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Abstract

In this paper by applying the measure of noncompactness a common fixed point for the maps T and
S is obtained, where T and S are self maps continuous or commuting continuous on a closed convex
subset C of a Banach space E and also S is a linear map.
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1. Introduction and preliminaries

The compactness plays a major role in the Schauder’s fixed point theorem so G.Darbo in 1955,
extended the Schauder theorem to noncompact operators. The main aim of their study is defining a
new class of operators which map any bounded set to a compact set. The first measure of noncom-
pactness, was defined and studied by Kuratowski [10] in 1930. Suppose (X, d) be a metric space the
Kuratowski measure of noncompactness of a subset A ⊂ X defined as

µ(A) = inf{δ > 0;A =
n⋃

i=1

Ai for some Ai with diam(Ai) ≤ δfor1 ≤ i ≤ n <∞}, (1.1)

where diam(A) denotes the diameter of a set A ⊂ X namely

diam(A) = sup{d(x, y);x, y ∈ A}.
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In this paper first some esential concept and result concerning measure of noncompactness is called.
In the second section a common fixed point for the maps T and S where T and S are self map
continuous or commuting continuous on a closed convex subset C of a Banach space E and also S is
a linear map is showed. Now, we recall some basic facts concerning measures of noncompactness.
Suppose (E, |.|) be a Banach space and X, ConvX be the closure and closed convex hull of a subset
X of E, respectively. We denote ME is the family of all nonempty and bounded subsets of E and
NE show the family of all nonempty and relatively compact subsets.
In 1955, G. Darbo [10] used measure of noncompactness to generalize Schauder’s theorem to wide
class of operators, called k-set contractive operators, which satisfy the following condition

µ(T (A)) ≤ kµ(A)

for some k ∈ [0, 1) and in 1967 Sadovskii generalized Darbo’s theorem to set-condensing operators.

2. Common Fixed Point

Theorem 2.1. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and
let T, S : C −→ C be continuous operators and S be a linear operator such that

S(T (X)) ⊆ T (X)

and also
µ(T (X)) ≤ ϕ

(
max{µ(X), µ(S(X))}

)
,

for each X ⊆ C, where µ is an arbitrary measure of noncompactness and ϕ : R+ −→ R+ is a non-
decreasing function such that ϕ(t) < t for each t ≥ 0 and ϕ(0) = 0. Then T, S have a common fixed
point in C.

Proof . Set
C0 = C

and
C1 = ConvTC0

in general, set

Cn = ConvTCn−1

for n = 1, 2, ...
Then we have

Cn ⊂ Cn−1 and S(Cn) ⊂ Cn (?)

for ever n = 1, 2, 3, ...
Indeed it is clear that C1 ⊂ C0 and S(C1) ⊂ Conv(ST (C0)) ⊂ Conv(T (C0)) = C1.
So (?) holds for n = 1.
Assuming now that (?) is true for n ≥ 1.
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Then

Cn+1 = Conv(T (Cn)) ⊂ Conv(T (Cn−1)) = Cn

and

S(Cn+1) = S(Conv(T (Cn))) ⊂ Conv(S(T (Cn))) ⊂ ConvT (Cn) = Cn+1.

We obtain

C0 ⊇ C1 ⊇ C2 ⊇ · · ·
If there exists an integer N ≥ 0 so µ(CN) = 0, then CN is relatively compact and since TCN ⊆
ConvTCN = CN+1 ⊆ CN , Schauder’s fixed point theorem implies that T has a fixed point. So we
assume that µ(Cn) 6= 0 for n ≥ 0. By assumptions we have

µ(Cn+1) = µ(ConvTCn)

= µ(TCn)

≤ ϕ(max{µ(TCn), µ(STCn)})
≤ ϕ(µ(TCn))

≤ µ(TCn)

≤ µ(Cn)

which implies that µ(Cn) is a positive decreasing sequence of real numbers, thus, there is an r ≥ 0
so that µ(Cn) −→ r as n −→ ∞. We show that r = 0. Suppose, in the contrary, that r 6= 0. Then
we have

µ(Cn+1) = µ(ConvTCn)

= µ(TCn)

≤ ϕ(µ(TCn))

≤ ϕ(µ(Cn))

= ϕ(µ(ConvTCn−1))

≤ ϕ(µ(TCn−1))

≤ ϕ2(µ(Cn−1))

·
·
·
≤ ϕn(µ(C0)).

By Lemma 2.1 [3] and assumption with choose µ(C0) = t, we have

r = lim
n−→∞

µ(Cn+1) ≤ lim
n−→∞

ϕn(µ(C0)) = lim
n−→∞

ϕn(t) = 0
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for any t > 0. Then r = 0 and so µ(Cn) −→ 0, when n −→ ∞. Since Cn+1 ⊆ Cn and TCn ⊆ Cn for
all n ≥ 1, by use definition of the measure of noncompactness given in [8], we have C∞ =

⋂∞
n=1Cn is

a non empty convex closed set, and C∞ ⊂ C. Moreover, the set C∞ is invariant under the operator
T and belongs to Kerµ. Thus, applying Schauder’s fixed point theorem, T has a fixed point. Now,
suppose that FT = {x ∈ C : Tx = x}. The set FT is closed by the continuity of T, by assumption we
have SFT ⊂ FT then Sx is a fixed point of T for any x ∈ FT and

µ(FT ) = µ(TFT ) ≤ ϕ(max{µ(FT ), µ(SFT )})
= ϕ(µ(FT ))

< µ(FT )

then µ(FT ) = 0 and have FT is compact. Then by Schauder’s fixed point theorem we deduce that
S has a fixed point and set FS = {x ∈ C, Sx = x} is closed by the continuity of S. Also, since
SFT ⊂ FT by Schauder’s fixed point theorem we have Tx is a fixed point of S for each x ∈ FS. Since
FT ∩ FS ⊆ FT ⊂ C is a compact subset, T, S : FT ∩ FS −→ FT ∩ FS are continuous self maps, now
by Schauder’s fixed point theorem we have a common fixed point in C. �

Corollary 2.2. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and
let T, S : C −→ C be continuous operators and S be a linear operator such that T and S be two
commuting map and

µ(T (X)) ≤ ϕ
(

max{µ(X), µ(S(X))}
)
,

for each X ⊆ C, where µ is a measure of noncompactness and ϕ : R+ −→ R+ is a nondecreasing
function such that ϕ(t) < t for each t ≥ 0 and ϕ(0) = 0. Then T, S have a common fixed point in C.

Proof . The proof is similar to proof of Theorem 2.1. �
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