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Abstract

In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by
using the techniques of measures of non compactness and the Petryshyn’s fixed point theorem in
Banach space. We also present some examples of the integral equation to confirm the efficiency of
our results.
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1. Introduction

Integral equations provide important tools for modeling a wide range of phenomena and processes
[14] and have found a wide variety of applications in the various field including, mathematical physics,
economics, biology, mechanics and population dynamics [23, 19, 7], (for more applications of inte-
gral equations, see also [25]). The concept of measures of non compactness was first devised by
Kuratowski[15]. Recently, there have been several successful attempt to apply the concept of mea-
sure of non compactness in the study of the existence of solutions of nonlinear integral equations
[1, 2, 4, 9, 18, 21].

∗Corresponding author
Email addresses: univer_ka@yahoo.com (Manouchehr Kazemi), ezati@kiau.ac.ir (Reza Ezzati)

Received: May 2016 Revised: January 2017

http://dx.doi.org/10.22075/ijnaa.2017.1394.1352


2 Kazemi, Ezzati

In this paper, we present and prove a new existence theorem for solution of nonlinear Volterra
integral equations

x(t) = q

(
t, x(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds

)
, t ∈ Ia = [0, a]. (1.1)

The basic tools used in these investigations are the techniques of measure of non compactness and
Petryshyn’s fixed point theorem [22] which is a generalization of Darbo’s Fixed Point theorem [5].
The main goal of this study is to investigate existence of solution Eq. (1.1). Numerous authors have
carried out some successful efforts to solve many functional-integral equations by applying Darbo
condition which is a powerful tool to study these equations [1, 2, 9, 18, 21, 17]. In our consideration,
we use the Petryshyn’s theorem (instead of Darbo’s theorem) to study the solvability of Eq. (1.1).
This work focuses on the general form (1.1) which has been resulted from [18, 21, 5, 17, 16] and
others. The following statements describe the main reasons why we use Eq. (1.1) and what is the
excellence of our work: The first is that the conditions in many papers will be simplified. The second
reason is that this paper unifies the related work in this area. The third reason is that bounded
condition (H3) of Theorem 3.1, shows that the sublinear condition that has been discussed in several
literature (see e.g. (M3) below and [18, 17, 10, 16]) have not an important role.
The paper is organized as five sections including the introduction. In Section 2, we introduce some
preliminaries and describes the concept of measures of non compactness. Section 3 is devoted to state
and prove existence theorem for equations involving condensing operators using the Petryshyn’s fixed
point theorem. In Section 4, we offer some examples that verify the application of this kind of non-
linear functional-integral equations. Finally Section 5, concludes the paper.

2. Preliminaries

Throughout the paper, let E be a Banach space, we write B̄r = {x ∈ E :‖ x ‖≤ r} for the closed
ball and ∂B̄r = {x ∈ E :‖ x ‖= r} for the sphere in E around 0 with radius r > 0.
Measures of non compactness are very useful tools in functional analysis, for instance in metric fixed
point theory and in the theory of operator equations in Banach spaces. Before stating our main
results in the next section, we recall classical definitions and theorems.

Theorem 2.1. (Kuratowski [15]) If M is a bounded subset of a Banach space E, let α(M) denote
the (Kuratowski) measure of non compactness of M , that is,

α(M) = inf{σ > 0 : M may be covered by finitely many sets of diameter ≤ σ}. (2.1)

Other measures of non compactness were introduced by Goldenstein.

Theorem 2.2. (Goldenstein and Markus [13]) The Hausdorff (or ball) measure of non compactness

µ(M) = inf{σ > 0 : there exists a finite σ–net for M in E}, (2.2)

where by a finite σ-net for M in E we mean, as usual, a set {z1, z2, . . . , zm} ⊂ E such that the
balls Bσ(E; z1), Bσ(E; z2), . . . , Bσ(E; zm) over M . These measures of non compactness are mutually
equivalent in the sense that

µ(M) ≤ α(M) ≤ 2µ(M)

for any bounded set M ⊂ E.



Existence of solutions for some nonlinear Volterra integral equations . . . 9 (2018) No. 1, 1-12 3

It is easy to see that the following properties hold for Kuratowski and Hausdorff measure of non
compactness.

Theorem 2.3. (Petryshyn [22]) Let E be a Banach space, λ ∈ R and M,N ⊂ E bounded. Then

(i) µ(M ∪N) = max{µ(M), µ(N)};

(ii) µ(M +N) ≤ µ(M) + µ(N);

(iii) µ(λM) =| λ | µ(M);

(iv) µ(M) ≤ µ(N) for M ⊆ N ;

(v) µ(c̄oM) = µ(M);

(vi) µ(M) = 0 if and only if M is precompact.

In what follows, we will work in the space C[0, a] consisting of all real–valued functions and continuous
on the interval [0, a]. The space C[0, a] is equipped with the standard norm

‖x‖ = sup{|x(t)| : t ∈ [0, a]}.

Recall that the modulus of continuity of a function u ∈ C[0, a] is defined by

ω(u, σ) = sup{|u(x)− u(y)| : |x− y| ≤ σ}.

We have then w(u, σ) → 0, as σ → 0, since u is uniformly continuous on [0, a]. More generally,
if this limit relation holds uniformly for u running over some bounded set M ⊂ C[0, a], then M is
equicontinuous, and vice versa. Therefore the following result is not too surprising:

Theorem 2.4. (Goldenstein and Markus [13]) On the space C[0, a], the measures of non compact-
ness (2.2) is equivalent to

µ(M) = lim
σ→0

sup
u∈M

ω(u, σ) (2.3)

for all bounded sets M ⊂ C[0, a].

For our purpose we use equation (2.3) in the rest of the paper. Closely associated with the measures
of non compactness is the concept of k–set contraction.

Theorem 2.5. Let T : E → E be a continuous mapping of a Banach space E. T is called a k-set
contraction if for all A ⊂ E with A bounded, T (A) is bounded and α(TA) ≤ kα(A), 0 < k < 1. If

α(TA) < α(A), for all α(A) > 0,

then T is called densifying or condensing map [20].
A k–set contraction with k ∈ (0, 1), is densifying, but the converse is not true.

Now we state Petryshyn’s fixed point theorem [22] which is used in the main results of this paper.

Theorem 2.6. (Petryshyn [22], see also Singh et al. [24]) Let Br be an open ball about the origin
in a Banach space E. If T : B̄r → E is a densifying mapping that satisfies the boundary condition,

If T (x) = kx, for some x in ∂B̄r then k ≤ 1, (P)

then F (T ), the set of fixed points of T in B̄r is nonempty.

This property allows us to characterize solution of the integral Eq. (1.1) and will be used in the next
section.
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3. Main Results

In this section, we will study the existence of the nonlinear functional Eq. (1.1) for x ∈ C[0, a] under
the following assumptions:

(H1) x ∈ C(Ia,R), q ∈ C(Ia × R× R× R,R), h ∈ C(Ia × [0, B]× R,R),
and,
α, β : Ia → Ia, ϕ : Ia → R+, γ : R+ → Ia are continuous, ϕ(t) ≤ B for each t ∈ Ia;

(H2) There exist nonnegative constants c1, c2, c3, c1 + c2 < 1 such that
|q(t, u, v, w)− q(t, ū, v̄, w̄)| ≤ c1|u− ū|+ c2|v − v̄|+ c3|w − w̄|;

(H3) (Bounded condition) There exists r0 ≥ 0 such that q satisfies the following bounded condition
sup{|q(t, u, v, w)| : t ∈ Ia,−r0 ≤ u ≤ r0,−r0 ≤ v ≤ r0,−BM1 ≤ w ≤ BM1} ≤ r0,
where,
M1 = sup{|h(t, s, x)| : for all t ∈ Ia , s ∈ [0, B] and x ∈ [−r0, r0]}.

The following result is obtained by using the above hypotheses.

Theorem 3.1. Under the tacit assumption (H1)-(H3) above, Eq. (1.1) has at least one solution in
the Banach space E = C(Ia).

Proof . To prove this result using Theorem 2.6 as our main tool, we need to define operator
T : Br0 → E in the following way

(Tx)(t) = q

(
t, x(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds

)
.

Now, we show that the operator T is continuous on the ball Br0 . To do this, consider σ > 0 and take
arbitrary x, y ∈ Br0 such that ‖ x− y ‖≤ σ. Then for t ∈ Ia, we get

|(Tx)(t)− (Ty)(t)| =
∣∣∣∣q(t, x(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)

− q(t, y(α(t)), y(β(t)),

∫ ϕ(t)

0

h(t, s, y(γ(s)))ds)

∣∣∣∣
≤
∣∣∣∣q(t, x(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)

− q(t, y(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)

∣∣∣∣
+ |q(t, y(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)

− q(t, y(α(t)), y(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)

∣∣∣∣
+

∣∣∣∣q(t, y(α(t)), y(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)

− q(t, y(α(t)), y(β(t)),

∫ ϕ(t)

0

h(t, s, y(γ(s)))ds)

∣∣∣∣
≤ c1

∣∣x(α(t))− y(α(t))|+ c2|x(β(t))− y(β(t))
∣∣
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+ c3

∫ ϕ(t)

0

∣∣h(t, s, x(γ(s)))− h(t, s, y(γ(s)))
∣∣ds

≤ (c1 + c2) ‖ x− y ‖ +c3Bω(h, σ),

where for σ > 0 we define

ω(h, σ) = sup{|h(t, s, x)− h(t, s, y)| : t ∈ Ia, s ∈ [0, B], x, y ∈ [−r0, r0], ‖x− y‖ ≤ σ}.
Since we know that h = h(t, s, x) is uniformly continuous on the subset [0, a]× [0, B]× R , we infer
that ω(h, σ) → 0 as σ → 0. Thus, the above estimate shows that the operator T is continuous on
Br0 .

Now, we will prove that the operator T satisfies densifying condition with respect to the measure
µ as defined in (2.3). To do this, we choose a fixed arbitrary σ > 0 . Let us take x ∈ M and M
is bounded subset of E, t1, t2 ∈ Ia such that without loss of generality we may assume that t1 ≤ t2
with t2 − t1 ≤ σ, we obtain

|(Tx)(t2)− (Tx)(t1)| =
∣∣∣∣q(t2, x(α(t2)), x(β(t2)),

∫ ϕ(t2)

0

h(t2, s, x(γ(s)))ds))

− q(t1, x(α(t1)), x(β(t1)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds))

∣∣∣∣
≤
∣∣∣∣q(t2, x(α(t2)), x(β(t2)),

∫ ϕ(t2)

0

h(t2, s, x(γ(s)))ds))

− q(t2, x(α(t2)), x(β(t2)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds))

∣∣∣∣
+

∣∣∣∣q(t2, x(α(t2)), x(β(t2)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds))

− q(t2, x(α(t2)), x(β(t1)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds))

∣∣∣∣
+

∣∣∣∣q(t2, x(α(t2)), x(β(t1)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds))

− q(t2, x(α(t1)), x(β(t1)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds))

∣∣∣∣
+

∣∣∣∣q(t2, x(α(t1)), x(β(t1)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds)))

− q(t1, x(α(t1)), x(β(t1)),

∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds)))

∣∣∣∣
≤ c3

∣∣∣∣ ∫ ϕ(t2)

0

h(t2, s, x(γ(s)))ds−
∫ ϕ(t1)

0

h(t1, s, x(γ(s)))ds

∣∣∣∣
+ c2

∣∣x(β(t2))− x(β(t1))
∣∣+ c1

∣∣x(α(t2))− x(α(t1))
∣∣+ ωq1(Ia, σ)

≤ c3

∣∣∣∣ ∫ ϕ(t1)

0

(h(t2, s, x(γ(s))− h(t1, s, x(γ(s))))ds

+

∫ ϕ(t2)

ϕ(t1)

h(t2, s, x(γ(s)))ds

∣∣∣∣
+ c2ω(x, ω(β, σ)) + c1ω(x, ω(α, σ)) + ωq1(Ia, σ).
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For simplicity we use the following notations:

ωh1(Ia, σ) = sup {|h(t, s, x)− h(t̄, s, x)| : |t− t̄| ≤ σ, t ∈ Ia, s ∈ [0, B], x ∈ [−r0, r0]} ,

ωq1(Ia, σ) = sup
{

(t, u, v, w)− q(t̄, u, v, w)| :
|t− t̄| ≤ σ, t ∈ Ia, u ∈ [−r0, r0], v ∈ [−r0, r0], w ∈ [−BM1, BM1]

}
and

k = sup{|h(t, s, x)| : t ∈ Ia, s ∈ [0, B], x ∈ [−r0, r0]}.

Then using above relation we obtain the estimate

|(Tx)(t)− (Ty)(t)| ≤ c3Bωh1(Ia, σ) + c3kω(ϕ, σ) + c2ω(x, ω(β, σ)) + c1ω(x, ω(α, σ)) + ωq1(Ia, σ).

Taking limit as σ → 0 we obtain

ω(Tx, σ) ≤ (c1 + c2)ω(x, σ), x ∈M.

This yields the following estimate:

µ(TM) ≤ (c1 + c2)µ(M).

This means T is a densifying map. Finally, investigation of condition (P) is remained. Suppose
x ∈ ∂B̄r0 . If Tx = kx then we have kr0 = k‖x‖ = ‖Tx‖ and by condition (H3) we concluded that

|Tx(t)| = |q(t, x(α(t)), x(β(t)),

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds)| ≤ r0

for all t ∈ Ia, hence ‖Tx‖ ≤ r0, so this shows k ≤ 1. The proof is complete. 2

The following theorem is a generalization of Theorem 3.1.

Theorem 3.2. Assume that

(H1)’ x ∈ C(Ia,R), q ∈ C(Ia × Rn × Rm,R), hj ∈ C(Ia × [0, bj]× R,R), for j = 0, . . . ,m,
and
αi : Ia → Ia, ϕj : Ia → R+, γj : R+ → Ia are continuous, ϕj(t) ≤ B, for each t ∈ Ia,
where
B = max

j=1,...,m
{bj},

(H2)’ There exist nonnegative constants ci, i = 1, . . . , n+m such that c1 + c2 + · · ·+ cn < 1 and

|q(t, u1, . . . , un, w1, . . . , wm)− q(t, ū1, . . . , ūn, w̄1, . . . , w̄m)| ≤
n∑
i=1

ci|ui − ūi|+
m∑
j=1

cn+j|wj − w̄j|

(H3)’ There exists r0 ≥ 0 such that q satisfies the following bounded condition

sup{|q(t, u1, . . . , un, w1, . . . , wm)| : t ∈ Ia, −r0 ≤ ui ≤ r0, i = 0, . . . , n,

−BMj ≤ wj ≤ BMj, j = 0, . . . ,m} ≤ r0,

where

Mj = sup{|hj(t, s, x)|; for all t ∈ Ia, s ∈ [0, B], x ∈ [−r0, r0]}, j = 1, . . . ,m.
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Then

x(t) = q

(
t, x(α1(t)), x(α2(t)), . . . , x(αn(t)),

∫ ϕ1(t)

0

h1(t, s, x(γ1(s)))ds ,

. . . ,

∫ ϕm(t)

0

hm(t, s, x(γm(s)))ds

)
, (3.1)

has at least one solution in the Banach space E = C(Ia).

Proof . The proof is similar as previous theorem, and we can omit the details. 2

The following corollaries which are the main results of Maleknejad et al. [17] and Özdemir et al.
[21], would be obtained from Theorem 3.1.

Corollary 1. (Maleknejad et al. [17, Theorem 3]) Assume that

(M1) g ∈ C(Ia×R,R), f ∈ C(Ia×R×R,R), and there exist nonnegative constants µ, γ, λ such that
|g(t, 0)| ≤ µ,
|f(t, 0, x(α(t))| ≤ γ + λ|x(t)|,

(M2) There exist the continuous functions a1, a2, a3 : Ia → Ia such that
|g(t, x1)− g(t, x2)| ≤ a1(t)|x1 − x2|,
|f(t, y1, x)− f(t, y2, x)| ≤ a2(t)|y1 − y2|,
|f(t, y, x1)− f(t, y, x2)| ≤ a3(t)|x1 − x2|,
for all xi, yi ∈ R, i = 1, 2 , t ∈ Ia and let k = max{|aj(t)| : t ∈ Ia, j = 1, 2, 3},

(M3) (Sublinear condition) u(t, s, x) ∈ C([0, a] × [0, a] × R,R) and satisfies in sublinear condition,
so that there exist the constants α and β such that:
|u(t, s, x)| ≤ α + β|x| for all t, s ∈ [0, a] and x ∈ R,

(M4) k < 1−λ
2(1+aβ)

.

Then the equation

x(t) = g(t, x(t)) + f

(
t,

∫ t

0

u(t, s, x(s))ds, x(α(t))

)
, t ∈ Ia

has at least one solution in the Banach space E = C(Ia).

Proof . Let r0 = L2

1−L1
where

L1 = k + λ+ kaβ, L2 = µ+ γ + kaα

and
q(t, u, v, w) = g(t, v) + f(t, w, u),

where v = x(β(t)), w =
∫ ϕ(t)
0

u(t, s, x(γ(s)))ds and u = x(α(t)) and α(t) = t, γ(s) = s, ϕ(t) = t. By
(M4) we have L1 = k + λ+ kaβ < 1− (k + kaβ) < 1, so r0 is a positive real number. In addition, it
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is easy to check that (H2) is concluded from (M2) and (M4). Now we show that (H3) is also holds.
Setting M1 = α + βr0, then we have

|x(t)| =
∣∣∣∣g(t, x(t)) + f(t,

∫ t

0

u(t, s, x(s)))ds, x(α(t))

∣∣∣∣
≤
∣∣∣∣g(t, x(t))− g(t, 0)|+ |g(t, 0)

∣∣∣∣
+

∣∣∣∣f(t,

∫ t

0

u(t, s, x(s))ds, x(α(t)))− f(t, 0, x(α(t)))

∣∣∣∣+ |f(t, 0, x(α(t))|

≤ k|x|+ µ+ ka(α + β|x|) + γ + λ|x|
≤ (k + λ+ kaβ)|x|+ µ+ γ + kaα

for all t ∈ Ia, consequently

sup
t∈Ia
|q(t, u, v, w)| ≤ L1r0 + L2 = L1

L2

1− L1

+ L2 = r0.

Now, the desired result obtained from Theorem 3.1. 2

Corollary 2. (Özdemir et al. [21, Theorem 5]) Assume that

(K1) α, β ∈ C(Ia, Ia), ϕ ∈ C(Ia,R+), γ ∈ C(R+, Ia), ϕ(t) ≤ C,

(K2) f, g ∈ C(Ia × R,R) and There exist positive constants k and l such that
|f(t, x1)− f(t, x2)| ≤ l|x1 − x2|,
|g(t, x1)− g(t, x2)| ≤ k|x1 − x2|,
for all x1, x2 ∈ R, t ∈ Ia , and |f(t, 0)| ≤ N, |g(t, 0)| ≤M ,

(K3) u(t, s, x) ∈ C(Ia × [0, C]× R,R) and there exist positive constants m,n and p such that
|u(t, s, x)| ≤ m+ n|x|p for all t ∈ Ia, s ∈ [0, C] and x ∈ R,

(K4) M + C(m+ n)(l +N) + k < 1.

Then the equation

x(t) = g(t, x(β(t))) + f(t, x(α(t)))

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, t ∈ [0, a], (3.2)

has at least one solution in the Banach space E = C(Ia).

Proof . Let
q(t, u, v, w) = g(t, v) + f(t, u)w,

where v = x(β(t)), w =
∫ ϕ(t)
0

u(t, s, x(γ(s)))ds and u = x(α(t)). It is easy to cheek that (H2) is
concluded by (K2). Now we show that (H3) is also holds. Suppose that ‖x‖ ≤ ρ, ρ > 0 and setting
M1 = m+ nρp, then we have

|x(t)| = sup{|q(t, u, v, w)| : t ∈ Ia,−ρ ≤ u ≤ ρ,−ρ ≤ v ≤ ρ,−BM1 ≤ w ≤ BM1}

=

∣∣∣∣g(t, x(β(t))) + f(t, x(α(t)))

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds

∣∣∣∣
≤ k‖x‖+M + C(N + l‖x‖)(m+ n‖x‖p).
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Hence, r0 in (H3) is real number that satisfies

ρ ≤ kρ+M + C(N + lρ)(m+ nρp).

Similar argument as in the first paragraph of the proof of [21, Theorem 5] shows that this inequality
has a solution in (0, 1). The proof is complete. 2

Remark 3.3. Like the similar argument as the above two corollaries, also one can easily prove that
Theorem 2 of [18] and Theorem 3 of [10] can be obtained from Theorem 3.1.

4. Examples

In this section, we present some examples of functional-integral equations to illustrate the usefulness
of our results.

Example 1. Consider the following nonlinear Volterra integral equation

x(t) =
1

4
(te−t + t2x(t)) +

1

2(et + sin(|x(t3)|))

∫ t3

0

e−2s(es + t cos(s) +
1

2
(x(s2)))ds, t ∈ [0, 1] (4.1)

Observe that equation (4.1) is a special case of Eq. (1.1). Let us take q : [0, 1] × R × R × R →
R, α, β, γ, ϕ : [0, 1]→ [0, 1] and h : [0, 1]× [0, 1]×R→ R and comparing (4.1) with Eq. (1.1), we get

α(t) = t, ϕ(t) = β(t) = t3, γ(t) = t2, for all t ∈ [0, 1],

q(t, x(α(t)), x(β(t)), w) = q1(t, x(α(t))) + q2(t, x(β(t)), w),

where

q1(t, x(α(t))) =
1

4
(te−t + t2x(t)), q2(t, x(β(t)), w) =

w

2(et + sin(|x(t3)|))
, w =

∫ ϕ(t)

0

h(t, s, x(γ(s)))ds,

and

h(t, s, x(γ(s))) = e−2s(es + t cos(s) +
1

2
(x(s2))).

We investigate the solution in C[0, 1]. It is easy to prove that these functions satisfy the assumptions
(H1) and (H2). We show that (H3) also holds. Choose r0 = 3

2
+ e then we have M1 ≤ 7

4
+ 3

2
e and

sup{|q(t, u, v, w)| : t ∈ [0, 1],−r0 ≤ u ≤ r0,−r0 ≤ v ≤ r0}

≤ sup{|1
4

(te−t + t2x(t)) +
1

2
ω|; t ∈ [0, 1],−(

7

4
+

3

2
e) ≤ ω ≤ (

7

4
+

3

2
e)}

≤ 3

2
+ e.

Hence, from Theorem 3.1 equation (4.1) has at least one solution in Banach space C[0, 1].

Example 2. Consider the following nonlinear integral equation

x(t) =

(
t2

2 + 2t2
ln(1 + |x(t)|) +

∫ t

0

se−t sin(x(s))

1 + | cos(x(s))|
ds

)
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×
(

t4

4 + 4t4
ln(1 + |x(t)|) +

∫ t

0

se−t sin(x(s))

2 + | cos(x(s))|
ds

)
. t ∈ [0, 1]

Observe that Equation (??) is a special case of Eq. (3.1). Let us take q : [0, 1] × R × R × R →
R, α1, α2, γ1, γ2, ϕ1, ϕ2 : [0, 1]→ [0, 1] and h1, h2 : [0, 1]× [0, 1]×R→ R and comparing (??) with Eq.
(3.1), we get

α1(t) = α2(t) = ϕ1(t) = ϕ2(t) = γ1(t) = γ2(t) = t, for all t ∈ [0, 1],

q(t, x(α1(t)), x(α2(t)), w1, w2) = q1(t, x(α1(t)), w1)× q2(t, x(α2(t)), w2),

where

q1(t, x(α1(t)), w1) =
t2

2 + 2t2
ln(1 + |x(t)|) + w1, w1 =

∫ ϕ1(t)

0

h1(t, s, x(γ1(s)))ds,

q2(t, x(α2(t)), w2) =
t4

4 + 4t4
ln(1 + |x(t)|) + w2, w2 =

∫ ϕ2(t)

0

h2(t, s, x(γ2(s)))ds,

and

hj(t, s, x(γ(s))) =
se−t sin(x(s))

j + | cos(x(s))|
ds. j = 1, 2.

We investigate the solution in C[0, 1]. It is easy to prove that these functions satisfy the assumptions
(H1)’ and (H2)’. We show that (H3)’ also holds. Suppose that ‖x‖ ≤ ρ, ρ > 0, then we have

|x(t)| =
∣∣∣∣( t2

2 + 2t2
ln(1 + |x(t)|) +

∫ t

0

se−t sin(x(s))

1 + | cos(x(s))|
ds

)
×
(

t4

4 + 4t4
ln(1 + |x(t)|) +

∫ t

0

se−t sin(x(s))

2 + | cos(x(s))|
ds

)∣∣∣∣ ≤ (
1

2
ρ+ 1)(

1

4
ρ+

1

2
),

for all t ∈ Ia. Hence (H3)’ holds if, (1
2
ρ + 1)(1

4
ρ + 1

2
) ≤ ρ. This shows that r0 = 2. The result is

followed from Theorem 3.2.

Example 3. Consider the following nonlinear Volterra integral equation

x(t) =
1

2
sin(

t

2
)x(t) +

∫ t2

0

ts sin(x(s))ds+
1

4

∫ t

0

x(s)ds

+

(∫ t2

0

ts sin(
x(s)

1 + x(s)
)ds

)(∫ t

0

x2(s)

1 + x2(s)
ds

)
, t ∈ [0, 1]. (4.2)

Observe that Equation (4.2) is a special case of Eq. (3.1). It is easy to investigate the assumptions
(H1)’ and (H2)’. We show that (H3)’ also holds. Suppose that ‖x‖ ≤ ρ, ρ > 0, then we have

|x(t)| =
∣∣∣∣12 sin(

t

2
)x(t) +

∫ t2

0

ts sin(x(s))ds+
1

4

∫ t

0

x(s)ds

+

(∫ t2

0

ts sin(
x(s)

1 + x(s)
)ds

)(∫ t

0

x2(s)

1 + x2(s)
ds

) ∣∣∣∣ ≤ 3

4
ρ+ 2

for all t ∈ Ia. Hence (H3)’ holds if, 3
4
ρ+ 2 ≤ ρ. This shows we can choose r0 ≥ 8. So, from Theorem

3.2 equation (4.2) has at least one solution in Banach space C[0, 1].
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Example 4. Consider the following nonlinear Volterra integral equation studied in [10],

x(t) =

(
u(t, x(t)) + f(t, x(α(t)),

∫ t

0

p(t, s, x(s))ds)

)
g

(
t, x(β(t)),

∫ a

0

q(t, s, x(s))ds

)
, t ∈ Ia.

(4.3)
Observe that Equation (4.3) is a special case of Eq. (3.1). Also for u(t, x) = 0, we obtain nonlinear
functional equation studied [16, 6].

5. Conclusion and Perspective

By unifying and extending the previous results of [17, 18, 21, 5, 16] and applying Petryshyn’s fixed
point theorem (Theorem 2.6), in the third section, we obtained a new method to prove the existence
of solutions for some nonlinear functional-integral equations. The advantage of Theorem 2.6 among
the others (Darbo and Schauder fixed point theorems) lies in that in applying the theorem, one does
not need to verify the involved operator maps a closed convex subset onto itself. Also condition (P)
deals with the eigenvalue of nonlinear operator T (see [3, 12, 11, 8] for definitions and results) which
the authors hope that this can be constitute to further study in this area of research.

References

[1] R.P. Agarwal, N. Hussain, and M.-A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to
nonlinear integral equations Abstr. Appl. Anal. pages Art. ID 245872, 15, 2012.
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[4] J. Banaś, Measures of non compactness in the study of solutions of nonlinear differential and integral equations,
Cent. Eur. J. Math., 10 (2012) 2003–2011.
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[6] J. Banaś and K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, Math. Comput.
Model., 38 (2003) 245–250

[7] A. Ben Amar, A. Jeribi and M. Mnif, Some fixed point theorems and application to biological model, Numer.
Funct. Anal. Optim., 29 (2008) 1–23.

[8] R. Chiappinelli, An application of Ekeland’s variational principle to the spectrum of nonlinear homogeneous
gradient operators, J. Math. Anal. Appl., 340 (2008) 511–520.

[9] M.A. Darwish and S.K. Ntouyas, On a quadratic fractional Hammerstein–Volterra integral equation with linear
modification of the argument Nonlinear Anal., 74 (2011) 3510–3517.

[10] H.K. Pathak, Study on existence of solutions for some nonlinear functional-integral equations with applications,
Math. Commun., 18 (2013) 97–107.

[11] W. Feng, A new spectral theory for nonlinear operators and its applications, Abst. Appl. Anal., 2 (1997) 163–183.
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