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Abstract

Recently, Takahashi has introduced the James and von Neumann-Jordan type constants. In this
paper, we present some sufficient conditions for uniform normal structure and therefore the fixed
point property of a Banach space in terms of the James and von Neumann-Jordan type constants
and the Ptolemy constant. Our main results of the paper significantly generalize and improve many
known results in the recent literature.
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1. Introduction

The concepts of normal structure and uniform normal structure play an important role in metric
fixed point theory for nonexpansive mappings (see [12]). Whether or not a Banach space has normal
structure depends on the geometry of its unit ball and its unit sphere. It is not always easy to check
whether a given Banach space has normal structure, and it is even less easy to check whether it
has the fixed point property. Many mathematicians have established that, under various geometric
properties of a Banach space often measured by different geometric constants, normal structure
of the space is guaranteed. Recently, many geometric constants for a Banach space have been
investigated. It has been shown that these constants are very useful in the description of various
geometric structures of Banach spaces, which enable us to classify several important concepts of
Banach spaces such as uniformly nonsquareness and uniform normal structure. Therefore, many
recent studies have focused on these constants. The readers interested in this topic are referred to
[1, 2, 5, 6, 7, 8, 9, 10, 11, 14, 19, 22, 23, 26] and the references mentioned therein.
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Definition 1.1. ([12]) A Banach space X is said to have the fixed point property if whenever
C is a nonempty bounded closed convex subset of X it follows that every nonexpansive mapping
T : C → C, that is, ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C, always has a fixed point. If the “bounded
closed” condition of the set C above is replaced by “weakly compact”, then we say that X has the
weak fixed point property.

For a reflexive Banach space, fixed point property and weak fixed point property are the same.
Recently, Lin [18] successfully constructed a nonreflexive space that has the fixed point property.

It is well known that a contractive mapping has unique one fixed point on Banach space X.
However, a nonexpansive mapping may have no fixed point if X is anyone Banach space. One of the
remaining unsolved questions is whether each nonexpansive mapping on a closed bounded convex
subset in reflexive Banach spaces has a fixed point. The question for nonreflexive Banach space
is false in general. In the last fifty years the question of whether a Banach space X has, or has
not, the weak fixed point property has been intensively studied and although the list of sufficient
conditions for the weak fixed point property is still increasing, perhaps the most celebrated result in
this direction is the one given by Kirk [17], which states that every Banach space with weak normal
structure has the weak fixed point property. Since then, many geometric properties guaranteeing
(weak) normal structure and the (weak) fixed point property have been widely investigated.

The main aim of the present paper is to investigate some sufficient conditions for a Banach space
to have uniform normal structure and therefore the fixed point property in terms of several geometric
parameters and constants. The obtained results generalize and improve many comparable results in
the existing literature.

2. Preliminaries

We start by reviewing some notions, definitions and results which will be needed in the sequel.
We shall assume throughout this paper that X stands for real nontrivial Banach space, that is,

dimX ≥ 2 with the dual space X∗. Let SX = {x ∈ X : ‖x‖ = 1} and BX = {x ∈ X : ‖x‖ ≤ 1} be
the unit sphere and the closed unit ball of X, respectively.

Brodsk̆ıi and Mil’man [3] introduced the following geometric concepts in 1948 to study the fixed
point properties under isometry which maps a weakly compact set to itself.

Definition 2.1. ([3]) A nonempty bounded convex subset K of a Banach space X is said to have
normal structure if for every convex subset E of K that contains more than one point, there exists
a point x0 ∈ E such that

sup
{
‖x0 − y‖ : y ∈ E

}
< diam(E),

where diam(E) = sup{‖x− y‖ : x, y ∈ E} denotes the diameter of E. A Banach space X is said to
have normal structure if every bounded convex subset of X has normal structure. A Banach space
X is said to have weak normal structure if for each weakly compact convex set K of X that contains
more than one point has normal structure. X is said to have uniform normal structure if there exists
0 < c < 1 such that for any closed bounded convex subset K of X that contains more than one
point, there exists x0 ∈ K such that

sup
{
‖x0 − y‖ : y ∈ K

}
< c diam(K).
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It is clear that for a reflexive Banach space, normal structure and weak normal structure coincide.
Moreover, if a space has uniform normal structure, then it is reflexive.

It is worth mentioning that ifX fails to have weak normal structure, then there exist a weakly com-
pact convex subset C ⊂ X and a sequence {xn} ⊂ C such that dist(xn+1, co{xk}nk=1)→ diam(C) = 1
(see [12]).

Before going to the results, let us recall some basic facts about ultrapowers of Banach spaces and
state a lemma which we will use in the proof of our main results.

Let F be a filter on N and let X be a Banach space. A sequence {xn} in X converges to x with
respect to F , denoted by limF xi = x, if for each neighborhood U of x, {i ∈ N : xi ∈ U} ∈ F . A
filter U on N is called an ultrafilter if it is maximal with respect to set inclusion. An ultrafilter is
called trivial if it is of the form {A ⊂ N : i0 ∈ A} for some fixed i0 ∈ N, otherwise, it is called
nontrivial. Let `∞(X) denotes the subspace of the product space

∏
n∈NX equipped with the norm

‖(xn)‖ := sup
n∈N
‖xn‖ <∞.

Let U be an ultrafilter on N and let

NU =
{

(xn) ∈ `∞(X) : lim
U
‖xn‖ = 0

}
.

The ultrapower of X, denoted by X̃, is the quotient space `∞(X)
NU

equipped with the quotient
norm. Write (xn)U to denote the elements of the ultrapower. It follows from the definition of the
quotient norm that ∥∥(xn)U

∥∥ = lim
U
‖xn‖.

Note that if U is nontrivial, then X can be embedded into X̃ isometrically. For a widespread
discussion on the Banach space ultrapower construction, we refer the reader to [12, 15, 16, 24]. We

also note that if X is super-reflexive, that is X̃∗ = (X̃)∗, then X has uniform normal structure if and

only if X̃ has normal structure (see [15]).

Lemma 2.2. ([23]) If X is a super-reflexive Banach space and fails to have normal structure, then

for r ∈ (0, 1] there are x̃1, x̃2, x̃3 ∈ SX̃ and f̃1, f̃2, f̃3 ∈ S(X̃)∗ such that

(1) ‖x̃i − x̃j‖ = 1 and f̃i(x̃j) = 0 for all i 6= j;

(2) f̃i(x̃i) = 1 for i = 1, 2, 3;

(3) ‖x̃3 − (x̃2 + rx̃1)‖ ≥ ‖x̃2 + rx̃1‖.

3. The James type constant

The aim of this section is to present a sufficient condition for uniform normal structure by considering
the James type constant.

A Banach space X is called uniformly nonsquare, in the sense of James, if there exists a positive
number δ < 2 such that min(‖x + y‖, ‖x − y‖) ≤ δ for any x, y ∈ SX . The nonsquare or James
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constant (see [10]), defined as J(X) = sup{min(‖x + y‖, ‖x − y‖) : x, y ∈ SX}, is introduced to
characterize such a concept. Obviously, X is uniformly nonsquare in the sense of James if and only
if J(X) < 2 (see [14]). It was proved in [13] that uniformly nonsquare Banach spaces are reflexive,
indeed super-reflexive.

Recently, Takahashi [25] has introduced the James type constant

JX,t(τ) = sup
{
µt
(
‖x+ τy‖, ‖x− τy‖

)
: x, y ∈ SX

}
,

where τ ≥ 0, −∞ ≤ t < +∞. Here, we denote

µt(a, b) =

(
at + bt

2

) 1
t

(t 6= 0) and µ0(a, b) = lim
t→0

µt(a, b) =
√
ab

for two positive numbers a and b. It is well known that µt(a, b) is nondecreasing and

µ−∞(a, b) = lim
t→−∞

µt(a, b) = min(a, b) and µ+∞(a, b) = lim
t→+∞

µt(a, b) = max(a, b).

Therefore, J(X) = JX,−∞(1). It is obvious that the James type constant includes some known
constants, such as Alonso-Llorens-Fuster’s constant T (X) (see [1]), Baronti-Casini-Papini’s constant
A2(X) (see [2]), Gao’s constant Eτ (X) (see [9]), Yang-Wang’s modulus γX(τ) (see [26]) and the
modulus of smoothness ρX(τ) (see [12]). These constants are defined by T (X) = JX,0(1), A2(X) =
JX,1(1), Eτ (X) = 2J2

X,2(τ), γX(τ) = J2
X,2(τ) and ρX(τ) = JX,1(τ)− 1. It is interesting to remark at

this point that A2(X) = A2(X
∗).

Proposition 3.1. ([27]) If t ≥ 1, then for any Banach space X, the following conditions are equiv-
alent:

(1) X is uniformly nonsquare.

(2) JX,t(τ) < 1 + τ for all τ > 0.

(3) JX,t(τ0) < 1 + τ0 for some τ0 > 0.

Proposition 3.2. ([27]) For any Banach space X,

JX,t(τ) = sup

{(
‖x+ τy‖t + ‖x− τy‖t

2

) 1
t

: x ∈ SX , y ∈ BX

}
= sup

{(
‖x+ τy‖t + ‖x− τy‖t

2

) 1
t

: x, y ∈ BX

}
,

where t ≥ 1.

Now, we are in a position to prove our first result concerning the James type constant.

Theorem 3.3. Let X be a Banach space such that

JX,t(τ) <
τ +
√

4 + τ 2

2

for some τ ∈ (0, 1]. Then X has uniform normal structure.
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Proof . By virtue of Proposition 3.1 and our hypothesis, X is uniformly nonsquare, and consequently,
X is super-reflexive. It suffices to prove only that X has normal structure if JX,t(τ) < τ+

√
4+τ2

2
.

Suppose on the contrary that X fails to have normal structure. Then there are elements x̃1, x̃2, x̃3 ∈
SX̃ and f̃1, f̃2, f̃3 ∈ S(X̃)∗ satisfying all the conditions in Lemma 2.2. Let α(τ) = 2−τ+

√
4+τ2

2
and

consider, without loss of generality, the following cases:
Case 1: ‖x̃2 + x̃1‖ ≤ α(τ).
In this case, let us put ũ = x̃2 − x̃1 and ṽ = x̃2+x̃1

α(τ)
. It follows that ũ, ṽ ∈ BX̃ , and

‖ũ+ τ ṽ‖ =

∥∥∥∥(1 +
τ

α(τ)

)
x̃2 −

(
1− τ

α(τ)

)
x̃1

∥∥∥∥
≥
(

1 +
τ

α(τ)

)
f̃2(x̃2)−

(
1− τ

α(τ)

)
f̃2(x̃1)

= 1 +
τ

α(τ)
,

‖ũ− τ ṽ‖ =

∥∥∥∥(1 +
τ

α(τ)

)
x̃1 −

(
1− τ

α(τ)

)
x̃2

∥∥∥∥
≥
(

1 +
τ

α(τ)

)
f̃1(x̃1)−

(
1− τ

α(τ)

)
f̃1(x̃2)

= 1 +
τ

α(τ)
.

Case 2: ‖x̃2 + x̃1‖ > α(τ).
We subdivide Case 2 into Case 2.1

(
‖x̃3− x̃2 + x̃1‖ ≤ α(τ)

)
and Case 2.2

(
‖x̃3− x̃2 + x̃1‖ > α(τ)

)
.

Case 2.1. ‖x̃3 − x̃2 + x̃1‖ ≤ α(τ).
In this case, let us put ũ = x̃3 − x̃1 and ṽ = x̃3−x̃2+x̃1

α(τ)
. It follows that ũ, ṽ ∈ BX̃ , and

‖ũ+ τ ṽ‖ =

∥∥∥∥(1 +
τ

α(τ)

)
x̃3 −

(
1− τ

α(τ)

)
x̃1 −

τ

α(τ)
x̃2

∥∥∥∥
≥
(

1 +
τ

α(τ)

)
f̃3(x̃3)−

(
1− τ

α(τ)

)
f̃3(x̃1)−

τ

α(τ)
f̃3(x̃2)

= 1 +
τ

α(τ)
,

‖ũ− τ ṽ‖ =

∥∥∥∥(1 +
τ

α(τ)

)
x̃1 −

(
1− τ

α(τ)

)
x̃3 −

τ

α(τ)
x̃2

∥∥∥∥
≥
(

1 +
τ

α(τ)

)
f̃1(x̃1)−

(
1− τ

α(τ)

)
f̃1(x̃3)−

τ

α(τ)
f̃1(x̃2)

= 1 +
τ

α(τ)
.

Case 2.2. ‖x̃3 − x̃2 + x̃1‖ > α(τ).
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In this case, let us put ũ = x̃3 − x̃2 and ṽ = x̃1. It follows that ũ, ṽ ∈ SX̃ , and

‖ũ+ τ ṽ‖ = ‖x̃3 − τ x̃2 + x̃1‖
≥ ‖x̃3 − x̃2 + x̃1‖ − (1− τ)

≥ α(τ) + τ − 1,

‖ũ− τ ṽ‖ = ‖x̃3 − (τ x̃2 + x̃1)‖
≥ ‖x̃3 − (x̃2 + x̃1)‖ − (1− τ)

≥ α(τ) + τ − 1.

Therefore, from the equivalent definition of the James type constant (see Proposition 3.2) and the
fact that JX,t(τ) = JX̃,t(τ), we obtain

JX,t(τ) ≥ min

{
1 +

τ

α(τ)
, α(τ) + τ − 1

}
=
τ +
√

4 + τ 2

2
,

which is a contradiction. This completes the proof. �

According to Theorem 3.3 and the inequalities

J(X) ≤ T (X) ≤ A2(X) (3.1)

(see [1]), we get the following results.

Corollary 3.4. If J(X) < 1+
√
5

2
, then X has uniform normal structure.

Corollary 3.5. If T (X) < 1+
√
5

2
, then X has uniform normal structure.

Corollary 3.6. If A2(X) < 1+
√
5

2
, then X and its dual X∗ have uniform normal structure.

Corollary 3.7. If J(X) < 1 + 1
T (X)

, then X has uniform normal structure.

Corollary 3.8. If J(X) < 1 + 1
A2(X)

, then X has uniform normal structure.

Corollary 3.9. If T (X) < 1 + 1
J(X)

, then X has uniform normal structure.

Corollary 3.10. If T (X) < 1 + 1
A2(X)

, then X has uniform normal structure.

Corollary 3.11. If A2(X) < 1 + 1
J(X)

, then X has uniform normal structure.

Corollary 3.12. If A2(X) < 1 + 1
T (X)

, then X has uniform normal structure.

Corollary 3.13. If X is a Banach space with

ρX(τ) <
τ − 2 +

√
4 + τ 2

2

for some τ ∈ (0, 1], then X has uniform normal structure.
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Remark 3.14. In [21] it was proved that ρX(τ) < τ
2

for some τ > 0 implies that X has uniform
normal structure. So our Corollary 3.13 is an improvement of such a result.

Corollary 3.15. If X is a Banach space with

Eτ (X) < 2 + τ 2 + τ
√

4 + τ 2

for some τ ∈ (0, 1], then X has uniform normal structure.

Remark 3.16. In [9] it was proved that Eτ (X) < 1 + (1 + τ)2 for some (0, 1] implies that X has
uniform normal structure. So our Corollary 3.15 is an improvement of such a result.

Corollary 3.17. If X is a Banach space with

γX(τ) <
2 + τ 2 + τ

√
4 + τ 2

2

for some τ ∈ (0, 1], then X has uniform normal structure.

Remark 3.18. In [26] it was proved that γX(τ) < 1+(1+τ)2

2
for some (0, 1] implies that X has uniform

normal structure. So our Corollary 3.17 is an improvement of such a result.

4. The von Neumann-Jordan type and Ptolemy constants

In this section, we are going to present some sufficient conditions for uniform normal structure in
terms of the von Neumann-Jordan type and Ptolemy constants.

The von Neumann-Jordan type constant was defined by Takahashi [25] as

Ct(X) = sup

{
J2
X,t(τ)

1 + τ 2
: 0 ≤ τ ≤ 1

}
,

where JX,t(τ) is James type constant. In particular, if τ = 1 or τ = 1, t = −∞, then we get C ′t(X) and
C−∞(X), respectively. It is obvious that C ′t(X) ≤ Ct(X). Note that the von Neumann-Jordan type
constant includes some known constants, such as the von Neumann-Jordan constant CNJ(X) (see
[4]) and the Zbăganu constant CZ(X) (see [28]). These constants are defined by CNJ(X) = C2(X)
and CZ(X) = C0(X). It is worthwhile to mention that

1

2

(
J(X)

)2 ≤ C ′t(X) ≤ Ct(X). (4.1)

Now, we are ready to state and prove our main results concerning the von Neumann-Jordan type
and Ptolemy constants.

Theorem 4.1. If X is a Banach space such that C ′t(X) < 1+
√
3

2
, then X has uniform normal struc-

ture.
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Proof . Since C ′t(X) < 2, it then follows that X is uniformly nonsquare, and consequently, X is

super-reflexive. It suffices to prove only that X has normal structure if C ′t(X) < 1+
√
3

2
. Suppose on

the contrary that X fails to have normal structure. Then there are elements x̃1, x̃2, x̃3 ∈ SX̃ and

f̃1, f̃2, f̃3 ∈ S(X̃)∗ satisfying all the conditions in Lemma 2.2. Let α2 = 1 +
√

3 and consider, without
loss of generality, the following cases:

Case 1: ‖x̃1 + x̃2‖ ≤ α.
In this case, let us put ũ = x̃1 − x̃2 and ṽ = x̃1+x̃2

α
. It follows that ũ, ṽ ∈ BX̃ , and(

‖ũ+ṽ‖t+‖ũ−ṽ‖t
2

) 2
t

2
≥

(∥∥(1+ 1
α

)
x̃1−
(
1− 1

α

)
x̃2

∥∥t+∥∥(1+ 1
α

)
x̃2−
(
1− 1

α

)
x̃1

∥∥t
2

) 2
t

2

≥

(((
1+ 1

α

)
f̃1(x̃1)−

(
1− 1

α

)
f̃1(x̃2)

)t
+
((

1+ 1
α

)
f̃2(x̃2)−

(
1− 1

α

)
f̃2(x̃1)

)t
2

) 2
t

2

≥
(
1 + 1

α

)2
2

.

Case 2: ‖x̃1 + x̃2‖ > α.
We subdivide Case 2 into Case 2.1 (‖x̃3 + x̃2 − x̃1‖ ≤ α) and Case 2.2 (‖x̃3 + x̃2 − x̃1‖ > α).
Case 2.1. ‖x̃3 + x̃2 − x̃1‖ ≤ α.
In this case, let us put ũ = x̃2 − x̃3 and ṽ = x̃3+x̃2+x̃1

α
. It follows that ũ, ṽ ∈ BX̃ , and(

‖ũ+ṽ‖t+‖ũ−ṽ‖t
2

) 2
t

2
≥

(∥∥(1+ 1
α

)
x̃2−
(
1− 1

α

)
x̃3− 1

α
x̃1

∥∥t+∥∥(1+ 1
α

)
x̃3−
(
1− 1

α

)
x̃2− 1

α
x̃1

∥∥t
2

) 2
t

2

≥

(((
1+ 1

α

)
f̃2(x̃2)−

(
1− 1

α

)
f̃2(x̃3)− 1

α
f̃2(x̃1)

)t
+
((

1+ 1
α

)
f̃3(x̃3)−

(
1− 1

α

)
f̃3(x̃2)− 1

α
f̃3(x̃1)

)t
2

) 2
t

2

≥
(
1 + 1

α

)2
2

.

Case 2.2. ‖x̃3 + x̃2 − x̃1‖ > α.
In this case, let us put ũ = x̃3 − x̃1 and ṽ = x̃2. It follows that ũ, ṽ ∈ SX̃ , and(

‖ũ+ṽ‖t+‖ũ−ṽ‖t
2

) 2
t

2
≥

(
‖x̃3+x̃2−x̃1‖t+‖x̃3−(x̃1+x̃2)‖p

2

) 2
t

2

≥

(
αt+‖x̃1+x̃2‖t

2

) 2
t

2

≥ α2

2
.

Therefore, by using definition of C ′t(X) and the fact that C ′t(X) = C ′t(X̃), we obtain

C ′t(X) ≥ min

{(
1 + 1

α

)2
2

,
α2

2

}
=

1 +
√

3

2
,
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which is a contradiction. This finishes the proof. �

By virtue of Theorem 4.1 and bearing in mind inequalities (3.1) and (4.1), we obtain the following
results.

Corollary 4.2. If C ′t(X) < 1 + 1
(A2(X))2

, then X has uniform normal structure.

Corollary 4.3. If C ′t(X) < 1 + 1
(T (X))2

, then X has uniform normal structure.

Corollary 4.4. If C ′t(X) < 1 + 1
(J(X))2

, then X has uniform normal structure.

Remark 4.5. Theorem 4.1 and Corollary 4.4 are improvements of the following results: A Banach
space X has uniform normal structure if one of the following conditions is satisfied

(1) CNJ(X) < 1+
√
3

2
[5, Theorem 3.16] and [22, Theorem 2];

(2) CNJ(X) < 1 + 1
(J(X))2

[5, Corollary 3.17];

(3) CZ(X) < 1+
√
3

2
[11, Corollary 8] and [19, Theorem 5];

(4) CZ(X) < 1 + 1
(J(X))2

[11, Corollary 7].

According to Theorem 4.1 and Corollaries 4.2, 4.3 and 4.4 and the fact that C ′t(X) ≤ Ct(X), we
immediately obtain the following corollaries.

Corollary 4.6. If Ct(X) < 1+
√
3

2
, then X has uniform normal structure.

Corollary 4.7. If Ct(X) < 1 + 1
(A2(X))2

, then X has uniform normal structure.

Corollary 4.8. If Ct(X) < 1 + 1
(T (X))2

, then X has uniform normal structure.

Corollary 4.9. If Ct(X) < 1 + 1
(J(X))2

, then X has uniform normal structure.

Recall that for a normed space X, the real number

Cp(X) = sup

{
‖x− y‖ ‖z‖

‖x− z‖ ‖y‖+ ‖z − y‖ ‖x‖
: x, y, z ∈ X\{0}, x 6= y 6= z 6= x

}
is called the Ptolemy constant of X. The notion of the Ptolemy constant of Banach spaces was
introduced in [20] and recently it has been studied by Llorens-Fuster et al. in [19].

By applying Corollaries 4.6, 4.7, 4.8 and 4.9 and the fact that CZ(X) ≤ Cp(X) (see [19]), we
immediately obtain the following results.

Corollary 4.10. If Cp(X) < 1+
√
3

2
, then X has uniform normal structure.

Corollary 4.11. If Cp(X) < 1 + 1
(A2(X))2

, then X has uniform normal structure.

Corollary 4.12. If Cp(X) < 1 + 1
(T (X))2

, then X has uniform normal structure.

Corollary 4.13. If Cp(X) < 1 + 1
(J(X))2

, then X has uniform normal structure.
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[8] M. Dinarvand, Hölder’s means and absolute normalized norms on R2, Filomat 31 (2017) 1583–1593.
[9] J. Gao, Normal structure and Pythagorean approach in Banach spaces, Period. Math. Hungar. 51 (2005) 19–30.

[10] J. Gao and K.-S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991)
41–56.

[11] J. Gao and S. Saejung, Normal structure and the generalized James and Zbăganu constants, Nonlinear Anal. 71
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