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In this paper a simple model of a three story building with 

inclined first-story columns has presented. The stories are 

supposed to be rigid and are connected to axially rigid mass 

less columns by elasto-plastic rotational springs and linear 

rotational dampers. The considered model is subjected to 

horizontal component of fault normal pulse with different 

magnitudes and the governed nonlinear differential equations 

of motion have been solved by the forth order Runge-Kutta 

method. Results indicate that the inclination of the first-story 

columns stiffens the system. However, the change of the 

frequency of the first mode is small. The deformation of the 

first story with inclined columns is such that it forces the 

building in a pendulum-like motion. So it would be possible 

to reduce the relative building response. Results indicate that 

an optimum value of inclination angle of the first-story 

columns is 10  . Under this condition the first-story drift 

decreases while upper-story drift increases, respect to the 

common building with 0  . For larger inclination angles 

the gravity effect leads to increase the first-story drift as 

well. This solution would be useful in earthquake resistant 

design of buildings with architectural limitations at the first 

story. 
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1. Introduction 

In the near field of strong earthquakes, and 

especially close to surface faults, the strong 

ground motion can be dominated by the 

permanent displacements (typically parallel 

to the fault surface) and by large pulses 

(often perpendicular to the fault). Traces of 
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these large displacements and pulses are not 

always obvious in the processed records of 

the recorded motions because of the band-

pass filtering [1-3].  

It is customary in the analyses of the 

response of structures to strong earthquake 

ground motion to neglect the effects of the 

propagating character of the wave motion in 

the ground. In those studies it is assumed 

that the seismic waves arrive simultaneously 

at various points of the base of the structure. 

This corresponds either to vertical wave 

incidence (i.e. to infinite phase velocity 

along the ground surface), or to waves with 

angle of incidence other than zero, but with 

very large wavelengths compared to the size 

of the base of the structure. However, in 

general, the seismic waves arrive towards 

the foundation with incident angles other 

than vertical, and may have wavelengths 

comparable with the horizontal dimensions 

of the structure, resulting in phased 

excitation at its base. When the distances 

between the multiple support points are 

large (bridges, dams, tunnels, long 

buildings), the effects of differential motions 

become important and should be considered 

in dynamic analyses [4]. Spatial and 

temporal stochastic representations of strong 

earthquake motion required for such 

analyses have been investigated in many 

papers and in a recent book by Zerva [5]. 

The consequences of differential ground 

motion have been studied for the bridges [6-

8], long building [9-12], and dams [13-15]. 

However, with few exceptions, engineering 

applications of the response spectrum 

method ignore the wave propagation effects 

in the foundation soil, or consider only a 

simplified stochastic representation of the 

differences in motion among separate 

supports.  Okubo et al [16] were among the 

first to measure and interpret finite ground 

strains of recorded earthquake motions, for 

plan dimensions representative of 

intermediate and large buildings. They 

showed that for short-period (stiff) 

structures, finite ground strains lead to 

increased base shears. Zembaty and Krenk 

[17, 18] studied the same problem and 

addressed explicitly the contribution of 

quasi-static and dynamic terms to the 

response. They showed that although the 

relative response of the structure is reduced 

in case of differential motion of supports 

(due to ‘averaging’ of spatially correlated 

motions), the shear forces in the columns, 

maybe significantly larger than for 

synchronous excitation. Jalali et al [19] 

showed that the combined action of 

horizontal, vertical, and rocking components 

of strong ground motion, near causative 

faults, combined with asynchronous 

excitation leads to drift amplitudes that are 

very large compared with the typical design 

drift amplitudes. An idea of passive base 

isolation of buildings using inclined soft 

first-story columns was explored by 

Todorovska [20]. She modeled the building 

by an equivalent SDOF oscillator and by 

neglecting of issues such as gravity, 

geometric nonlinearities, inelastic response, 

dynamic buckling of the inclined columns, 

and dynamic instability of the model for 

coupled horizontal and vertical responses in 

the near-field of strong earthquakes, 

indicated that due to inclination, in addition 

to stabilizing the system, it would also be 

possible to reduce the relative building 

response. She has also shown that for 

earthquake excitation the optimum 

inclination and its effectiveness will depend 

on the frequency content of the excitation 

and for broad band excitation an optimum 

value of the inclination angle is such that 

0.05 0.1
R

H

h
  . The purpose of the present 

study is to investigate the effect of 
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inclination angle of the first-story columns 

on maximum story drift of a simple three-

storey building, by considering gravity, 

geometric nonlinearities, inelastic response, 

and dynamic instability of the model, 

subjected to horizontal component of near-

source strong ground motion.  

2. Dynamic model and solution of 

nonlinear equation of motion 

The system of nonlinear equations of motion 

of the model in Fig. 1, which is described in 

the Appendix [by equation (A.7)] can be 

solved by numerical methods. We chose the 

fourth-order Runge-Kutta method because 

of its self-starting feature and the long-range 

stability. In this method, the time domain is 

divided into n equally spaced intervals, 

where n is chosen based on the requirement 

to have at least 20 points per period of 

excitation or per fundamental period of the 

structure, whichever is smaller. Each of 

these equally spaced intervals is further 

subdivided into 2r  intervals, where r  varies 

from 1 to 9, to reach the desired accuracy. 

The parameter r  is chosen so that the 

relative percent of error between the 

solutions for the neighboring two values of n 

is less than one percent, and then the larger n 

of the two is adopted for the calculations. 

3. Near-fault ground motion 

Strong ground motion near faults can be 

complicated due to irregular distribution of 

fault slip [1,3,21] because of non-uniform 

distribution of geologic rigidities 

surrounding the fault, non-uniform 

distribution of stress on the fault, and 

complex nonlinear processes that 

accompany faulting. Thus, in general it is 

not possible to predict the detailed nature of 

the near-fault ground motion and of the 

associated pulses. In this study, we adopt a 

simplified approach and model this motion 

by smooth pulse, which has correct average 

amplitude and duration, and which has been 

compared with and calibrated against the 

recorded strong motions in terms of their 

peak amplitudes in time and their spectral 

content. 

Figure 2 shows schematically a fault and 

characteristic motion, Fd , which describe a 

pulse, with particle motion usually 

perpendicular to the fault and associated 

with failure of a nearby asperity or passage 

of dislocation under or past the observation 

point [22,23].  

For the fault-normal pulse, we chose a pulse 

(Fig. 2): 

( ) Ft

F Fd t A te 
                                        

 (1) 

Where the values of FA , and F , for 

different earthquake magnitudes, are shown 

in Table 1 [24]. 

 
Fig.1. Model of a three-story building with 

inclined first-story columns subjected to 

differential horizontal, vertical, and rocking 

components of ground motions 
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Fig. 2. Fault -normal (pulse), ( )Fd t , ground 

displacement 

Because the strong motion data are abundant 

only up to about M = 6.5, we place the 

values of F  and FA  for M = 7 in Table 1 in 

parentheses to emphasize that those are 

based on extrapolation. The amplitude of   

has been studied in numerous regression 

analyses of recorded peak displacements at 

various distances from the fault. 

An important physical property of Fd  

function, as used in this study, is its initial 

velocity. It can be shown that ~ /Fd   , 

where   is the effective stress (~ stress 

drop) on the fault surface [23-25],   is the 

velocity of shear waves in the fault zone, 

and   is the rigidity of rocks surrounding 

the fault. The largest peak velocity observed 

so far, 5 to 10 km above the fault, is about 

200 cm/s. For example, 170 cm/s was 

recorded during the Northridge, California 

earthquake of 1994 [26]. Because there are 

no strong-motion measurements of peak 

ground velocity at the fault surface, the peak 

velocities Fd  can be evaluated only 

indirectly in terms of . The accuracy of the 

stress estimates depends upon the 

assumptions and the methods used in 

interpretation of recorded strong-motion 

records, and it is typically about one order of 

magnitude. Therefore, solving the above 

equations for   we can use ~ /Fd    to 

check their consistency with other published 

estimates of   [27]. 

Table1. Characteristics of the Fault-normal Pulse [24] 

M (magnitude) F (1/s) FA
 (cm /s) ,max ( )Fd cm

 ,max ( / s)Fd cm
 

4 14.04 56.48 1.48 56.48 

5 7.90 151.61 7.06 151.61 

6 4.44 546.97 45.32 546.97 

7 (2.50) (860.34) (126.6) (860.34) 

 

4. Structural response 

The nature of relative motion of individual 

column foundations or of the entire 

foundation system will depend on the type 

of foundation and stiffness of the connecting 

beams and slabs, the characteristics of the 

soil surrounding the foundation, the type of 

incident waves, and the direction of wave 

arrival. In reality, at the base of each 

column, the motion has six degrees of 

freedom, which will depend on the 

foundation-soil interaction and on the degree 

to which the nonlinear deformations occur in 
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the structure and in the soil. In this paper, we 

consider simultaneous action of horizontal, 

vertical, and rocking components of ground 

motion, but we neglect the effects of 

foundation-soil interaction, and we perform 

the analysis for structures on separate 

foundations only. We assume that the 

structure is near the fault and that the 

longitudinal axis of the structure (X-axis) 

coincides with the radial direction (r-axis) of 

the propagation of waves from the 

earthquake source so that the absolute 

displacements of the bases of columns are 

different, because of the wave passage. 

However, we assume that the ground motion 

can be described approximately by linear 

wave motion. Thus, the nonlinear soil strains 

and cracks in the soil, which accompany 

violent strong ground motion, will not be 

considered. By considering the wave 

propagation from left to right in Fig. 1, we 

assume that the excitations at two piers have 

the same amplitude, but different phase. The 

phase difference (or time delay) between the 

two ground motions depends on the distance 

between piers and the horizontal phase 

velocity of the incident waves. As is seen 

from Fig. 1, the system is excited by 

differential horizontal, vertical, and rocking 

ground motions, , , , 1,2
i i ig g gu v i  , at the 

two bases. In this paper the building is 

subjected to synchronous horizontal ground 

motion so that 

2 1

2 1

2 1

( ) ( )

( ) ( ) 0

( ) ( ) 0

g g

g g

g g

u t u t

v t v t

t t 



 

 

                                     (2) 

For illustrations in this work, it is assumed 

that L = 20 m and the height of each story is 

h1 = h2 = h3 =3.5 m. The first natural period 

of the system is supposed to be T1 = 0.3, 

and 0.6 sec. The damping ratio of the first 

mode is taken to be 1 0.02  . The material 

is assumed to be elasto-plastic, and the 

yielding limit of rotational springs of three 

stories is supposed to be
y = 0.01. 

5. Results and discussion 

In this paper, because of the inclined first-

story columns and the differential motions 

of the ground at two piers, the relative 

rotation of each column at the top and at the 

bottom corners of each story will be 

different, and therefore the story drift is 

defined as follows: 

 

        1 1 2 11 11 1 12 1 11 1 12

1

max sin , sin , sin , sing G g Gh h h h
Drift

h

          
 (For the first story) 

        1 11 2 1 2max sin , sin , sin , sin
i i i ii i G G i i G G i i i i

i

h h h h

Drift
h

       
 

   

 (For i-th story) 

(3) 

Results indicate that the inclination of the 

first-story columns stiffens the system. 

However, the change of the frequency of the 

first mode is small. The deformation of the 

first story with inclined columns is such that 

it forces the building in a pendulum-like 

motion. Due to the inclination, in addition to 

stabilizing the system, it would also be 
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possible to reduce the relative building 

response. 

Figures 3a through 3c illustrate the effect of 

inclination angle of the first-story columns 

on time-history response of story drift of the 

building with main period T1=0.3 sec, under 

fault-normal pulse with different 

magnitudes. As it is seen, by increasing of 

inclination angle of the first-story columns 

the drift amplitude of the first story 

decreases, except for inclination 

angle 10  and under earthquake 

magnitude M=7, that the effect of gravity 

leads to increase the drift amplitude of the 

first story as well. For upper stories by 

increasing of inclination angle of the first-

story columns the drift amplitude increases. 

 

 

 

Fig.3a. Effect of inclination angle of the first-story columns on maximum story drift for T1=0.3 sec, under 

fault-normal pulse with magnitude M=5  
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Fig.3b. Same as Fig. 3a except for M =6. 

 
Fig.3c. Same as Fig. 3a except for M =7. 

In Figures 4a through 4c the main period of 

building is T1=0.6 sec, and the trend is same 

as Figures 3a through 3c for building with 

main period T1=0.3 sec. 

In Figure 5b the building with main period 

T1=0.3 sec, is subjected to El Centro 

earthquake (Figure 5a) and the effect of 

inclination angle of the first-story columns  

on time-history response of story drift is 

shown. As it is seen, the inclined first-story 

columns play important role in decreasing of 

the first-story drift. Nevertheless, they lead 

to increase the upper-story drift. This 

solution would be useful in earthquake 

resistant design of buildings with 

architectural limitations at the first story. 
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Fig.4a. Effect of inclination angle of the first-story columns on maximum story drift for T1=0.6 sec, under 

fault-normal pulse with magnitude M=5 

 

 

 
Fig.4b. Same as Fig. 4a except for M =6. 
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Fig.4c. Same as Fig. 4a except for M =7. 

El Centro earthquake

-4

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30

time(sec)

a
c
c
e
le

ra
ti

o
n

(m
/s

**
2
)

 
Fig.5a. Acceleration time-history of El Centro 

earthquake. 
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Fig.5b 
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Fig.5b 
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Fig.5b 

 

Fig.5b. Effect of inclination angle of the first-story columns on maximum story drift for T1=0.3 sec, 

under El Centro earthquake
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APPENDIX - The dynamic model 

Nonlinear equations of motion for three-

story building with inclined first-story 

columns subjected to differential base 

excitation 

As can be seen from Fig. 1, the model we 

consider is a three-story building with 

inclined first-story columns consisting of 

three rigid beams with mass mi, polar 

moment inertia Ii, and length L supported by 

rigid massless columns connected at two 

ends by circular springs. The stiffness of the 

springs is assumed to be bilinear, as shown in 

Fig. A1.a. The massless columns are 

connected at two ends by circular dashpots 

providing the fraction of critical damping. 

Rotation of the columns is assumed not to be 

small, which leads us to consider the 

geometric nonlinearity. The masses are acted 

upon by the acceleration of gravity, g, and are 

excited by differential ground motions at two 

piers. The deformed shape and all forces that 

act on the structural model, including the 

D’Alembert’s forces and moments, are 

shown in Figs.A2, and A3, respectively. We 

define the parameters of the model as 

follows: 

i
k  Initial rotational stiffness of column 

springs of i-th story 

i
c  Linear rotational damping coefficient of 

columns of i-th story 

im   Mass of rigid beam of i-th story 

L= Length of rigid beam 

21

12
i iI m L  Polar moment inertia of rigid 

beam of i-th story 

ih = Height of i-th story 

1i = Relative rocking angle of i th column 

of the first story 

111 11 1g      = Absolute rocking angle 

of the first column of the first story 

212 12 2g      = Absolute rocking angle 

of the second column of the first story 

ji = Relative rocking angle of i th column 

of j th story (i=1, 2; j=2, 3) 

, ,
i i ig g gu v  = The free-field horizontal, 

vertical, and rotational motions of ground 

surface at the base of i th  column ( 1,2)i   

, ,
i i iG G GU V  = Absolute horizontal, vertical, 

and rotational motions of the center of 

gravity of i-th rigid beam. 
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1 2     = The inclination angle of the 

first-story columns respect to the vertical 

axes  

According to Fig.A2, and because of the 

rigidity of the columns and beams, we can 

write the following relations between the 

displacements of beams and columns. 

Absolute horizontal and vertical 

displacements of i-th beam ends: 

Absolute horizontal and vertical 

displacements of the top of the first-story 

columns: 

1

2

1

2

(1 cos )
2

(1 cos )
2

sin
2

sin
2

1,2,3

i i i

i i i

i i i

i i i

T G G

T G G

T G G

T G G

L
u U

L
u U

L
v V

L
v V

i









  

  

 

 



     

(A.1) 
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(A.2) 

 

Absolute horizontal and vertical 

displacements of the top of i-th story 

columns:
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(A.3) 

 

By combining equations (A.1), (A.2), and 

(A.3), we find the absolute motions of the 

rigid beams as follows: 
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(A.4) 

 

According to Fig.A3 we can obtain the 

system of equations of motion of the model 

as follows 
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   (A.5)  
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Where ijc  are nonlinear functions 

of ij , ij , , and base excitations. Because of 

differential ground motion, the system has 

six degrees of freedom—three independent 

and three dependent. For the solution of Eq. 

(A.5), we need three other equations that 

represent geometric relations in the model. 

Because of the assumed rigidity of beams, 

their lengths are constant. Therefore, for the 

deformed shape of the model we can write 

the following relations for three beams: 
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(A.6) 

 

Taking the first and second derivatives of Eq. 

(A.6) with respect to time and substituting 

into Eq. (A.5) gives 

11 11 12 21 13 31 14

21 11 22 21 23 31 24

31 11 32 21 33 31 34

0

0

0

z z z z

z z z z

z z z z

  

  

  

    


   


   

  

 (A.7) 

 

Where ijz are nonlinear functions 

of 11 21 31 11 21 31, , , , , ,       , and input ground 

motion.  

Equation (A.7) is a system of coupled, 

nonlinear differential equations for 

11 21, ,  and 31  that can be solved by 

numerical methods. Floor masses and story 

stiffness vary linearly from top to bottom as 

follows. Their relative values are so 

proportioned that the fundamental period of 

vibration of the building is nearly equal to 

0.1N, N being the number of stories in the 

building. 
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(A.8) 

 

We suppose that the floor damping 

coefficients vary linearly from top to bottom 

as well: 
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(A.9) 

 

For small deformations of a linear system, 

and by neglecting gravity, damping, input 

ground motion, and high-order parameters, 

and by taking the Fourier transform of Eq. 

(A.7) we would have  
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(A.10) 

 

As it is seen from the above equation the 

stiffness and the mass matrices are not 

symmetric. For 0   the stiffness and the 

mass matrices are same as those for common 

shear building. For nonzero solution of Eq. 

(A.10), the determinant of the coefficients 

should be zero. Therefore, the characteristic 

equation of the model would be 

2 0K M      

 (A.11) 

By solving Eq. (A.11), one can find the 

rotational stiffness of columns and natural 

frequencies of the model. For example for 

10  we have 
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For 0  , we can determine the rotational 

damping coefficient of columns for a 

prescribed fraction of critical damping. The 

mass, stiffness, and damping matrices of the 

model are 
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In modal space we would have  
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The damping ratio of i-th mode would be  
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i
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M



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So, by assuming that the damping ratio of the 

first mode is equal to 02.01  , one would 

have the rotational damping coefficient of 

columns as follows: 
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Fig. A1. (a) Bilinear rotational stiffness 

models, (b) elasto-plastic system and the 

corresponding linear system. 

 

 

Fig. A2. Deformed shape of the model in Fig. 

1, subjected to differential motions at the 

base of its columns. 
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(a) 

 

(b) 

 

(c) 

Fig. A3, (a) Free-body diagrams for the third story, (b) the second story, and (c) the first story of 

the model in Fig. 1. 


