

Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 293-296 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.10595.1513

A common fixed point theorem via measure of noncompactness

Alireza Valipour Baboli^a, Mohamad Bagher Ghaemi^{b,*}

^aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran. ^bDepartment of Mathematics, Iran University of Science and Technology, Tehran, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper by applying the measure of noncompactness a common fixed point for the maps T and S is obtained, where T and S are self maps continuous or commuting continuous on a closed convex subset C of a Banach space E and also S is a linear map.

Keywords: Common fixed point theorem, The Kuratowski measure of noncompactness, Commuting map, Darbo's contraction conditions. 2010 MSC: Primary 26A25; Secondary 39B62.

1. Introduction and preliminaries

The compactness plays a major role in the Schauder's fixed point theorem so G.Darbo in 1955, extended the Schauder theorem to noncompact operators. The main aim of their study is defining a new class of operators which map any bounded set to a compact set. The first measure of noncompactness, was defined and studied by Kuratowski [10] in 1930. Suppose (X, d) be a metric space the Kuratowski measure of noncompactness of a subset $A \subset X$ defined as

$$\mu(A) = \inf\{\delta > 0; A = \bigcup_{i=1}^{n} A_i \text{ for some } A_i \text{ with } \operatorname{diam}(A_i) \le \delta \operatorname{for} 1 \le i \le n < \infty\},$$
(1.1)

where diam(A) denotes the diameter of a set $A \subset X$ namely

 $diam(A) = \sup\{d(x, y); x, y \in A\}.$

*Corresponding author

Email addresses: a.valipour@umz.ac.ir (Alireza Valipour Baboli), mghaemi@iust.ac.ir (Mohamad Bagher Ghaemi)

In this paper first some esential concept and result concerning measure of noncompactness is called. In the second section a common fixed point for the maps T and S where T and S are self map continuous or commuting continuous on a closed convex subset C of a Banach space E and also S is a linear map is showed. Now, we recall some basic facts concerning measures of noncompactness.

Suppose (E, |.|) be a Banach space and \overline{X} , ConvX be the closure and closed convex hull of a subset X of E, respectively. We denote \mathfrak{M}_E is the family of all nonempty and bounded subsets of E and \mathfrak{N}_E show the family of all nonempty and relatively compact subsets.

In 1955, G. Darbo [10] used measure of noncompactness to generalize Schauder's theorem to wide class of operators, called k-set contractive operators, which satisfy the following condition

 $\mu(T(A)) \le k\mu(A)$

for some $k \in [0, 1)$ and in 1967 Sadovskii generalized Darbo's theorem to set-condensing operators.

2. Common Fixed Point

Theorem 2.1. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let $T, S : C \longrightarrow C$ be continuous operators and S be a linear operator such that

$$S(T(X)) \subseteq T(X)$$

and also

$$\mu(T(X)) \le \varphi\big(\max\{\mu(X), \mu(S(X))\}\big),$$

for each $X \subseteq C$, where μ is an arbitrary measure of noncompactness and $\varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is a nondecreasing function such that $\varphi(t) < t$ for each $t \ge 0$ and $\varphi(0) = 0$. Then T, S have a common fixed point in C.

 \mathbf{Proof} . Set

and

 $C_1 = ConvTC_0$

 $C_0 = C$

in general, set

 $C_n = ConvTC_{n-1}$

for $n = 1, 2, \dots$ Then we have

$$C_n \subset C_{n-1}$$
 and $S(C_n) \subset C_n$ (\star)

for ever n = 1, 2, 3, ...Indeed it is clear that $C_1 \subset C_0$ and $S(C_1) \subset Conv(ST(C_0)) \subset Conv(T(C_0)) = C_1$. So (\star) holds for n = 1. Assuming now that (\star) is true for $n \ge 1$. Then

$$C_{n+1} = Conv(T(C_n)) \subset Conv(T(C_{n-1})) = C_n$$

and

$$S(C_{n+1}) = S(Conv(T(C_n))) \subset Conv(S(T(C_n))) \subset ConvT(C_n) = C_{n+1}.$$

We obtain

$$C_0 \supseteq C_1 \supseteq C_2 \supseteq \cdots$$

If there exists an integer $N \ge 0$ so $\mu(C_N) = 0$, then C_N is relatively compact and since $TC_N \subseteq ConvTC_N = C_{N+1} \subseteq C_N$, Schauder's fixed point theorem implies that T has a fixed point. So we assume that $\mu(C_n) \ne 0$ for $n \ge 0$. By assumptions we have

$$\mu(C_{n+1}) = \mu(ConvTC_n)$$

= $\mu(TC_n)$
 $\leq \varphi(\max\{\mu(TC_n), \mu(STC_n)\})$
 $\leq \varphi(\mu(TC_n))$
 $\leq \mu(TC_n)$
 $\leq \mu(C_n)$

which implies that $\mu(C_n)$ is a positive decreasing sequence of real numbers, thus, there is an $r \ge 0$ so that $\mu(C_n) \longrightarrow r$ as $n \longrightarrow \infty$. We show that r = 0. Suppose, in the contrary, that $r \ne 0$. Then we have

$$\mu(C_{n+1}) = \mu(ConvTC_n)$$

$$= \mu(TC_n)$$

$$\leq \varphi(\mu(TC_n))$$

$$\leq \varphi(\mu(C_n))$$

$$= \varphi(\mu(ConvTC_{n-1}))$$

$$\leq \varphi^2(\mu(TC_{n-1}))$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$\leq \varphi^n(\mu(C_0)).$$

By Lemma 2.1 [3] and assumption with choose $\mu(C_0) = t$, we have

$$r = \lim_{n \to \infty} \mu(C_{n+1}) \le \lim_{n \to \infty} \varphi^n(\mu(C_0)) = \lim_{n \to \infty} \varphi^n(t) = 0$$

for any t > 0. Then r = 0 and so $\mu(C_n) \longrightarrow 0$, when $n \longrightarrow \infty$. Since $C_{n+1} \subseteq C_n$ and $TC_n \subseteq C_n$ for all $n \ge 1$, by use definition of the measure of noncompactness given in [8], we have $C_{\infty} = \bigcap_{n=1}^{\infty} C_n$ is a non empty convex closed set, and $C_{\infty} \subset C$. Moreover, the set C_{∞} is invariant under the operator T and belongs to $Ker\mu$. Thus, applying Schauder's fixed point theorem, T has a fixed point. Now, suppose that $F_T = \{x \in C : Tx = x\}$. The set F_T is closed by the continuity of T, by assumption we have $SF_T \subset F_T$ then Sx is a fixed point of T for any $x \in F_T$ and

$$\mu(F_T) = \mu(TF_T) \leq \varphi(\max\{\mu(F_T), \mu(SF_T)\})$$
$$= \varphi(\mu(F_T))$$
$$< \mu(F_T)$$

then $\mu(F_T) = 0$ and have F_T is compact. Then by Schauder's fixed point theorem we deduce that S has a fixed point and set $F_S = \{x \in C, Sx = x\}$ is closed by the continuity of S. Also, since $SF_T \subset F_T$ by Schauder's fixed point theorem we have Tx is a fixed point of S for each $x \in F_S$. Since $F_T \cap F_S \subseteq F_T \subset C$ is a compact subset, $T, S : F_T \cap F_S \longrightarrow F_T \cap F_S$ are continuous self maps, now by Schauder's fixed point theorem we have a common fixed point in C. \Box

Corollary 2.2. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let $T, S : C \longrightarrow C$ be continuous operators and S be a linear operator such that T and S be two commuting map and

$$\mu(T(X)) \le \varphi \big(\max\{\mu(X), \mu(S(X))\} \big),$$

for each $X \subseteq C$, where μ is a measure of noncompactness and $\varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is a nondecreasing function such that $\varphi(t) < t$ for each $t \ge 0$ and $\varphi(0) = 0$. Then T, S have a common fixed point in C.

Proof. The proof is similar to proof of Theorem 2.1. \Box

References

- [1] R.P. Agarwal and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, (2004).
- [2] A. Aghajani, R. Allahyari and M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, J. Comput Appl. Math. 260 (2014) 680–770.
- [3] A. Aghajani, J. Banas and N.Sabzali, Some generalization of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc.Simon Sterin, 20(2) (2013) 345–358.
- [4] A. Aghajani, M. Mursaleen and A.Shole Haghighi, Fixed point theorems fFor Meir-Keeler condensing operators via measure of nNoncompactness, Acta Math. Sci. 35B(3) (2015) 552–566.
- [5] A. Aghajani, N. Sabzali, Existence of coupled fixed points via measure of noncompactness and applications, J. Nonlinear Convex Anal. 15(5) (2015).
- [6] R. R. Akmerov, M. I. Kamenski, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, *Measures of Noncompactness and Condensing Operators*, Birkhauser-Verlag, Basel, 1992.
- [7] S. Banach, Surles opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922) 137–181.
- [8] J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New York, 1980.
- [9] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend Sem Mat Univ Padova, 24 (1955) 84–92.
- [10] K. Kuratowski, Sur les espaces, Fund. Math. 15 (1930) 301–309.