]m(P, k)}.

(1.6)

The result is best possible and equality holds for the polynomial P (z) = (z + k)n.
In this paper, first we obtain the following result which is a refinement of inequality
(1.6).

Theorem 1.1. If P (z) =
∑n

j=0 ajz
j is a polynomial of degree n, having no zeros in

|z| < k, k ≥ 1 then for 0 ≤ r ≤ ρ ≤ k,

M(P ′, ρ) ≤ n(n|a0|ρ2 + k2ρ|a1|)
ρ((ρ2 + k2)n|a0|+ 2k2ρ|a1|)

×

{(ρ+ k

k + r
)n[1− k(k − ρ)(n|a0| − k|a1|)n

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
(
ρ− r
k + ρ

)(
k + r

k + ρ
)n−1]M(P, r)

− [
(n|a0|ρ+ k2|a1|)(r + k)

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
× [((

ρ+ k

r + k
)n − 1)− n(ρ− r)]]m(P, k)}.

(1.7)

The result is best possible and equality holds for the polynomial P (z) = (z + k)n.

Remark. Theorem 1.1 is, in general, an improvement of inequality (1.6). To see
this, we note that for a polynomial P (z) =

∑n
j=0 ajz

j such that does not vanish in

|z| < k, k ≥ 1 and 0 ≤ r ≤ ρ ≤ k, by using lemma 2.5 inequality
(n|a0|ρ2+k2ρ|a1|)

ρ((ρ2+k2)n|a0|+2k2ρ|a1|) ≤
1

ρ+k
is true.

If we take ρ = k in Theorem 1.1, then we have



MAXIMUM MODULUS OF THE DERIVATIVES OF A POLYNOMIAL 111

Corollary 1.2. If P (z) be a polynomial of degree n, having no zeros in |z| < k,
k ≥ 1 then for 0 ≤ r ≤ k, we have

M(P ′, k) ≤ n

2k
{( 2k

k + r
)nM(P, r)− r + k

2k
[(

2k

r + k
)n − 1− n(k − r)]m(P, k)}. (1.8)

Next we prove the following interesting result which is a generalization of inequal-
ity (1.6) for radius greater than k.

Theorem 1.3. If P (z) is a polynomial of degree n, having no zeros in |z| < k,
k ≥ 1 then for 0 ≤ r ≤ k ≤ R

M(P ′, R) ≤ nRn−1

2kn
× {( 2k

k + r
)nM(P, r)−

r + k

2k
[(

2k

r + k
)n − 1− n(k − r)]m(P, k)}.

(1.9)

If we take R = k in Theorem 1.3, then we have inequality (1.8) again,

Corollary 1.4. If P (z) is a polynomial of degree n, having no zeros in |z| < k,
k ≥ 1 then for 0 ≤ r ≤ k, we have

M(P ′, k) ≤ n

2k
{( 2k

k + r
)nM(P, r)− r + k

2k
[(

2k

r + k
)n − 1− n(k − r)]m(P, k)}.

2. Lemmas

For the proof of theorems, we need the following lemmas. The first lemma is due
to Govil, Rahman and Schmeisser [5].

Lemma 2.1. Let P (z) =
∑n

j=0 ajz
j be a polynomial of degree n, having no zeros in

|z| ≤ k, k ≥ 1, then

M(P ′, 1) ≤ n{ n|a0|+ k2|a1|
n|a0|(1 + k2) + 2k2|a1|

}M(P, 1). (2.1)

Lemma 2.2. If P (z) =
∑n

j=0 ajz
j is a polynomial of degree n, having no zeros in

|z| < k, k ≥ 1, then for 0 ≤ r ≤ ρ ≤ k,

M(P, ρ) ≤ (
ρ+ k

k + r
)n[1− k(k − ρ)(n|a0| − k|a1|)n

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
(
ρ− r
k + ρ

)(
k + r

k + ρ
)n−1]M(P, r)

−[
(n|a0|ρ+ k2|a1|)(r + k)

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
× [((

ρ+ k

r + k
)n − 1)− n(ρ− r)]]m(P, k).

(2.2)

The above lemma is due to Aziz and Zargar [1].

Lemma 2.3. Let F (z) be a polynomial of degree n, having all its zeros in the closed
disk |z| ≤ 1. Furthermore, let f(z) be a polynomial of degree at most n such that
|f(z)| ≤ |F (z)| for |z| = 1, then |f ′(z)| ≤ |F ′(z)| for |z| ≥ 1.

You can find the proof of Lemma 2.3 in [8].

Lemma 2.4. If P (z) is a polynomial of degree n and Q(z) = znP (1/z), then for
|z| ≥ 1 we have

|P ′(z)|+ |Q′(z)| ≤ n|z|n−1M(P, 1). (2.3)
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Proof. Since |P (z)| ≤ M(P, 1), where |z| ≤ 1. Then by using Rouche’s theorem it
follows the polynomial

G(z) = P (z)− λM(P, 1),

does not vanish in |z| ≤ 1, for λ with |λ| > 1. Now consider

H(z) = znG(1/z) = Q(z)− λM(P, 1)zn.

Then the polynomial H(z) has all its zeros in |z| ≤ 1, and |H(z)| = |G(z)|, where
|z| = 1.

Therefore on applying Lemma 2.3 to polynomials G(z) and H(z), we have for
|z| ≥ 1,

|P ′(z)| ≤ |Q′(z)− nλM(P, 1)zn−1|. (2.4)

Since M(Q, 1) = M(P, 1), then again we can apply Lemma 2.3 to polynomials Q(z)
and M(P, 1)zn, and we obtain

|Q′(z)| ≤ nM(P, 1)|z|n−1,
for |z| ≥ 1.
Therefore for an appropriate choice of the argument of λ we have

|Q′(z)− nλM(P, 1)zn−1| = |λ|nM(P, 1)|z|n−1 − |Q′(z)|.
Which helps us to rewrite inequality (2.4) as

|P ′(z)|+ |Q′(z)| ≤ |λ|nM(P, 1)|z|n−1.
Make |λ| → 1, we get inequality (2.3). �

Lemma 2.5. If P (z) =
∑n

j=0 ajz
j, is a polynomial of degree n, having no zeros in

|z| < k, k ≥ 1, then
k|a1|
|a0|

≤ n. (2.5)

The above result is due to Gardner et al. [4].

3. Proof of the theorems

Proof of the Theorem 1.1. For ρ with 0 ≤ ρ ≤ k, the polynomial P (ρz) has
no zeros in |z| ≤ k/ρ, k/ρ ≥ 1 . Now by applying Lemma 2.1, for |z| = 1, we have

ρ|P ′(ρz)| ≤ n{
n|a0|+ k2

ρ2
ρ|a1|

(1 + k2

ρ2
)n|a0|+ 2k

2

ρ2
ρ|a1|

}M(P, ρ). (3.1)

Now, if 0 ≤ r ≤ ρ ≤ k, then by using Lemma 2.2, we have

M(P, ρ) ≤ (
ρ+ k

k + r
)n[1− k(k − ρ)(n|a0| − k|a1|)n

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
(
ρ− r
k + ρ

)(
k + r

k + ρ
)n−1]M(P, r)

−[
(n|a0|ρ+ k2|a1|)(r + k)

(ρ2 + k2)n|a0|+ 2k2ρ|a1|
× [((

ρ+ k

r + k
)n − 1)− n(ρ− r)]]m(P, k).

(3.2)

By combining (3.1) and (3.2), Theorem 1.1 follows. �

Proof of Theorem 1.3. Since P (z) having no zero in |z| < k, therefore the
polynomial H(z) = P (kz) does not vanish in |z| < 1. Then the polynomial G(z) =
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znH(1
z
) has all its zeros in |z| ≤ 1, and |H(z)| = |G(z)| for |z| = 1. By applying

Lemma 2.3 we have
|H ′(z)| ≤ |G′(z)| for |z| ≥ 1. (3.3)

On the other hand by using Lemma 2.4, for |z| ≥ 1 we have

|H ′(z)|+ |G′(z)| ≤ n|z|n−1M(H, 1). (3.4)

Now combining (3.3) and (3.4) we have

|H ′(teiθ)| ≤ ntn−1

2
M(H, 1) t ≥ 1.

Replacing H(z) by P (kz), we conclude that

k|P ′(kteiθ)| ≤ ntn−1

2
M(P, k) t ≥ 1. (3.5)

Now if we take ρ = k in Lemma 2.2 we have

M(P, k) ≤ (
2k

k + r
)nM(P, r)− r + k

2k
[(

2k

r + k
)n − 1− n(k − r)]m(P, k). (3.6)

Hence for R ≥ k, we take t = R/k in (3.5), now combining (3.6) and (3.5), we
have

|P ′(Reiθ)| ≤ nRn−1

2kn
{( 2k

k + r
)nM(P, r)− r + k

2k
[(

2k

r + k
)n − 1− n(k − r)]m(P, k)}.

This completes the proof. �
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