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Abstract

In this paper we apply the technique of measures of noncompactness to the theory of infinite system of
integral equations in the Fréchet spaces. Our aim is to provide a few generalization of Tychonoff fixed
point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations
with help of the technique of measures of noncompactness and a generalization of Tychonoff fixed
point theorem. Also, we present an example of nonlinear integral equations to show the efficiency of
our results. Our results extend several comparable results obtained in the previous literature.
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1. Introduction

The theory of infinite systems of integral equations is considered as an important branch of nonlinear
analysis. In fact, infinite systems of integral equations are the natural generalization of infinite
systems of differential equations which can arise in the theory of branching processes, the theory of
neural nets, the theory of dissociation of polymers and real world problems (cf. [29, 30, 31, 32, 33]).
Also, infinite systems of integral equations are particular cases of integral equations in Banach spaces
which have been considered in many research papers [14, 15, 28, 32].
On the other hand, Measures of noncompactness are very useful tools in the theory of operator
equations in Banach spaces. They are frequently used in the theory of functional equations, including
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ordinary differential equations, equations with partial derivatives, integral and integro-differential
equations, optimal control theory, etc. In particular, the fixed point theorems derived from them
have many applications. There exists an enormous amount of considerable literature devoted to this
subject (see for example [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26,
27, 28]).
There have recently been many papers regarding the relationship between the above concepts, for
example, Arab et al. [11], Olszowy [27], Mursaleen and Mohiuddineb [23], Mursaleen and Alotaibi
[24], Banaś and Lecko [15], Rzepka and Sadarangani [28] which discussed the solvability of infinite
systems of differential and integral equations with the help of measures of noncompactness.
The aim of this paper is to give fixed point theorems for condensing operators in the Fréchet space.
Moreover, we study the problem of the existence of solutions for infinite systems of integral equations
of the form

xn(t) = fn(t, x1(t), . . . , xn(t)) +

∫ 1

0

kn(t, s)Qn((xi(s))
i=∞
i=1 )ds. (1.1)

We are going to show that Eq. (1.1) has solution that belongs to space (Lp[0, 1])ω (denote the
countable cartesian product of Lp[0, 1] with itself). The obtained results extend several papers (see
[3, 4, 5, 7, 8, 11, 12, 14], for example). Finally, an example is presented to show the efficiency of our
results.

2. Preliminaries

Here, we recall some basic facts concerning measures of noncompactness. Denote by R the set of
real numbers and put R+ = [0, +∞). The symbol X, ConvX will denote the closure and closed
convex hull of a subset X of E, respectively. Moreover, let NE indicate the family of all nonempty
and relatively compact subsets of E.
A topological vector space (TVS) is a vector space X over the field R which is endowed with a
topology such that the maps (x, y)→ x+ y and (α, x)→ αx are continuous from X ×X and R×X
to X. A topological vector space is called locally convex if there is a basis for the topology consisting
of convex sets (that is, sets A such that if x, y ∈ A then tx+ (1− t)y ∈ A for 0 < t < 1).

Definition 2.1. [19] A Fréchet space is a locally convex space which is complete with respect to a
translation-invariant metric.

Example 2.2. Let Ei be a Banach space for all i ∈ N, then
∏
i∈N

Ei is a Fréchet space by

d(x, y) = sup{ 1

2i
min{1, di(xi, yi)} : i ∈ N},

where x = (x1, x2, . . .), y = (y1, y2, . . .) ∈
∏
i∈N

Ei.

Definition 2.3. [11] Let M be a class of subsets of a Fréchet space E, we say M is an admissible
set if NE ∩M 6= ∅ and if X ∈M, then Conv(X), X ∈M.

Definition 2.4. [11] LetM be an admissible subset of a Fréchet space E, we say that µ :M−→ R+

is a measure of noncompactness on Fréchet space E if it satisfies the following conditions:

(1◦) The family kerµ = {X ∈M : µ(X) = 0} is nonempty and kerµ ⊆ NE;
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(2◦) X ⊂ Y =⇒ µ(X) ≤ µ(Y );

(3◦) µ(X) = µ(X);

(4◦) µ(ConvX) = µ(X);

(5◦) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];

(6◦) If {Xn} is a sequence of closed sets from M such that Xn+1 ⊂ Xn for n = 1, 2, · · · , and if
lim
n→∞

µ(Xn) = 0, then X∞ = ∩∞n=1Xn 6= ∅.

Theorem 2.5. (Darbo [14]) Let C be a nonempty, closed, bounded, and convex subset of the Banach
space E and F : C → C be a continuous mapping. Assume that there exists a constant k ∈ [0, 1)
such that

µ(FX) ≤ kµ(X),

for any nonempty subset of C. Then F has a fixed point in C.

Theorem 2.6. (Tychonoff fixed point theorem [1]) Let E be a Hausdorff locally convex linear topo-
logical space, C be a convex subset of E and F : C −→ E be a continuous mapping such that

F (C) ⊆ A ⊆ C,

with A compact. Then F has at least one fixed point.

Theorem 2.7. ([11]) Suppose µi be a measure of noncompactness on Banach spaces Ei for all i ∈ N.
If we define

M = {C ⊆
∞∏
i=1

Ei : sup
i
{µi(πi(C))} <∞},

where πi(C) denotes the natural projection of
∞∏
i=1

Ei into Ei and µ :M−→ R+ by

µ(C) = sup{µi(πi(C)) : i ∈ N}, (2.1)

then M is an admissible set and µ is a measure of noncompactness on X =
∞∏
i=1

Ei.

3. Main result

In this section, we state some main results in Fréchet spaces which generalize and improve Darbo’s
fixed point theorem, Tychonoff fixed point theorem, the mentioned corresponding results of Arab et
al. [11], Aghajani et al. [3] and several authors (see [4, 5, 7, 8, 12, 14])

Theorem 3.1. Let Ω be a nonempty, closed and convex subset of a Fréchet space E, M be an
admissible set such that Ω ∈ M and µ : M −→ R+ be a measure of noncompactness on E. Also,
suppose that F : Ω −→ Ω is a continuous mapping such that

ψ(µ(FX)) ≤ ϕ(µ(X)), (3.1)

and F (X) ∈ M for any nonempty subset X ∈ M where ψ, ϕ : R+ −→ R+ are given functions such
that ψ is lower semicontinuous and ϕ is upper semicontinuous on R. Moreover, ψ(0) = ϕ(0) = 0
and ψ(t) > ϕ(t) > 0 for t > 0. Then F has at least one fixed point and the set of all fixed points of
F in Ω is compact.
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Proof . By induction, we obtain a sequence {Ωn} such that Ω0 = Ω and Ωn = Conv(FΩn−1), n ≥ 1.
It is obvious that Ωn ∈M for all n ∈ N. If there exists an integer N ≥ 0 such that µ(ΩN) = 0, then
ΩN is compact. Thus, Theorem 2.6 implies that F has a fixed point. Now assume that µ(Ωn) 6= 0
for n ≥ 0. Since {µ(Ωn)} is a positive decreasing sequence of real numbers, then there exists r ≥ 0
such that µ(Ωn)→ r as n→∞ and by (3.1), we have

ψ(r) ≤ lim
n→∞

ψ(µ(Ωn+1)) = lim
n→∞

ψ(µ(Conv(F (Ωn)))) = lim
n→∞

ψ(µ(F (Ωn))) ≤ lim
n→∞

ϕ(µ(Ωn)) ≤ ϕ(r).

This result, ψ(0) = ϕ(0) = 0 and ψ(t) > ϕ(t) > 0 for t > 0 imply that r = 0. Hence we deduce that
µ(Ωn) −→ 0 as n −→ 0. Since the sequence (Ωn) is nested, in view of axiom (6◦) of Definition 2.4

we deduce that the set Ω∞ =
∞⋂
n=1

Ωn is nonempty, closed and convex subset of the set Ω. Moreover,

the set Ω∞ is invariant under the operator F and belongs to Kerµ. Thus, applying Tychonoff fixed
point theorem, F has a fixed point. To complete the proof it remains to verify that µ(FF ) = 0 where
FF = {x ∈ Ω : Fx = x}. Since F (FF ) = FF and by (3.1), we have

ψ(µ(FF )) = ψ(µ(F (FF ))) ≤ ϕ(µ(FF )).

Moreover, ψ(t) > ϕ(t) > 0 for t > 0, so µ(FF ) = 0 and FF is relatively compact and since F is a
continuous function so the set of fixed points of F in Ω is compact. �

Corollary 3.2. ([11]) Let Ω be a nonempty, closed and convex subset of a Fréchet space E, M an
admissible set such that Ω ∈ M and µ : M −→ R+ is a measure of noncompactness on E. Let
F : Ω −→ Ω be a continuous mapping such that

µ(FX) ≤ ϕ(µ(X)), (3.2)

and F (X) ∈ M for any nonempty subset X ∈ M where ϕ : R+ −→ R+ is upper semicontinuous
and nondecreasing function such that ϕ(t) < t for t > 0 and ϕ(0) = 0. Then F has at least one fixed
point in the set Ω.

Proof . Take ψ(t) = t in Theorem 3.1. �

We introduce the following useful corollary which will be used in Section 4 and extend recent
result of Arab et al. [11]

Corollary 3.3. Let Ωi (i ∈ N) be a nonempty, convex and closed subset of a Banach space Ei, µi an

arbitrary measure of noncompactness on Ei and supi{µi(Ωi)} <∞. Let Fi :
∞∏
i=1

Ωi −→ Ωi (i ∈ N) be

a continuous operator such that

ψ(µi(Fi(
∞∏
i=1

Xi))) ≤ ϕ(sup
i
µi(Xi)), (3.3)

for any subset Xi of Ωi (i ∈ N) where ψ, ϕ : R+ −→ R+ satisfies the hypotheses of Theorem 3.1 and

ψ is nondecreasing. Then there exist (x∗j)
∞
j=1 ∈

∞∏
j=1

Ωj such that for all i ∈ N

Fi((x
∗
j)
∞
j=1) = x∗i . (3.4)
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Proof . Assume that F̃ :
∞∏
i=1

Ωi −→
∞∏
i=1

Ωi as follows

F̃ ((xj)
∞
j=1) = (F1((xj)

∞
j=1), F2((xj)

∞
j=1), . . . , Fi((xj)

∞
j=1), . . .),

for all (xj)
∞
j=1 ∈

∞∏
i=1

Ωi. It is obvious that F is continuous. It suffices to show that the hypothesis

(3.1) of Theorem 3.1 holds where µ is defined by Theorem 2.7. Take an arbitrary nonempty subset

X of
∞∏
i=1

Ωi. Now, by (2◦) and (3.3) we obtain

ψ(µ(F̃ (X))) ≤ ψ(µ(
∞∏
i=1

Fi(
∞∏
j=1

πj(X))))

= sup
i
ψ(µi(Fi((

∞∏
j=1

πj(X)))))

≤ sup
i
ϕ(sup

j
µj(πj(X)))

≤ sup
i
ϕ(sup

j
(µj(πj(X))))

≤ sup
i
ϕ(µ(X))

≤ ϕ(µ(X)).

Therefore, all the conditions of Theorem 3.1 are satisfied, hence F̃ has a fixed point and there exist

(x∗j)
∞
j=1 ∈

∞∏
j=1

Ωj such that

(x∗j)
∞
j=1 = F̃ ((x∗j)

∞
j=1) = (F1((x

∗
j)
∞
j=1), F2((x

∗
j)
∞
j=1), . . . , Fj((x

∗
j)
∞
j=1), . . .)

and that (3.4) holds. �

4. Existence of solutions of infinite systems of integral equations

In this section we are going to show how the result contained in section 3 can be applied to infinite
systems of nonlinear integral equations.

We will use a measure of noncompactness in the space Lp[0, 1]. In order to define this measure,
take an arbitrary set X of MLp[0,1]. For x ∈ X and ε > 0 let us put

ω(x, ε) = sup{‖τhx− x‖p : |h| < ε},
ω(X, ε) = sup{ω(x, ε) : x ∈ X}

where

τhx(t) =

{
x(t+ h) 0 ≤ t+ h ≤ 1
0 otherwise
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for all t, h ∈ [0, 1]. Moreover,

ω0(X) = lim
ε−→0

ω(X, ε).

It can be shown [14] that the mapping ω0 = ω0(X) is the measure of noncompactness in the space
LP [0, 1].

Definition 4.1. A function f : R+ × R −→ R is said to have the Carathéodory property if

(i) For all x ∈ R the function t→ f(t, x) is measurable on R+.

(ii) For almost all t ∈ R+ the function x→ f(t, x) is continuous on R.

Theorem 4.2. ( Minkowki’s Inequality for Integrals) [6] Suppose that (X,M, µ) and (Y,N , ν) are
σ-finite measure spaces, and let f be an (M⊗N )-measurable function on X × Y . If f ≥ 0 and
1 ≤ p <∞, then [ ∫ ( ∫

f(x, y)dν(y)
)p
dµ(x)

] 1
p ≤

∫ (∫
f(x, y)pdµ(x)

) 1
p
dν(y).

Let us consider the Equation (1.1) under the following assumptions:

(a1) fn : [0, 1]×Rn −→ R (n ∈ N) satisfies the Carathéodory conditions and fn(., 0, . . . , 0) ∈ Lp[0, 1].

(a2) There exist a non-decreasing, continuous and concave function φ : R+ → R+ with φ(t) < t for
all t > 0, φ(0) = 0 and a ∈ Lp[0, 1] such that

|fn(t, x1, . . . , xn)− fn(s, y1, . . . , yn)| ≤ |a(t)− a(s)|+ p

√
φ( max

1≤i≤n
|xi − yi|p), a.e. (4.1)

for all n ∈ N

(a3) kn : [0, 1]× [0, 1] −→ R+ (n ∈ N) is measurable if there exists g ∈ Lp[0, 1] such that |kn(t, s)| ≤
g(t) for all t, s ∈ [0, 1] and n ∈ N.

(a4) The operator Qn (n ∈ N) acts continuously from the space (Lp[0, 1])ω into Lp[0, 1] and there
exists a nondecreasing function ψ : R+ −→ R+ such that

‖Qnx‖p ≤ ψ(sup ‖xi‖p) (4.2)

for any x = (xi)
∞
1 ∈ Lp[0, 1])ω with sup1≤i≤∞ ‖xi‖p <∞ and n ∈ N.

(a5) There exists a positive solution r0 of the inequality

p
√
φ(rp) + ‖fn(., 0)‖p + ψ(r)‖Kn‖ ≤ r, (4.3)

for all n ∈ N where

(Knx)(t) =

∫ 1

0

kn(t, s)x(s)ds.

Theorem 4.3. Under assumptions (a1)-(a5), the Equation (1.1) has at least a solution in the space
(Lp[0, 1])ω.
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Remark 4.4. Under the assumptions (a3) and (a5) the linear Fredholm integral operator Kn :
Lp[0, 1] −→ Lp[0, 1] (n ∈ N) is a continuous operator.

Proof . Let us fix arbitrarily n ∈ N. Fn : (Lp[0, 1])ω −→ Lp[0, 1] (n ∈ N) is defined by

Fn((xj)
∞
j=1)(t) = fn(t, x1(t), · · · , xn(t)) +

∫ 1

0

kn(t, s)Qn((xi(s))
i=∞
i=1 )ds. (4.4)

By using conditions (a1)− (a5) and since fn is concave, for arbitrary fixed t ∈ [0, 1], we have

|Fn((xj)
∞
j=1)(t)|

≤ |fn(t, x1(t), · · · , xn(t))− fn(t, 0, . . . , 0)|+ |fn(t, 0, . . . , 0)|+ |
∫ 1

0

kn(t, s)Qn((xi(s))
i=∞
i=1 )ds|

≤ p

√
φ( max

1≤i≤n
|xi(t)|p) + |fn(t, 0, . . . , 0)|+ |

∫ 1

0

kn(t, s)Qn((xi(s))
i=∞
i=1 )ds| a.e.

Thus
‖Fn((xj)

∞
j=1)‖p ≤ p

√
φ( max

1≤i≤n
‖xi‖pp) + ‖fn(., 0)‖p + ‖Kn‖ψ(‖(xi)i=∞i=1 ‖p). (4.5)

Hence Fn((xj)
∞
j=1) ∈ Lp[0, 1] for any (xj)

∞
j=1 ∈ (Lp[0, 1])ω and Fn is well defined and from (4.5), we

have Fn((Br0)
ω) ⊆ Br0 , where r0 is a constant appearing in assumption (4.3). Also, Fn is continuous

in (Lp[0, 1])ω because fn(t, .), Kn and Qn are continuous for almost all t ∈ [0, 1].
If we define kn,s : [0, 1] −→ R+ by kn,s(t) := kn(t, s) for all s ∈ [0, 1], then we show that ω0({kn,s :
s ∈ [0, 1]}) = 0.
To do this, fix arbitrary ε > 0. We define the function ϑ : [0, 1] −→ R as follows

ϑ(s) =

∫ 1

0

|kn(t, s)|pdt. (4.6)

Since there exists g ∈ Lp[0, 1] such that |kn(t, s)| ≤ g(t) for all t, s ∈ [0, 1], so ϑ is continuous and
there exists δ1 > 0 such that |ϑ(s) − ϑ(t)| < ε for all s, t ∈ [0, 1] with |s − t| < δ. Moreover, there
exist s1, . . . , sm and δ2 > 0 such that [0, 1] ⊆ ∪mi=1Bδ1(si) and

‖τhkn,si − kn,si‖p ≤ ε

where |h| ≤ δ2. Since {kn,s1 , . . . , kn,sm} is a compact subset of Lp[0, 1] and ω0({kn,s1 , . . . , kn,sm}) = 0
for every s ∈ [0, 1] and |h| ≤ δ2, there exists si0 such that |s− si0| ≤ ε and

‖τhkn,s − kn,s‖p =
(∫ 1

0

|kn(t, s)− kn(t+ h, s)|pdt
) 1

p

≤
(∫ 1

0

|kn(t, s)− kn(t, si)|pdt
) 1

p
+
(∫ 1

0

|kn(t, si)− kn(t+ h, si)|pdt
) 1

p

+
(∫ 1

0

|kn(t+ h, s)− kn(t+ h, si)|pdt
) 1

p

≤ 2|ϑ(s)− ϑ(si0)|p + ‖τhkn,si − kn,si‖p
≤ 2εp + ε.

So, we have

ω(kn,s, δ2) ≤ 2εp + ε,

ω({kn,s : s ∈ [0, 1]}, δ2) ≤ 2εp + ε,
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and

ω0({kn,s : s ∈ [0, 1]}) = 0.

Now, For any nonempty subset Xj of Br0 for all j ∈ N, we claim that [ω0(FnX)]p ≤ φ([ω0(X)]p).
To verify this, let ε > 0, (xj)

∞
j=1 ∈ X and t, h ∈ [0, 1] with |h| ≤ ε, thus we have

|(Fn(xj)
∞
j=1)(t+ h)− (Fn(xj)

∞
j=1)(t)|

≤|fn(t+ h, x1(t+ h), · · · , xn(t+ h)) +

∫ 1

0

kn(t+ h, s)Qn((xi(s))
i=∞
i=1 )ds

− fn(t, x1(t), · · · , xn(t))−
∫ 1

0

kn(t, s)Qn((xi(s))
i=∞
i=1 )ds|

≤|fn(t+ h, x1(t+ h), · · · , xn(t+ h))− fn(t, x1(t), · · · , xn(t))|

+ |
∫ 1

0

kn(t+ h, s)Qn((xi(s))
i=∞
i=1 )ds−

∫ 1

0

kn(t, s)Qn((xi(s))
i=∞
i=1 )ds|

≤|a(t+ h)− a(t)|+ p

√
φ[ max

1≤i≤n
|xi(t+ h)− xi(t)|p]

+

∫ 1

0

|kn(t+ h, s)− kn(t, s)||Qn((xi(s))
i=∞
i=1 )|ds.

So,

‖τhFn(xj)
∞
j=1 − Fn(xj)

∞
j=1‖p

=
(∫ 1

0

|(Fn(xj)
∞
j=1)(t+ h)− (Fn(xj)

∞
j=1)(t)|pdt

) 1
p

≤
(∫ 1

0

|a(t+ h)− a(t)|pdt
) 1

p
+
(∫ 1

0

( p

√
φ[ max

1≤i≤n
|xi(t+ h)− xi(t)|p])pdt

) 1
p

+
(∫ 1

0

|
∫ 1

0

|kn(t+ h, s)− kn(t, s)||Qn((xi(s))
i=∞
i=1 )|ds|pdt

) 1
p

≤ ω(a, ε) + φ( max
1≤i≤n

‖τhxi − xi‖p)
1
p + ω({kn,s : s ∈ [0, 1]}, ε)ψ(‖(xi)i=∞i=1 ‖p).

(4.7)

Indeed,(∫ 1

0

( p

√
φ[ max

1≤i≤n
|xi(t+ h)− xi(t)|p])pdt

) 1
p

=
(∫ 1

0

φ[ max
1≤i≤n

|xi(t+ h)− xi(t)|p]dt
) 1

p

=
(
φ[

∫ 1

0

max
1≤i≤n

|xi(t+ h)− xi(t)|pdt]
) 1

p

= [φ( max
1≤i≤n

‖τhxi − xi‖pp)]
1
p ,
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and by Minkowski’s Inequality for Integrals, we have(∫ 1

0

|
∫ 1

0

|kn(t+ h, s)− kn(t, s)||Qn((xi(s))
i=∞
i=1 )|ds|pdt

) 1
p

=

∫ 1

0

(∫ 1

0

|kn(t+ h, s)− kn(t, s)|p|Qn((xi(s))
i=∞
i=1 )|pdt

) 1
p
ds

≤
∫ 1

0

ω(kn,s, ε)|Qn((xi(s))
i=∞
i=1 )|ds

≤ ω({kn,s : s ∈ [0, 1]}, ε)‖Qn(xi)
i=∞
i=1 ‖p

≤ ω({kn,s : s ∈ [0, 1]}, ε)ψ(‖(xi)i=∞i=1 ‖p).
Therefore

‖τhFn(xj)
∞
j=1 − Fn(xj)

∞
j=1‖p

≤ ω(a, ε) + [φ( max
1≤i≤n

‖τhxi − xi‖pp)]
1
p + ω({kn,s : s ∈ [0, 1]}, ε)ψ(‖(xi)i=∞i=1 ‖p)

≤ ω(a, ε) +
(
φ( max

1≤i≤n
[ω(xi, ε)]

p)
) 1

p
+ ω({kn,s : s ∈ [0, 1]}, ε)ψ(‖(xi)i=∞i=1 ‖p).

By using the above estimate we have

ω(Fn(
∞∏
i=1

Xi), ε) ≤ ω(a, ε) +
(
φ( max

1≤j≤n
[ω(Xj, ε)]

p)
) 1

p
+ ω({kn,s : s ∈ [0, 1]}, ε)ψ(r0).

Since {a} is a compact set and ω0({kn,s : s ∈ [0, 1]}) = 0, so we have ω(a, ε) → 0 and ω({kn,s : s ∈
[0, 1]}, ε) −→ 0 as ε −→ 0. Then we obtain

[ω0(Fn(
∞∏
i=1

Xi))]
p ≤ φ([ max

1≤i≤n
ω0(Xi)]

p).

Now, by considering the functions ψ, ϕ : [0,∞)→ [0,∞) defined by

ψ(t) = tp, and ϕ(t) = φ(tp),

we get

ψ(ω0(Fn(
∞∏
i=1

Xi))) ≤ ϕ( max
1≤i≤n

ω0(Xi)).

Thus from Corollary 3.3 the functional integral equation (1.1) has at least a solution in (Lp[0, 1])ω.
�

Example 4.5. Consider the following integral equation of the form

xn(t) =
1
3
√
t

+
1

n

i=n∑
i=1

ln(|xi(t)|+ 1) +
∞∑
i=1

1

2i

∫ t

0

(t− s)2 xi(s)

exi(s) + n
ds 0 ≤ t ≤ 1 (4.8)

In this example, we have

kn(t, s) = (t− s)2χE(t, s) (E = {(t, s) : 0 ≤ s ≤ t ≤ 1})

fn(t, x1, x2, . . . , xn) =
1
3
√
t

+
1

n

i=n∑
i=1

ln(|xi|+ 1),

Qn(xi)
i=∞
i=1 =

∞∑
i=1

1

2i
xi

exi + n
.
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It can readily be seen that fn satisfies assumption a1 and hypothesis (a2) with p < 3, a(t) =
1
3
√
t

and

φ(t) = (ln p
√
t+ 1)p, indeed,

|fn(t, x1, . . . , xn)− fn(s, y1, . . . , yn)| =| 1
3
√
t
− 1

3
√
s
|+ | 1

n

i=n∑
i=1

| ln(|xi|+ 1)− ln(|yi|+ 1)|

≤| 1
3
√
t
− 1

3
√
s
|+ 1

n

i=n∑
i=1

| ln(
|xi|+ 1

|yi|+ 1
)|

≤| 1
3
√
t
− 1

3
√
s
|+ 1

n

i=n∑
i=1

| ln(1 +
|xi − yi|
|yi|+ 1

)|

≤| 1
3
√
t
− 1

3
√
s
|+ ln(1 + ( max

1≤i≤n
|xi − yi|)|

=|a(t)− a(s)|+ p

√
φ( max

1≤i≤n
|xi − yi|p).

Also, kn(t, s) (n ∈ N) satisfies hypothesis (a3) with g(t) = t2, kn(., s) ∈ Lp[0, 1] for each s ∈ [0, 1]
and g ∈ Lp[0, 1] and ‖Kn‖ ≤ 1. Now, we show that Qn is continuous operator of (Lp[0, 1])ω into
Lp[0, 1]. To establish this claim, let us fix x ∈ (Lp[0, 1])ω, n ∈ N and ε = 1

2n
and take arbitrary

((yj)
∞
j=1) ∈ (Lp[0, 1])ω, such that sup{ 1

2i
min{1, ‖xi − yi‖p} : i ∈ N} < ε. Then we have

|Qn(xi)
i=∞
i=1 −Qn(yi)

i=∞
i=1 | ≤

n∑
i=1

1

2i
| xi
exi + n

− yi
eyi + n

|+
∞∑

i=n+1

1

2i
| xi
exi + n

− yi
eyi + n

|

≤ 4ε+
n∑
i=1

1

2i
(
|xi − yi|
exi + n

+ | yi|exi − eyi |
(exi + n)(eyi + n)

|)

≤ 4ε+
n∑
i=1

1

2i
(|xi − yi|+ |exi − eyi |).

Thus,

‖Qn(xi)
i=∞
i=1 −Qn(yi)

i=∞
i=1 ‖p ≤ 4ε+

n∑
i=1

1

2i
(‖xi − yi‖p + ‖exi − eyi‖p)

≤ 6ε+ 2ϑ(ε),

where

ϑ(ε) = sup{‖exi − eyi‖p : 1 ≤ i ≤ n, ‖yi‖ ≤ b+ ε},

with b = supi{‖xi‖p + ε}. Hence, we obtain ϑ(ε) −→ 0 as ε −→ 0 and Qn is a continuous operator.
Moreover, for all x ∈ (Lp[0, 1])ω we deduce

|Qn(xi)
i=∞
i=1 | ≤

∞∑
i=1

1

2i
| xi
exi + n

| ≤ 1,

and this operator satisfies hypothesis (a4) with ψ(t) = 1. On the other hand, with choosing p ∈ [1, 3)
we can compute r0 which satisfies the following inequality:

p
√
φ(rp) + ‖fn(., 0)‖p + ψ(r)‖Kn‖ ≤ ln(r + 1) + p

√
| 3

p− 3
|+ 1 ≤ r.
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Consequently, all the conditions of Theorem 4.3 are satisfied. Hence, the functional integral equation
(4.8) has at least a solution in (Lp[0, 1])ω for 1 ≤ p < 3.
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