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Damage detection has been focused by researchers because 

of its importance in engineering practices. Therefore, 

different approaches have been presented to detect damage 

location in structures. However, the higher the accuracy of 

methods is required the more complex deliberations. Based 

on the conventional studies, it was observed that the damage 

locations and its size are associated with dynamic parameters 

of the structures. The main objective of this research is to 

present a sophisticated approach to detect the damage 

location using multi-objective genetic algorithm (MOGA) 

along with modified multi-objective genetic algorithm 

(MMOGA). In this approach natural frequencies are 

considered as the main dynamic parameters to detect the 

damage. The finite element method (FEM) is utilized to 

validate the accuracy of the results extracted from the natural 

frequencies analysis with consideration of the beams with 

different support conditions. Accordingly the results 

emphasize the high accuracy of the proposed method with 

the maximum error of 5%. 
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1. Introduction 

Damage of structures may occur at the 

beginning of construction or during 

utilization for different reasons. In the latter, 

the damage might happen due to using 

improper material, lack of monitoring or 

appropriate implementation. Regarding the 

former, some damages are created because of 

improper usage, corrosion, or oxidation due 

to the environmental conditions which may 

affect the longevity of structures. In all 

mentioned cases detecting the location and 

rate of damage is crucial in continuing the 
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utilization of structures. Accordingly, the 

researchers have presented different methods 

for solving the mentioned important problem. 

All these methods are based on determining 

the specifications of structures using static 

and dynamic responses. The methods based 

on the static response determine the changing 

of deformations, stiffness, and sections' 

capacities through calculating strain and 

displacement of structures under certain 

static loads. Dynamic methods might be 

based on the modal and signal processing 

information. The ideas using modal 

information may formed through natural 

frequency, modal shapes, modal shape 

curvature, modal strain energy, elasticity, 

residual force curve, modified matrix and 

frequency response function. However, the 

methods using only natural frequencies of 

several first modes for identifying the exact 

location of damage have been less assessed. 

Natural frequencies of the first three modes 

are the simplest measurable dynamic 

parameters in the structures. Accordingly, 

they can be easily calculated through 

experimental methods such as modal hammer 

[1], determining ultrasonic wave [2], and 

other similar procedures.  

Amezquita et al. [3]examine and compare the 

sensitivity of the Wavelet transform 

coefficients using various wavelets to detect 

crack in a model beam. Wavelet transform is 

a relatively new signal processing method 

which provides a time–frequency 

representation of the signal through time and 

scale window functions. Zhao et al. 

[4]applied a counter-propagation neural 

network to locate damage in beams. 

  In 2013, Goldfeld et al. [5] focused on the 

identification of damage using the alteration 

of modal frequencies in the beams. In this 

research the stiffness distributed in the beam 

and the changes of modal frequencies 

happened in any modal shape have been 

considered to investigate the distribution, 

intensity and location of damage. They 

studied another concrete beam for assessing 

cracks and exact location of the beam crack. 

Perera et al. [6] investigated different 

damages in a beam and updated the damage 

through dynamic and static measurements. In 

2013, Mehrjoo et al. [7] studied genetic 

algorithm and its application in identifying 

the damage of beam shape elements 

(Bernoulli beam elements). In this research 

the crack has been considered using torsional 

spring in the two dimensional 4- node 

elements. Then the exact location of crack 

has been identified using natural frequency. 

Finally, genetic algorithm has been used 

better solving the problem and increasing the 

speed of meeting final response. In 2011, 

Moradi et al. [8] used bees' algorithm for 

identifying the cracks in the beam shape 

structures. In order to conduct experimental 

investigation, several cracks have been 

created in the beams with the dimensions of 

14×14mm in 400mm length in different 

distances and depts. The frequencies of the 

mentioned structure have been calculated in 

the first three modes. Then the approximately 

identified damage, presented in the tables, 

has been assessed and discussed in the 

laboratory status as well as using 

optimization algorithms. The different 

approach, based on modal parameter input, is 

described by Zang.[9] They reduced the size 

of the frequency response function (FRF) 

data by performing a modal analysis first. A 

radial basis function (RBF) network was 

successful in detecting errors in a 

cantilevered beam. 

 In 2011, Meruane et al. [10] attempted to 

identify exact location and intensity of 
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damage applying composed genetic 

algorithm and structural modal 

specifications. In all cases the numerical and 

experimental statuses have been considered 

for damaged and undamaged structures to 

investigate the effects of noises and 

calculation errors. Ghasemi et al. 

[11]introduced a critical excitation model and 

damage index for the M.O.D.F structure. 

Farokhzad et al [12] focused on the 

identification of damage based on 

Optimization via Simulation (OVS). This 

method is established based on the first three 

natural frequencies of the deep or semi-deep 

beams.  

  In this regard, for generalizing the obtained 

results, the beam shape structure was 

modeled in simply-supported, cantilever, 

clamped–clamped, simple–clamped beam 

support conditions. Then, the exact location 

and depth of damage is identified applying 

optimization algorithms of MOGA and 

MMOGA. The obtained results are expanded 

to 9, 5, and 3 lengths to height ratios of 

beam. The process of modeling and meeting 

final responses are presented in the 

following. In this research, the determination 

of damage intensity and its exact location is 

studied using dynamic responses of the first 

three natural frequencies of damaged deep 

beam. 

2. Presenting the optimization 

algorithms 

The optimization methods based on the target 

response are a set of conditions and 

constraints through which the problem 

approaches towards optimum response after 

trial and error efforts. Today, multi objective 

algorithms are frequently used for solving the 

problems with many alternatives. Multi 

objective genetic algorithm (MOGA)[12] and 

modified multi objective genetic algorithm 

are of the methods which make possible the 

meeting of optimum response considering the 

kind of input including rate and exact 

location of damage.[12] 

Altammar et al. [13] developed a damage 

detection algorithm to detect the presence of 

mixed-mode cracks in beam like structures 

using natural modes. The parameters, 

presented in Table 1 are introduced to the 

genetic algorithm. Crossover parameter 

indicates the genetic rates of the generations 

from parents. The information of parents is 

partially copied to the generation. The values 

are between zero and one. The closer the 

value to zero is, the higher the similarity 

between the generated children to their 

parents is. The closer the value to one is, the 

higher the difference between the next and 

previous generation is. In this research the 

value of this parameter has been considered 

near to one (0.98) for more exactness of 

calculations. Another important parameter in 

MOGA is mutation. This parameter may be 

designed from changing the values of one or 

more genes in one chromosome relative to 

the previous chromosomes. Its values are 

between zero and one like those of 

mentioned parameter. High value of this 

parameter indicates the random modeling and 

low values the similarity to the previous 

chromosome. In this research it has been 

considered as 0.01 for achieving higher 

convergence and similarity between the 

responses of previous and next generations.  
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Table 1. Determining the different modeling parameters in MMOGA and MOGA 

 (MOGA)  (MMOGA) Parameter 
Ro

w 

100 100 Number of Initial Sampling 1 

50 50 Number of Sampling Per Iteration 2 

70 70 Maximum Allowable Pareto Percentage 3 

2 2 Convergence Stability Percentage 4 

20 20 Maximum Number of Iterations 5 

0.01 0.01 Mutation Probability 6 

0.98 0.98 Crossover Probability 7 

 

The MMOGA algorithm is very similar to 

genetic algorithm concerning its application 

excluding the generation and distribution of 

data. The distribution of data significantly 

affects the optimum response. Today, 

different methods are used in the world for 

creating primary population such as Mont 

Carlo [14, 15], Latin Hypercube Sampling 

[16] and filling space model [17], each with 

certain performances in the engineering. 

MMOGA [12] is mainly different from others 

in generating and distributing the data. In 

generation of data is random in the genetic 

algorithm while it is based on the Kriging 

algorithm in MMOGA. This algorithm can 

improve the optimum responses and adjust 

the output in accordance with the higher 

alternatives and create the Pareto level with 

reducing the errors. Actually, Kriging 

algorithm is an exact multi- dimensional 

insight, modeled by the simple polynomial 

function. Kriging algorithm has the 

capability of updating the error level in the 

recursive processes using Eq. (2-1). The error 

level is reduced in each repetition up to 

approaching of optimization process towards 

final response. In order to calculate the 

predicted relative error for a parameter, the 

error value obtained in each step is 

normalized to that of previous phase as 

follows: 

normalized predicted error =
relative predicted error

Omax−Omin
× 100 

                                                                             Eq. (2-1)  

Where,  Omin and Omax are maximum and 

minimum error values calculated for a 

parameter in a process, respectively. As 

mentioned earlier, this algorithm is formed 

by composing a multinomial simple model: 

Y(x) = f(x) + Z(x)                                  Eq. (2-2)                                                                                                        

Where, Y(x) is the values of location and 

depth of damage;  f(x) is the first three 

natural frequencies; Z(x) is a Gaussian 

process based on normal distribution with the 

mean of zero,  σ2 variance and co-variance 

of non-zero. In the other words, Z(x) is the 

value of error obtained according to Eq. (2-2) 

and the number of data (N). The value of co-

variance Z(x) is calculated in the algorithm 

as follows: 

COV[Z(xi), Z(xj)] = σ2R(r(xi, xj)) )               Eq. (2-3) 

Where, R is the correlation matrix, a positive 

matrix with the diameter of N×N; r(xi, xj)  is 

the spatial relation between two samples of N 

in the xj and xi points. The dependency of 

r(xi, xj) is obtained based on the Gaussian 

function as follows: 

r(xi, xj) = exp [−∑ θK|xk
i − xk

j
|
2

M
k=1 ]            Eq. (2-4) 

  θK Is an uncertain parameter used for fitting 

the model; M is the number of designing 

variables, here considered as 2 (the depth and 

distance of damage, xk
i   and xk

j
 are the k

th
 

component of the sample points of xj and xi.  
There are different acceptance criteria for the 

two considered optimization methods upon 
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which the optimum response is calculated. 

Maximum Allowable Pareto Percentage is 

the acceptance criterion indicating the ratio 

of the numbers of damaged points to the 

samples of each repetition. As this 

acceptance criterion reaches the allowable 

percentage, the optimization is convergent 

and the analysis is stopped. Convergence 

Stability Percentage is another acceptance 

criterion showing the optimization of 

population generated in each generation. It is 

calculated based on the mean deviation and 

standard. As the response obtained from 

optimization process is the same as the 

previous response, the analysis is convergent 

and is stopped. Mean deviation and standard 

deviation of the alternatives are controlled 

according to Eqs. (2-5, 2-6) and considering 

the generated population. If this value is 

equal to the previous one, the convergence 

has happened. The optimization is continued 

up to satisfying these relations.  

|Meanj−Meanj−1|

Max−Min
<

S

100
                              Eq. (2-5)  

|StdDevj−StdDevj−1|

Max−Min
<

S

100
                          Eq. (2-6)  

Where, S is Stability Percentage, here 

considered as 5; Meani is the mean of 

population in the Mth step; StdDevi is 

standard deviation criterion in the Mth step; 

Max is maximum output calculated in the 

first generated data; Min  is minimum output 

calculated in the first generated data. 

Stability percentage has been presented by 

abbreviation S in Eqs. (2-5, 2-6). As the S 

value is reduced, the accuracy of analysis 

increases, the convergence of analysis 

decreases and the optimization duration 

increases severely. In the other words, if S 

value is 5%, the difference between one 

generation and its previous corresponding 

one should be lower than 5%. This much 

indicates the high accuracies of results and 

convergence. Figure 1 presents a sample of 

Convergence Criteria Charts for clamped- 

clamped beam in three statuses. 

   
Fig 1. Trial and error process in MMOGA algorithm for clamped- clamped beam 

3. Calculating natural frequencies in 

damage and undamaged 

Timoshenko beam 

Verification is the most important factor for 

insurance the optimization results. Exact 

methods are used to verify the obtained 

results through numerical methods. Dynamic 

specifications such as modal shape and 

modal frequency of a deep beam are 

calculated in damaged and undamaged 

statuses, considering the formation of mass 

matrix and displacement vectors. The 

verification methods are assessed in the 

following. 

3-1. Timoshenko undamaged beam 

Based on the reference [18], the displacement 

relations governing the vibrations of a deep 

beam, y(x, t), and its corresponding slope, 

ψ(x, t), are identified in the undamaged 
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status based on the Eqs. (3-1, 3-2). The strain 

energy relation is calculated through Eq. (9) 

based on the reference [19]. 

k`G [
∂2y(x,t)

∂x2 −
∂ψ(x,t)

∂x
] − ρ

∂2y(x,t)

∂t2
            Eq. (3-1)  

EI
∂2ψ(x,t)

∂x2 + k`GA [
∂y(x,t)

∂x
− ψ(x, t)] − ρI

∂2y(x,t)

∂t2
= 0  

Eq. (3-2) 

  U =
1

2
EI ∫ (

dϕ

dx
)
2
dx +

1

2
kAG∫ (

ldψ

dx
− ϕ)

2
dx        Eq. (3-3) 

In Eqs. (3-1, 3-2), G is shear modulus of 

material; k is shear coefficient of deep beam 

with Timoshenko behavior; E is elastic 

modulus of material; I:inertial moment of 

deep beam; A is the sectional area of beam; T 

is time; and ρ is specific gravity; ψ is general 

deformation. In Eq. (3-3),  ψ̇ is general slope; 

ϕ is the slope of curvature; ϕ́ is the first 

derivative of curvature slope; L: is the length 

of assumed elements (two- node elements 

with 4 degrees of freedom); k is shear 

coefficient related to the beam surface with 

the values of 
6

5
  for rectangular and  

10

9
 for 

cyclic and 1 for I shape sections.  

Based on Ref. [20], each  ψ  and  ϕ functions 

and their derivatives are written in the forms 

of node displacements to obtain the general 

Eq. (3-4). The relation will become more 

complete by putting each supporting 

conditions.  
{ξ}T =
[  ψi ϕi   ψi

́    ϕi
́  ψi+1  ϕi+1 ψ́i+1  ϕi+1

́ ]   

[[K] − ωi
2[M]]{ξi} = {0}                                 Eq. (3-4) 

In order to calculate the matrices of mass and 

stiffness in a deep beam with Timoshenko 

behavior using the Eqs.((3-1)-(3-4)) and 

based on the Ref. [20]  to obtain matrices 3-5 

and 3-6: 

 

[K] = EI

420l

[
 
 
 
 
 
 
 
504s 210s 42s 42s −504s 210s 42s −42s
210s  156s + 504 −42s 22s + 42 −210s 54s − 504 42s −13s+ 42
42s −42s 56s 0 −42s 42s −14s −7s
42s 22s + 42 0 4s + 56 −42s 13s − 42 7s −3s− 14

−504s −210s −42s −42s 504s −210s −42s 42s
210s 54s− 504 42s 13s − 42 −210s 156s + 504 −42s −22s− 42
42s 42s −14s 7s −42s −42s 54s 0

−42s −13s + 42 −7s −3s − 14 42s −22s − 42 0 4s + 56 ]
 
 
 
 
 
 
 

            Eq. (3-5) 

In above matrix, s is shear matrix defined as: 

  s =
KAGl2

EI
                   Eq. (3-6) 

[M] =
ρAl3

420

[
 
 
 
 
 
 
 
156 0 22 0 54 0 −13 0
0  156R 0 22R 0 54R 0 −13R
22 0 4 0 13 0 −3 0
0 22R 0 4R 0 13R 0 −3R
54 0 13 0 156 0 −22 0
0 54R 0 13R 0 156R 0 −22R

−13 0 −3 0 −22 0 4 0
0 −13R 0 −3R 0 −22R 0 4R ]

 
 
 
 
 
 
 

               Eq. (3-7)

Where R is inertial moment parameter, 

defined as follows 

R=
I

Al2
                                                 Eq. (3-8) 

Natural frequency of Timoshenko beam in 

the undamaged can be obtained by putting 

the above relations and placing the 

supporting conditions. 

3-2. Timoshenko damaged beam 

with exact solution method 

This section presents the investigation of 

dynamic specifications of the structure 

including modal shape and natural frequency 
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through exact solving method based on the 

references [7, 21, 22]. Regarding Ref. [21], 

Khaji et al. presented mathematical solution 

for identifying the location of damage in the 

deep beam with simply-supported, cantilever, 

clamped–clamped, simple–clamped 

supporting conditions. 

 

Table 2. Formulations coefficients based on Khaji et al. 

Equation  Equation  Equation  Equation  

r =
I

AL2
 Eq. (3-9) ∝=

PA

EI
L4ω2 Eq. (3-10) V =

E

ḰG
 Eq. (3-11) S = 9r Eq. (3-12) 

a =
∝ (r + s)

2
 Eq. (3-13) b =∝ (∝ rs − 1) Eq. (3-14) β1 = (√a2 − b − a)

1

2 Eq. (3-15) 

β2

= (√a2 − b

+ a)
1

2 

Eq. (3-16) 

m1

=
∝ s + β1

2

β1

 
Eq. (3-17) m2 =

∝ s − β2
2

β2

 Eq. (3-18)     

 

Natural frequencies of deep beams are 

obtained for a sample of simply- supported 

damaged beam as follows which can be taken 

from Ref. [17]. 

FSS(m1, m2, β1, β2, l1, l2)θ + GSS(m1, m2, β1, β2) = 0  

                  Eq. (3-19)  

Where it can be written:  
FSS(m1, m2, β1, β2, l1, l2)

= m1β1(m2

+ β2) sin β2 sinh l1β1 sinh l2β1

+ +m2β2(m1

− β1) sinh β1 sin l1β2 sin l2β2 

GSS(m1, m2, β1, β2) = (m2β1 + m1β2) sin β2 sinh β1   
                                          Eq. (3-20) 

4. Modeling for verification of the 

results of finite element and exact 

solution method 

 In order to assess the considered method, a 

deep beam of building steel has been used 

with the specific gravity of 7860 kg/m
3
, 

elasticity modulus of 210 (GPa) and poison 

ration of 0.3. The samples have cross section 

of 12.5×25 mm
2
 and the lengths of 225, 125 

and 75 mm with the ratios of l/d=9, 5 and 3,  

respectively. 

The real values of natural frequencies are 

calculated for the beam in damaged and 

undamaged statuses using the relations 

presented in section 3. The obtained first four 

natural frequencies have been represented in 

Tables 3, 4 and 5. The error (E %) and mean 

error (ME %) parameters are applied for 

comparing the numerical and exact solving 

methods. Mean error (ME %) is obtained 

from dividing total error values from natural 

frequencies of a beam by its numbers as per 

percentage. 

The mentioned parameters have been 

investigated in different supporting statuses. 

 

Table 3. Natural frequencies in the models studied by different methods for 
𝐥

𝐝
= 𝟗 
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Table 3 presents briefly the calculations of 

the ratio to length to the height of l/d=9 for 

four supporting statuses. The distance and 

depth of damage have been considered as 

112.5 mm and 12.5 mm, respectively, for its 

structural damage in the middle of beam. The 

maximum error values for E% and ME% 

parameters are 13.7% and 5.47%, 

respectively, in the clamped-clamped beam. 

These parameters indicate the allowable 

accuracies of the results obtained from finite 

element analysis as well as those of the 

method presented in the Ref. [21]. However, 

the difference between the results of fourth 

frequency is due to considering axial 

vibratory frequency. Actually, the fourth 

frequency obtained from finite element 

analysis is equal to the third frequency of 

theoretical analysis. The numbers marked by 

* in the table are related to the axial vibratory 

natural frequency of the beam.  

The error values of E% and ME% are 9.7% 

and 4.3% in the second frequency in 

cantilever beam, respectively. It seems that 

the vibrations of this beam distributed to the 

surrounding causes the increasing of error 

level in finite element method. On the other 

hand, the third frequency obtained from finite 

element method is related to the axial 

vibration in this status, shown with  * . 

Maximum error values of each frequency 

with its exact corresponding values of E% 

and ME% are 9.7% and 4.67%, respectively. 

These values seem acceptable. Changing in 

the frequency value is due to not considering 

the axial frequency in finite element method. 

Axial vibration frequency is considered in 

the clamped- clamped beam showing the 

difference of 12.8%. However, mean 

maximum error value (ME %) is 5.7%. 

 

Table 4. Natural frequencies in the models studied by different methods for 
𝐥

𝐝
= 𝟓 

Table 4 presents the investigation of the 

beam in four supporting conditions for the 

length to height ratio of 
l

d
= 5. The 

maximum considerable error value is 7% for 

clamped-clamped status of the beam. The 

sum of this error is 2.94 for three 

frequencies. The mode related to the axial 

vibration of this status is happened in the 

third frequency. The error level is reduced in 

the first frequency and increased in the third 

frequency for the cantilever beam due to the 

free fluctuation of the end beam. This much 

is severely reduced in the higher modes 

concerning the increase of absorbed energy. 

The total error value is 6.37% in all three 

statuses indicating the correctness of the 

results. The error values are significantly low 

in the E% and ME% for simple-clamped 

beam showing the high accuracy of the 

results. The error can be ignored in the 

clamped-clamped status of beam. With 

increasing the length to height ratio, the 

Timoshenko behavior of beam approaches 

toward Euler–Bernoulli beam theory. The 

relations presented in this reference are valid 

only for deep beams.   
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Table 5. Natural frequencies in the models studied by different methods for 
𝐥

𝐝
= 𝟑 

 
 

Natural frequencies have been calculated for 

undamaged beam in the status of 
l

d
= 3 and 

presented in Table 5. The error value is lower 

than 5% in the first two frequencies of 

clamped- clamped beam. However, it is 

6.48% in the third frequency of exact 

solution which is equivalent to the fourth 

frequency of finite element analysis. Mean 

error value (ME %) is generally 4.63. The 

error value increases in the cantilever status 

of beam like previous statuses and decreases 

in the simple- clamped beam up to acceptable 

level. In the clamped- clamped beam, 

maximum error value is 5.4% in both E% 

and ME%, indicating the high accuracy of 

the obtained results. The length to height 

ratio lowers than 3 occurs hardly in the 

reality. It is difficult or sometimes impossible 

to be measured by ordinary methods like 

modal hammer, concerning the increase of 

natural frequencies. Consequently, the results 

obtained in this research are valid in the 

length to height ratio ranges of 3-9. With 

increasing this ratio the measuring of 

frequencies is practically impossible in the 

beam with Euler–Bernoulli beam theory and 

the ratio of lower than 3. 

Generally, the error value is lower than 5% in 

the three studied statuses for all supporting 

conditions, indicating the high accordance 

between the finite element and exact solution 

methods. The considerable error value is 6.37 

% in the cantilever beam. This much is 

ignorable considering the involved factors 

such as noises.  

5. Numerical analysis results of with 
MOGA and MMOGA 
The numerical analysis method and the 

performance of program are confirmed by 

conducting the verification presented in 

section 3. Accordingly, this section focuses 

on the performances of optimization methods 

in the identification of exact location and 

intensity of the damage in different 

cantilever, simply supported, clamped- 

clamped and simply clamped beams. This 

method has been generalized for the length to 

height ratios of 3, 5, and 9.  

According to Figure 2 and the general 

process of optimization, a beam has been 

considered with the cross section of 12.5×25 

mm
2
 and a crack with half height of beam 

and 100 mm distance from support. It has 

been modeled in four different kinds with 

relevant supporting conditions. The first three 

natural frequencies are calculated in each 

supporting conditions. The frequencies 

obtained in this section are used as the input 

of the method suggested in this research. 

Then the exact location and depth of crack is 

identified using two optimization methods. 

            
Figure 2. Identifying the location of structural damage in a deep 

beam 

225mm 
100mm 

100mm 
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The previous process is repeated after 

identifying the location and distance of the 

damage with the ratios of 
𝑙

𝑑
=3 and 5. The 

damage identification is then assessed again 

for four supporting conditions. 

5-1. Investigating the convergence 

process in the applied optimization 

methods 

The frequency values are practically different 

in each measurement due to various 

environmental factors such as temperature 

and noises existed around the structure. 

Therefore, meeting an accurate frequency in 

the identification of structural damage is not 

possible in the ordinary tests such as modal 

hammer. On the other hand, converging to a 

certain number is very difficult in generating 

through artificial intelligence methods. 

Therefore, the frequency ranges of ±5 have 

been selected as the high and low values, to 

consider the effects of noises as well as 

convergence in the optimization process. 

 
Figure 3-A. The first frequency of cantilever beam with 

MOGA method 
𝐥

𝐝
= 𝟗 

 
Figure 3-B. The first frequency of cantilever beam with 

MOGA method 
𝐥

𝐝
= 𝟓 

 

Figure 3-C. The first frequency of cantilever beam with 

MOGA method 
𝐥

𝐝
= 𝟑 

Figure 3 presents a sample of the curves 

obtained from optimization process. These 

curves show the trial and errors performed in 

the optimization process. Accordingly, the 

horizontal axis shows several points in which 

the analysis has met convergence. In these 

analyses about 400 points are created for 

meeting the final response. In this method, 

about first 50 points are created randomly. 

The next generations of these data have been 

modified according to the explanation of 

section 2. After generating 8 generations, the 

analysis has been convergent to the response.  

5-2. The results obtained from 

suggested method based on MOGA 

and MMOGA 

In this method, the preliminary natural 

frequencies are considered as input for a 

beam. After optimization by the above 

mentioned methods, two parameters, depth of 

the cracks and distance from the support, are 

obtained as the output. Accordingly, exact 

results (section 3-2) are used as the input 

parameters for optimization of MOGA and 

MMOGA methods. In all processes, in order 

to consider the noises, ±5% has been added 

to the main frequency as the acceptance 

range and presented as the high and low 

limits of optimization.   
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Table 6. The results of optimization method through MOGA simulation in the beam with 
𝐥

𝐝
= 𝟗 

    
 

Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 

Present 

Study 
Exact 

Method 

1.49 1553.20 1530.1 0.92 975.77 966.75 0.98 2232.98 2211.2 0.87 395.24 391.78 1 

0.07 5231.54 5227.8 0.06 4411.92 4409.2 0.15 6060.87 6070.2 2.87 2001.03 1943.5 2 

0.30 10752.80 10721 17.37 8062.11 9462.2 0.04 11566.75 11571 0.07 6202.79 6207.2 3 

0.29 99.71 100 2.70 102.78 100 20.83 126.31 100 0.88 99.13 100 Distance 

3.14 12.12 12.5 0.87 12.39 12.5 4.59 11.95 12.5 5.40 11.86 12.5 Depth 

 

Table 6 presents the results obtained from 

suggested method modeling for different 

kinds of supporting conditions in 
l

d
= 9. In 

this case, the distance of damage from 

support is 100 mm and its dept is 12.5mm. 

The distance and depth of the crack have 

been calculated in a cantilever beam based on 

the first three frequencies. The error values 

are 5.4% for depth and 0.88% for the 

distance from support comparing to the real 

values. In the other words, the depth 

calculated by suggested method is 11.86 mm, 

indicating the high accuracy of the method, 

comparing to the real value. Similar results 

are obtained for simply supported and 

simple-clamped beams, showing high 

accuracy of the proposed method.

 

 
Figure 4. The process for meeting the depth of damaged beam with different supporting conditions by MOGA method for 

𝐥

𝐝
= 𝟗 

 

Figure 4 presents the process and value of the 

depth obtained for four supporting 

conditions. The final response in all 

supporting conditions is estimated with 

acceptable accuracy (maximum 5%).  

 

 
Figure 5. The process for meeting the distance from support in the damaged beam with different supporting conditions by MOGA method for 

𝐥

𝐝
= 𝟗 

The error value in estimating the distance of 

damage from support increases and reaches 

to 20% in the clamped- clamped beam. The 

increasing of error rate is due to the 

composing of flexural and axial modes and 

the input noises. 
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Table 7. The results obtained from optimization method through MMOGA simulation in the beam with 
𝐥

𝐝
= 𝟗 

    
 

Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 

Present 

Study 
Exact 

Method 

1.44 1552.49 1530.1 0.93 974.18 966.75 0.98 2226.92 2211.2 0.73 394.65 391.78 1 

0.06 5230.71 5227.8 0.06 4411.74 4409.2 0.15 6077.14 6070.2 2.30 1989.28 1943.5 2 

0.30 10753.6 10721 17.38 8053.52 9462.2 0.04 11570.4 11571 0.08 6202.05 6207.2 3 

2.08 9961 100 2.69 103.09 100 16.8 120.30 100 0.86 99.14 100 Distance 

2.56 12.19 12.5 0.88 12.34 12.5 4.54 12.09 12.5 5.39 11.86 12.5 Depth 

 

In Table 7 presents the depth and distance 

from support for the beam with 
l

d
= 9 

through MMOGA method. MMOGA has 

been used as the second optimization method 

in this research. The error value has been 

considerably reduced particularly in the 

clamped- clamped beam. This fact indicates 

the effectiveness of Kriging algorithm in the 

distribution and reduction of errors. The time 

needed for meeting the optimum response in 

this case is 0.92 of that of multi-objective 

genetic algorithm.  

 

Table 8. The results obtained from optimization method through MOGA simulation in the beam with 
𝐥

𝐝
= 𝟓 

    
 

Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 

Present 

Study 
Exact 

Method 

0.077 4441.51 4438.1 0.081 2680.78 2678.6 0.108 6165.15 6158.5 0.821 1163.25 1153.7 1 

0.039 13896.64 13902 0.014 12127.7 12126 0.053 15797.3 15789 0.607 5134.14 5103 2 

0.027 21682.83 21677 0.006 20768.2 20767 0.132 22847.2 22817 0.127 16462.14 16483 3 

0.119 62.57 62.5 0.687 62.07 62.5 0.689 62.93 62.5 0.971 61.90 62.5 Distance 

0.947 12.38 12.5 0.591 12.43 12.5 0.799 12.40 12.5 1.981 12.26 12.5 Depth 

 

Table 8 presents the depth and distance from 

support for the deep beam with 
l

d
= 5 

through MOGA. The whole length of beam is 

125mm; the damage is located at the distance 

of 62.5mm from support. The depth of 

damage is equal to the half of the beam 

height. With decreasing the beam length and 

approaching the behavior from Euler–

Bernoulli beam theory toward theory, the 

error values calculated for measuring the 

depth and distance from support is 

significantly reduced. Accordingly, 

maximum evaluated error value is 2%.  

 

 
Figure 6. The process for meeting the depth in damaged beam with different supporting conditions by MOGA method for 

𝐥

𝐝
= 𝟓 
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Figure 6 presents the trend of meeting 

optimum response in four supporting 

conditions. According to Figures 6 and 7, the 

primary responses are very different form 

final response in the first 50- data range. By 

generating 7-9 generations, there will be 350-

450 sample responses, approaching towards 

final response with great accuracy. The trend 

of meeting optimum response has been 

assessed in four supporting conditions and 

presented in Figure 7.  

 

 

 
Figure 7. The process for meeting the distance from support in the damaged beam with different supporting conditions by MOGA 

method for 
𝐥

𝐝
= 𝟓 

 

Table 9 presents the efficiency of suggested 

method in detecting the distance and depth 

parameters for different kinds of supporting 

conditions in the beam with 
l

d
= 5 through 

MMOGA method. No siginificat error is 

observed between the optimum responses of 

MOGA and MMOGA methods, considering 

both parameters. Maximum error value is 

corresponded to the status of 
l

d
= 9  in 

detecting the damage distance. The time 

needed for meeting optimum response in 

MMOGA method is 82% of that of MOGA.  

 

 

Table 9. The results obtained from optimization method by MMOGA simulation in the beam with 
𝐥

𝐝
= 𝟓 

    
 

Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 
Present 

Study 
Exact 

Method 
Error

% 

Present 

Study 
Exact 

Method 

0.076 4441.46 4438.1 0.081 2679.60 2678.6 0.108 6166.07 6158.5 0.824 1163.29 1153 1 

0.039 13896.57 13902 0.014 12124.6 12126 0.053 15797.1 15789 0.612 5134.40 5103 2 

0.026 21682.59 21677 0.006 20769.4 20767 0.132 22853.1 22817 0.127 16462.14 16483 3 

0.119 62.57 62.5 0.687 62.03 62.5 0.690 62.81 62.5 0.971 61.90 62.5 Distance 

0.957 12.38 12.5 0.589 12.47 12.5 0.802 12.36 12.5 1.981 12.26 12.5 Depth 

 

 

Table 9 shows the depth and distance from 

support in different kinds of supporting 

conditions for the beam with 
l

d
= 3 through 

MOGA method. In ths case, the length of 

beam is 75mm, the distance of damage 

location from support 37.5 mm and its depth 

half of the beam height. Maximum error 

value is 4% and 6% in the suggested method 

for distance and depth parameters, 

respectively. 
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Table 10. The results obtained from optimization method through MOGA simulation in the beam with 
𝐥

𝐝
= 𝟑 

    
 

Error
% 

Present 
Study 

Exact 
Method 

Error
% 

Present 
Study 

Exact 
Method 

Error% 
Present 
Study 

Exact 
Method Error% 

Present 
Study 

Exact 
Method 

0.052 10316.59 10322 1.499 6414.43 6510.6 0.288 13859. 13899 5.711 2779.56 2938 1 

0.874 28597.00 28847 1.174 26081.7 26388 0.613 30759 30948 12.923 10181.28 11497 2 

0.764 40492.58 40802 0.665 39686.2 39950 17.894 35196 41494 1.960 31806.61 32430 3 

1.89 38.23 37.5 3.658 38.92 37.5 1.527 36.94 37.5 2.290 36.66 37.5 Distance 

5.65 13.25 12.5 5.966 13.29 12.5 5.306 13.20 12.5 5.661 13.25 12.5 Depth 

Table 10 presents maximum error value 

occurred in the calculation of the third 

frequency for clamped- clamped beam. This 

error is due to the interference of flexural and 

axial modal shape. The error values in 

calculating the two mentioned parameters are 

reduced up to about 5.3% with respect to 

applying the first three frequencies as the 

input of optimization process.  

 

 
Figure 8. The process for meeting the depth in the damaged beam for different supporting conditions by MOGA method for 

𝐥

𝐝
= 𝟑 

 

Figures 8 and 9 have shown the trend of 

meeting optimum response of depth and 

distance from support in different kinds of 

supporting conditions for length to height 

ratio of 3 in MOGA method. According to 

Figures 4-9, higher error values are observed 

in the convergence trend for determining the 

distance from support, comparing to that of 

depth parameter due to the significant effect 

of different distances on natural frequencies. 

 

  
Figure 9. The process for meeting the distance from support in the damaged beam for different supporting conditions by MOGA method for 

𝐥

𝐝
= 𝟑 

 

Table 11 presents the depth and distance from 

support in different kinds of supporting 

conditions for the beam with 
l

d
= 3 through 

MMOGA method. The calculated error value 

is lower in this method comparing to its 

corresponding status, indicating high 

accuracy of the method resulted from the 

distribution of generated generations in each 

phase. The analysis time needed for meeting 

optimum response in MMOGA method is 

0.78 of that of MOGA.  
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Table 11. The results obtained from optimization method through MMOGA simulation in the beam with 

𝐥

𝐝
= 𝟑 

 

 
 

 
 

 
 

  
Error
% 

Present 
Study 

Exact 
Method 

Error
% 

Present 
Study 

Exact 
Method 

Error
% 

Present 
Study 

Exact 
Method 

Error
% 

Present 
Study 

Exact 
Method 

0.198 10301.59 10322 1.497 6426.12 6510.6 0.288 13859.44 13899 5.919 2774.09 2938 1 

0.898 28590.23 28847 1.170 26173.0 26388 0.612 30800.03 30948 12.93 10180.02 11497 2 

0.891 40441.70 40802 0.666 39627.2 39950 15.32 41104.24 41494 1.804 31855.26 32430 3 

1.577 38.10 37.5 3.720 38.27 37.5 1.511 37.34 37.5 1.870 36.81 37.5 Distance 

5.719 13.26 12.5 4.71 13.12 12.5 4.79 13.13 12.5 0.95 13.2 12.5 Depth 

 

Optimization has been performed for four 

kinds of supporting conditions including 

cantilever, clamped- clamped, simply 

supported and simple clamped beams. This 

process has been assessed for length to depth 

ratios of 5, 3, and 9, using MMOGA and 

MOGA methods. Totally 48 analyses have 

been conducted for all statuses. The 

evaluated error value has been approximately 

lower than 5% in all statuses, excluding 

clamped- clamped beam, for two studied 

parameters. However, this error value is 

about 20% for clamped-clamped beam in the 

multi-objective genetic algorithm and 16% in 

the modified multi-objective genetic 

algorithm due to the high entered noised and 

axial and flexural modal shapes.  

6. Investigating an applicable 

example using the results of 

suggested method 

The proposed method has been assessed in 

the previous discussion. The performance of 

the method has been verified by the final 

responses and its accuracy by the results 

obtained for all statuses. According to Figure 

3, the general trend of solving the problem 

has been studied for different kinds of 

supporting conditions. Therefore, the 

problem can be solved to meet the optimum 

response in this example. 

 

6-1. The specifications of studied 

sample 

In this example the considered beam has the 

elastic module of 200 (GPa), material mass 

density of 7860 kg/ m
3
 and poison ratio of 

0.3. This problem has been assessed for 

cantilever, simply supported, clamped-

clamped, and simple-clamped supporting 

statuses of beam. 

 
Figure 10. A sample of supporting condition and the 

crack location in the studied beam 

The dimensions of beam are shown in Figure 

10. It has the width of 1000 mm, height of 

200 mm and length of 2000 mm with the 

ratio of 
l

d
= 10. The location and depth of 

crack are 1000 mm and 100 mm, 

respectively.  

 

Table 12. The results of first three natural frequencies in 

numerical method for all cracked beams 

Simple–

clamped 

(Hz) 

Simply 

supporte

d 

 (Hz) 

Clamped

–clamped 

 (Hz) 

Cantilever 

(Hz) 

 

row 

157.1 94.89 224.07 38.83 1 

531.6 440.35 634.78 200.55 2 

935.6 815.2 1031.3 655.16 3 

2000mm 
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The first three frequencies are obtained for 

four supporting statuses using numerical 

method and presented in Table 14. Maximum 

noises considered for solving the problem is 

5%. The results of suggested method are 

assessed in the following. 

 

6-2. The distribution of damage 

locations after optimization process 
The suggested method has been applied for 

all supporting statuses. The obtained results 

might be similar to the real responses. 

Accordingly, the optimization may present 

one or more responses at the end of 

convergence process. Different responses 

have been obtained from the analyses, 

presented in the tables, after optimization 

process. However, the optimum response has 

been assessed concerning high volume of the 

results. Regarding the high volume of 

calculations as well as the similarity between 

the results of MOGA and MMOGA, only one 

optimization method has been investigated 

and presented in Figures 11-18. This can be 

generalized in all statuses. 

 

 

Figure 11-A. The location obtained after 

optimization process in the cantilever beam 

 

Figure 11-B. The depth of crack obtained after 

optimization process in the cantilever beam 

 

According to Figure 11, three points have 

been obtained, coincident with the 

specifications of analysis input, after 

optimization process. In this figure the 

vertical axis shows the accordance between 

the optimization and real responses. The left 

to right directions of horizontal axis shows 

length and depth of the beam, respectively. In 

this figure, two points obtained from 

optimization process are related to the depth 

and distance of the damage, agreed with the 

real responses up to about 95%. Another 

response is corresponded to the damage 

location with 1850mm distance and 45mm 

depth. The accumulation of responses in this 

process indicates the high accuracy of 

optimization process. 

 

 

Figure 12-A. The locations obtained after 

optimization process in the clamped- clamped 

beam 
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Figure 12-B. The depth of crack obtained after 

optimization process in the clamped- clamped 

beam 

 

The location and depth of clamped-clamped 

beam have been presented in Figure 12. In 

this figure, two points with 1000 mm 

distance and 100 mm depth are 100% in 

accordance with real response. Another point 

with 1200 mm distance and 123 mm depth 

agrees with real response about 65%. By the 

way, the other location and depth of the 

damage can easily be detected.  

 

   Figure 13-A. The locations obtained after 

optimization process in the simply supported beam 

 
Figure 13. The depth of crack obtained after 

optimization process in the simply supported beam 

The optimization results of clamped- 

clamped and simple- clamped beams are 

presented in Figures 13 and 14, respectively. 

According to Figure 14, the responses of the 

suggested numerical method are totally in 

agreement with the real value, showing the 

high accuracy of the software. 

Figure 14-A. The locations obtained after 

optimization process in the simple- clamped beam 

 

Figure 14-B. The depth of crack obtained after 

optimization process in the simple- clamped beam 
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6. Conclusion 

So far the identification of damages in the 

structures were presented by composing two 

or more parameters including natural 

frequencies, modal shape, curvature of modal 

shape, energy of modal strain, residual force 

vector, modified matrix and frequency 

response function. This research focuses on 

identifying the exact location of damage 

using optimization methods and based only 

on the first three frequencies of deep beams. 

Natural frequencies are easily calculated in 

the first modes of different structures by 

simple tests such as modal hammer. The 

method suggested in this study presents an 

effective step in the identification of exact 

location and depth of damage. Another 

advantage of the proposed method is its 

capability in the determination of depth and 

fissure of the damage resulting in the 

calculation of its intensity. The results 

obtained in this research indicated the 

capability of suggested method. Here, the 

new method has been used to identify the 

damages in the structures. For this purpose 

84 analyses was conducted, out of which 36 

and 48 analyses for verifying the results of 

finite element and proposed methods, 

respectively. The obtained results confirm the 

capability of this new method in identifying 

the damages of structures and most 

particularly in the deep beam shape 

structures. In the ordinary structures, one of 

the first frequencies is axial mode with 

flexural behavior, concerning the ref. [21]. 

On the other hand, axial frequency cannot be 

measured in the beams by ordinary devices. 

Axial mode, measurable in the finite element 

analysis, has been ignored in this research. 

The time needed for analysis and meeting the 

convergence are of the most important 

factors, considering the numerical method 

results in the convergence process. The time 

needed for performing optimization with 

MOGA and MMOGA methods was 

investigated confirming the lower duration of 

MMOGA in comparison with the other one.  

The error level is lower than 5% excluding 

the clamped-clamped supporting status of 

beam in which the error value increases 

considering the vicinity of natural 

frequencies in the near locations and depts. 

MMOGA method presents better responses 

in a specific status, comparing to MOGA. In 

such cases the error level decreases from 

20% to 16% in the most critical status 

(clamped- clamped) due to the distribution 

and error finding of Kriging algorithm. These 

two methods were assessed in order to meet 

the real responses with minimum error 

values. Each or both methods can present 

real responses in different conditions. 

Maximum values of calculated error of final 

response after optimization process have 

been 6% in the depth of crack for all 

supporting statuses, considering the ratio of 

length to depth of sample as 3. The rate of 

error increases in the determination of 

distance parameter as the mentioned ratio 

increases to 9. Therefore, it can be concluded 

that the studied method has high accuracy for 

Timoshenko beams with respecting the 

length to thickness ratios lower than 5. The 

existence of noises is inevitable in the 

experiments. They are formed due by the 

environmental vibrations, temperature, 

register system vibrations, measurement 

errors and so on. The created noises level has 

been considered as 5% and their effects as 

95% - 105% of the values of real frequency 

in the optimization process.   

7. Reference 

[1]. ASTMC1383-04, A., Standard test 

method for measuring the P-Wave speed 

and the thickness of concrete plates using 

the impact-echo method. 2010, American 

Society for Testing And Materials (ASTM) 

USA. 



 Reza Farokhzad et al./ Journal of Rehabilitation in Civil Engineering 4-2 (2016) 25-44 43 

[2]. ASTM, C., Standard test method for 

pulse velocity through concrete. Annual 

Book of ASTM Standards, American 

Society of Testing Material, 2009. 

[3]. Amezquita-Sanchez, J.P. and H. Adeli, 

Signal processing techniques for vibration-

based health monitoring of smart 

structures. Archives of Computational 

Methods in Engineering, 2016. 23(1): p. 1-

15. 

[4]. Zhao, B., et al., Structural Damage 

Detection by Using Single Natural 

Frequency and the Corresponding Mode 

Shape. Shock and Vibration, 2016. 2016. 

[5]. Goldfeld, Y. and D. Elias, Using the 

exact element method and modal frequency 

changes to identify distributed damage in 

beams. Engineering Structures, 2013. 51: 

p. 60-72. 

[6]. Perera, R., R. Marin, and A. Ruiz, Static–

dynamic multi-scale structural damage 

identification in a multi-objective 

framework. Journal of Sound and 

Vibration, 2013. 332(6): p. 1484-1500. 

[7]. Mehrjoo, M., N. Khaji, and M. Ghafory-

Ashtiany, Application of genetic algorithm 

in crack detection of beam-like structures 

using a new cracked Euler–Bernoulli beam 

element. Applied Soft Computing, 2013. 

13(2): p. 867-880. 

[8]. Moradi, S., P. Razi, and L. Fatahi, On the 

application of bees algorithm to the 

problem of crack detection of beam-type 

structures. Computers & Structures, 2011. 

89(23): p. 2169-2175. 

[9]. Zang, C. and M. Imregun, Structural 

damage detection using artificial neural 

networks and measured FRF data reduced 

via principal component projection. 

Journal of Sound and Vibration, 2001. 

242(5): p. 813-827. 

[10].Meruane, V. and W. Heylen, An hybrid 

real genetic algorithm to detect structural 

damage using modal properties. 

Mechanical Systems and Signal 

Processing, 2011. 25(5): p. 1559-1573. 

[11]. Ghasemi, S.H. and P. Ashtari, 

Combinatorial continuous non-stationary 

critical excitation in MDOF structures 

using multi-peak envelope functions. 

Earthquakes and Structures, 2014. 7(6): p. 

895-908. 

[12].Farokhzad Reza, M.B., Ghodrati Amiri 

Gholamreza, Ghafory-Ashtiany Mohsen, 

Detecting structural damage in 

Timoshenko beams based on optimization 

via simulation (OVS). Journal of 

Vibroengineering, 2016. 18(8): p. 5074-

5095. 

[13].Altammar, H., S. Kaul, and A. Dhingra. 

Use of Frequency Response for Damage 

Detection: An Optimization Approach. in 

ASME 2016 International Design 

Engineering Technical Conferences and 

Computers and Information in Engineering 

Conference. 2016. American Society of 

Mechanical Engineers. 

[14].Hjelmstad, K. and S. Shin, Crack 

identification in a cantilever beam from 

modal response. Journal of Sound and 

Vibration, 1996. 198(5): p. 527-545. 

[15].Ghasemi, S.H., et al., State-of-the-art 

model to evaluate space headway based on 

reliability analysis. Journal of 

Transportation Engineering, 2016: p. 

04016023. 

[16]. Koh, B., J. Choi, and M. Jeong. Damage 

Detection through Genetic and Swarm-

Based Optimization Algorithms. in 

International Conference on Engineering, 

Science, Construction and Operations in 

Challenging Environments. International 

Conference on Engineering, Science, 

Construction and Operations in 

Challenging Environments. 2010. 

[17].Law, S., Z. Shi, and L. Zhang, Structural 

damage detection from incomplete and 

noisy modal test data. Journal of 

Engineering Mechanics, 1998. 124(11): p. 

1280-1288. 

[18].Weaver Jr, W., S.P. Timoshenko, and 

D.H. Young, Vibration problems in 

engineering. 1990: John Wiley & Sons. 



44 Reza Farokhzad et al./ Journal of Rehabilitation in Civil Engineering 4-2 (2016) 25-44 

[19].Tada, H., P. Paris, and G. Irwin, The 

analysis of cracks handbook. 2000: New 

York: ASME Press. 

[20].Petyt, M., Introduction to finite element 

vibration analysis. 2010: Cambridge 

university press. 

[21].Khaji, N., M. Shafiei, and M. Jalalpour, 

Closed-form solutions for crack detection 

problem of Timoshenko beams with various 

boundary conditions. International Journal 

of Mechanical Sciences, 2009. 51(9): p. 

667-681. 

[22].Ostachowicz, W. and M. Krawczuk, 

Analysis of the effect of cracks on the 

natural frequencies of a cantilever beam. 

Journal of sound and vibration, 1991. 

150(2): p. 191-201. 

 


