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Abstract

In this paper, author proves the algorithms for the existence as well as the approximation of solutions
to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential
equations using operator theoretic techniques in a partially ordered metric space. The main results
rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of Dhage in a
partially ordered normed linear space. The approximation of the solutions are obtained under weaker
mixed partial continuity and partial Lipschitz conditions. Our hypotheses and abstract results are
also illustrated by some numerical examples.
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1. Introduction

Given a closed and bounded interval J = [0, T ] of the real line R consider the periodic boundary value
problem (PBVP) for the first order ordinary nonlinear hybrid integrodifferential equation (HIDE),

x′(t) + λx(t) = f

(
t, x(t),

∫ t

0

g(s, x(s)) ds

)
, t ∈ J,

x(0) = x(T ),

 (1.1)

for some λ ∈ R, λ > 0, where g : J × R→ R and f : J × R× R→ R are continuous functions.
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By a solution of the HIDE (1.1), we mean a differentiable function u ∈ C(J,R) that satisfies
problem (1.1), where C(J,R) is the space of continuous real-valued functions defined on J .

The HIDE (1.1) is well-known in the literature and includes

x′(t) + λx(t) = f(t, x(t)), t ∈ J,

x(0) = x(T ),

}
(1.2)

x′(t) + λx(t) =

∫ t

0

g(s, x(s)) ds, t ∈ J,

x(0) = x(T ),

 (1.3)

and

x′(t) + λx(t) = f

(
t,

∫ t

0

x(s) ds

)
, t ∈ J,

x(0) = x(T ),

 (1.4)

as special cases. That is, the results in this paper include results for the differential equations (1.2),
(1.3), and (1.4) on J .

The existence and uniqueness of solutions of the nonlinear HIDE (1.1) under usual compactness
and Lipschitz type conditions have been discussed at length in the literature. These conditions
are considered to be very strong assumptions in the study of nonlinear differential and integral
equations. Similarly, upper and lower solution method and monotone iterative technique also require
the assumption that both the lower as well as upper solution exist and preserve the order relation.
However, a recent trend for the existence of solution for such nonlinear problem is to assume only one
of lower and upper solutions. In the present paper, we prove existence and uniqueness of solutions of
the HDE (1.1) under the weaker partial compactness and partial Lipschitz type conditions via the
Dhage iteration method by assuming one of lower and upper solutions to exist.

The remainder of this paper is organized as follows. In Section 2, we give some preliminary
concepts and key fixed point theorems that will be used in subsequent parts of the paper. In Section
3, we present existence and uniqueness results for initial value problems, and in Section 4, we give an
existence result for initial value problems for hybrid differential equations with linear perturbations
of the first type.

2. Auxiliary Results

Unless otherwise mentioned, throughout this paper we let E denote a partially ordered real normed
linear space with the order relation � and the norm ‖ · ‖ in which addition and scalar multiplication
by positive real numbers are preserved by �. A few details on such partially ordered normed linear
spaces appear in Dhage [3] and the references therein.

Two elements x and y in E are said to be comparable if either the relation x � or y � x holds.
A non-empty subset C of E is called a chain or totally ordered if all elements of C are comparable.
We say that E is regular if for any nondecreasing (resp. nonincreasing) sequence {xn} in E such that
xn → x∗ as n → ∞, we have that xn � x∗ (resp. xn � x∗) for all n ∈ N. Conditions guaranteeing
the regularity of E may be found in Heikkilä and Lakshmikantham [19] and the references therein.

We will need the following definitions in the sequel.



Dhage iteration method for PBVPs . . . 8 (2017) No. 1, 95-112 97

Definition 2.1. A mapping T : E → E is said to be isotone or monotone nondecreasing if
it preserves the order relation �, that is, if x � y implies T x � T y for all x, y ∈ E. Similarly, T
is monotone nonincreasing if x � y implies T x � T y for all x, y ∈ E. Finally, T is said to be
monotonic or simply monotone if it is either monotone nondecreasing or monotone nonincreasing
on E.

The following terminologies may be found in any book on nonlinear analysis and applications
such as Kreyszig [20] or Granas and Dugundji [17].

Definition 2.2. An operator T from a normed linear space E into itself is compact if T (E) is a
relatively compact subset of E. We say that T is totally bounded if for any bounded subset S of
E, T (S) is a relatively compact subset of E. If T is continuous and totally bounded, then it is called
completely continuous on E.

Definition 2.3. [Dhage [4]] A mapping T : E → E is partially continuous at a point a ∈ E if for
ε > 0 there exists a δ > 0 such that ‖T x−T a‖ < ε whenever x is comparable to a and ‖x− a‖ < δ.
The mapping T is partially continuous on E if it is partially continuous at every point in E.

It is clear that if T is partially continuous on E, then it is continuous on every chain C contained
in E and vice versa.

Definition 2.4. A non-empty subset S of the partially ordered Banach space E is called partially
bounded if every chain C in S is bounded. An operator T on a partially normed linear space E
into itself is called partially bounded if T (E) is a partially bounded subset of E. T is called
uniformly partially bounded if all chains C in T (E) are bounded by a unique constant.

Definition 2.5. A non-empty subset S of the partially ordered Banach space E is called partially
compact if every chain C in S is a relatively compact subset of E. A mapping T : E → E is called
partially compact if T (E) is a partially relatively compact subset of E. T is called uniformly
partially compact if T is a uniformly partially bounded and partially compact operator on E. T
is called partially totally bounded if for any bounded subset S of E, T (S) is a partially relatively
compact subset of E. If T is partially continuous and partially totally bounded, then it is called
partially completely continuous on E.

Remark 2.6. Suppose that T is a nondecreasing operator on E into itself. Then T is a partially
bounded or partially compact if T (C) is a bounded or relatively compact subset of E for each chain
C in E.

Definition 2.7. The operator T is said to be partially totally bounded on E if T (E) is a
partially relatively compact subset of E. If the operator T is partially continuous and partially
totally bounded, then it is called partially completely continuous on E.

Remark 2.8. Note that every compact mapping on a partially normed linear space is partially
compact, and every partially compact mapping is partially totally bounded. However, the reverse
implications do not hold. Every completely continuous mapping is partially completely continuous.
Every partially completely continuous mapping is partially continuous and partially totally bounded,
but the converse may not be true.
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Definition 2.9. [Dhage [4, 5]] The order relation � and the metric d on a non-empty set E are
said to be D-compatible if for any monotone sequence {xn} in E with a subsequence {xnk

} of {xn}
converging to x∗, the original sequence {xn} converges to x∗. Similarly, given a partially ordered
normed linear space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be D-compatible
if � and the metric d defined by the norm ‖ · ‖ are D-compatible. A subset S of E is called Janhavi
if the order relation � and the metric d or the norm ‖ · ‖ are D-compatible in it. In particular, if
S = E, then E is called a Janhavi metric or Janhavi Banach space.

Clearly, the set R of real numbers with the usual order relation ≤ and the norm defined by the
absolute value function has this property. Similarly, every finite dimensional Euclidean space Rn

possesses the compatibility property with respect to the usual component-wise order relation ≤ and
the standard norm ‖ · ‖ in Rn and so is a Janhavi Banach space.

The Dhage iteration principle developed in a series of papers [4, 5, 6] is embodied in the
following hybrid fixed point theorems, which are the main tools used in obtaining the results in
this paper. The central idea of Dhage iteration principle may be described as “the monotonic
convergence of a sequence of successive approximations to the solution of a nonlinear
equation beginning with a lower or an upper solution of the equation as its initial
approximation.” The aforesaid convergence principle forms a very useful tool in the existence
theory of nonlinear analysis and is called Dhage iteration method for nonlinear equations. As
will be seen, the Dhage iteration method is different from the usual Picard’s successive iterations.
The details of Dhage iteration method along with its applications appear in Dhage [9, 10, 11], Dhage
and Dhage [14, 15], Dhage al. [16] and references therein.

Theorem 2.10. [Dhage [5]] Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed linear

space such that the order relation � and the norm ‖ · ‖ in E are compatible in every compact chain
C of E. Let T : E → E be a partially continuous, nondecreasing, and partially compact operator. If
there exists an element x0 ∈ E such that x0 � T x0 or T x0 � x0, then the operator equation T x = x
has a solution x∗ in E, and the sequence {T nx0} of successive iterations converges monotonically to
x∗.

Remark 2.11. The regularity of E in Theorem 2.10 above may be replaced with a stronger conti-
nuity condition of the operator T on E (see Dhage [5]).

The following hybrid fixed point theorems will be used to prove some of our existence and unique-
ness results for the solutions of the HIDE (1.1). We need the following notion of a D-function in
these theorems.

Definition 2.12. An upper semi-continuous and nondecreasing function ψ : R+ → R+ is called a
D-function provided ψ(0) = 0.

Definition 2.13. An operator T : E → E is a partially nonlinear D-contraction if there exists a
D-function ψ such that

‖T x− T y‖ ≤ ψ
(
‖x− y‖

)
(2.1)

for all comparable elements x, y ∈ E, where 0 < ψ(r) < r for r > 0. In particular, if ψ(r) = k r,
k > 0, then T is a partially linear contraction on E with a contraction constant k.
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Theorem 2.14. [Dhage [4]] Let (E,�, ‖ · ‖) be a partially ordered Banach space and let T : E → E
be a nondecreasing and partially nonlinear D-contraction. Suppose that there exists an element
x0 ∈ E such that x0 � T x0 or x0 � T x0. If T is continuous or E is regular, then T has a fixed point
x∗, and the sequence {T nx0} of successive iterations converges monotonically to x∗. Moreover, the
fixed point x∗ is unique if every pair of elements in E has a lower and an upper bound.

Theorem 2.15. [Dhage [6, 7]] Let
(
E,�, ‖ · ‖

)
be a regular, partially ordered, complete normed

linear space such that the order relation � and the norm ‖ · ‖ in E are compatible in every compact
chain C of E. Let A, B : E → E be two nondecreasing operators such that:

(a) A is a partially bounded and partially nonlinear D-contraction;

(b) B is partially continuous and partially compact;

(c) there exists an element x0 ∈ E such that x0 � Ax0 + Bx0 or x0 � Ax0 + Bx0.

Then the operator equation Ax+Bx = x has a solution x∗ in E, and the sequence {xn} of successive
iterations defined by xn+1 = Axn + Bxn, n = 0, 1, . . ., converges monotonically to x∗.

Remark 2.16. We remark that hypothesis (a) of Theorem 2.10 implies that operator A is partially
continuous on E. The regularity of E in above Theorem 2.10 may be replaced with a stronger
continuity condition of the operators A and B on E which is a result proved in Dhage [4]. Again, the
compatibility of the order relation � and the norm ‖ · ‖ in every compact chain of E holds if every
partially compact subset of E possesses the compatibility property with respect to � and ‖ · ‖.

Notice that the Dhage iteration method presented in the above hybrid fixed point theorems has
been employed in Dhage [8, 9], Dhage and Dhage [14] and Dhage et al. [16] to approximate solutions
of initial value problems for nonlinear first order ordinary differential equation under some natural
hybrid conditions. In the following section, we approximate the solutions of certain IVPs for nonlinear
integro-differential equations via successive approximations beginning with a lower or upper solution.

3. Existence and Uniqueness Theorems

The equivalent integral form of the HIDE (1.1) is considered in the function space C(J,R) of contin-
uous real-valued functions defined on J . We define a norm ‖ · ‖ and the order relation ≤ in C(J,R)
by

‖x‖ = sup
t∈J
|x(t)| (3.1)

and
x ≤ y if and only if x(t) ≤ y(t) for all t ∈ J. (3.2)

Clearly, C(J,R) is a Banach space with respect to above supremum norm and is also partially
ordered w.r.t. the above partially order relation ≤. It is known that the partially ordered Banach
space C(J,R) is regular and is a lattice, so every pair of elements in the space has an upper and a
lower bound in the space. The next lemma concerning the compatibility of sets in C(J,R) follows
by an application of the Arzellá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and

the order relation ≤ defined by (3.1) and (3.2) respectively. Then, every partially compact subset of
C(J,R) possesses compatibility property w.r.t. ‖ · ‖ and ≤ and so is Janhavi.
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Proof . Let S be a partially compact subset of C(J,R) and let {xn}n∈N be a monotone nondecreasing
sequence of points in S. Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · ·

for each t ∈ J . Suppose that a subsequence {xnk
}k∈N of {xn}n∈N is convergent and converges to a

point x in S. Then the subsequence {xnk
(t)}k∈N of the monotone sequence {xn(t)}n∈N converges at

t ∈ J . By the monotonicity, the sequence {xn(t)}n∈N itself is convergent and converges to a point
x(t) in R for each t ∈ J , i.e., the sequence {xn(t)}n∈N converges point-wise in S. To show the
convergence is uniform, it suffices to show that the sequence {xn(t)}n∈N is equicontinuous. Since S is
partially compact, every chain or totally ordered set, and consequently {xn}n∈N, is an equicontinuous
sequence by the Arzelá-Ascoli theorem. Hence, {xn}n∈N is convergent and converges uniformly to x.
Therefore, ‖ · ‖ and ≤ are compatible in S, and this proves the lemma. �

We need the following definition in the sequel.

Definition 3.2. A differentiable function u ∈ C(J,R) is a lower solution of the HIDE (1.1) if it
satisfies

u′(t) + λu(t) ≤ f

(
t, u(t),

∫ t

0

g(s, u(s)) ds

)
,

u(0) ≤ x(T ),


for all t ∈ J . Similarly, an upper solution v ∈ C1(J,R) to the HIDE (3.1) is defined on J by reversing
the above inequalities.

3.1. Existence theorem

We will make use of the following assumptions:

(H1) There exists a constant Mf > 0 such that |f(t, x, y)| ≤Mf for all t ∈ J and x ∈ R.

(H2) The function f(t, x, y) is monotone nondecreasing in x and y for each t ∈ J .

(H3) The function g(t, x) is monotone nondecreasing in x for each t ∈ J .

(H4) The HIDE (3.1) has a lower solution u ∈ C1(J,R).

The following useful lemma is obvious and may be found in Dhage [2] and Nieto [22].

Lemma 3.3. For any function σ ∈ L1(J,R), x is a solution to the differential equation

x′(t) + λx(t) = σ(t), t ∈ J,

x(0) = x(T ),

}
(3.3)

if and only if it is a solution of the integral equation

x(t) =

∫ T

0

Gλ(t, s)σ(s) ds (3.4)

where,

Gλ(t, s) =


eλs−λt+λT

eλT − 1
, if 0 ≤ s ≤ t ≤ T,

eλs−λt

eλT − 1
, if 0 ≤ t < s ≤ T.

(3.5)
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Notice that the Green’s function Gλ is continuous and nonnegative on J × J and therefore, the
number

Kλ := max { |Gλ(t, s)| : t, s ∈ [0, T ] }

exists for all λ ∈ R+. For the sake of convenience, we write Gλ(t, s) = G(t, s) and Kλ = K.

Lemma 3.4. If there exists a function u ∈ C(J,R) such that

u′(t) + λu(t) ≤ σ(t), t ∈ J,

u(0) ≤ u(T ),

}
(3.6)

then

u(t) ≤
∫ T

0

G(t, s)σ(s) ds (3.7)

for all t ∈ J , where G(t, s) is a Green’s function given by (3.5).

Proof . Suppose that the function u ∈ C(J,R) satisfies the inequalities given in (3.14). Multiplying
the first inequality in (3.14) by eλt, (

eλtu(t)
)′
≤ eλtσ(t).

A direct integration of above inequality from 0 to t yields

eλtu(t) ≤ u(0) +

∫ t

0

eλsσ(s) ds, (3.8)

for all t ∈ J . Therefore, in particular,

eλTu(T ) ≤ u(0) +

∫ T

0

eλsσ(s) ds. (3.9)

Now u(0) ≤ u(T ), so one has
u(0)eλT ≤ u(T )eλT . (3.10)

From (3.18) and (3.19) it follows that

eλTu(0) ≤ u(0) +

∫ T

0

eλsσ(s) ds (3.11)

which further yields

u(0) ≤
∫ T

0

eλs

(eλT − 1)
σ(s) ds. (3.12)

Substituting (3.12) in (3.7) we obtain

u(t) ≤
∫ T

0

G(t, s)σ(s) ds,

for all t ∈ J . This completes the proof. �

Similarly, we have:
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Lemma 3.5. If there exists a function v ∈ C(J,R) such that

v′(t) + λv(t) ≥ σ(t), t ∈ J,

v(0) ≥ v(T ),

}

then

v(t) ≥
∫ T

0

G(t, s)σ(s) ds

for all t ∈ J , where G(t, s) is a Green’s function given by (3.5).

Our main existence result in this section is contained in the following theorem.

Theorem 3.6. Assume that conditions (H1)–(H4) hold. Then the HIDE (1.1) has a solution x∗

defined on J and the sequence {xn}∞n=1 of successive approximations defined by

x1(t) = u(t),

xn+1(t) =

∫ T

0

G(t, s)f

(
s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds,

(3.13)

for all t ∈ J , converges monotonically to x∗.

Proof . By Lemma 3.3, the HIDE (1.1) is equivalent to the nonlinear integral equation

x(t) =

∫ T

0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds, t ∈ J. (3.14)

Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in E possesses the
compatibility property with respect to the norm ‖ · ‖ and the order relation ≤ in E. Define the
operator T by

T x(t) =

∫ T

0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds, t ∈ J. (3.15)

From the continuity of the integral, it follows that T maps E into itself. The HIDE (3.1) is then
equivalent to the operator equation

T x(t) = x(t), t ∈ J. (3.16)

Through a series of steps, we shall show that the operator T satisfies all the conditions of Theorem
2.10.

Step I: T is a nondecreasing operator on E.

Let x, y ∈ E with x ≤ y. Then, from (H2), we obtain

T x(t) =

∫ T

0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

≤
∫ T

0

G(t, s)f

(
s, y(s),

∫ s

0

g(τ, y(τ)) dτ

)
ds

= T y(t),
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for all t ∈ J . This shows that T is a nondecreasing operator on E.

Step II: T is partially continuous operator on E.

Let {xn} be a sequence of points of a chain C in E such that xn → x for all n ∈ N. Then, by the
dominated convergence theorem,

lim
n→∞

T xn(t) = lim
n→∞

[∫ T

0

G(t, s)f

(
s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds

]

=

∫ T

0

G(t, s)

[
lim
n→∞

f

(
s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)]
ds

=

∫ T

0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

= T x(t),

for all t ∈ J . This shows that {T xn} converges to T x pointwise on J .

Next, we show that {T xn} is an equicontinuous sequence of functions in E. Let t1, t2 ∈ J with
t1 < t2. Then

|T xn(t2)− T xn(t1)|

≤
∣∣∣∣∫ T

0

G(t1, s)f

(
s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds

−
∫ T

0

G(t1, s)f

(
s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds

∣∣∣∣
≤
∣∣∣∣∫ T

0

[
G(t2, s)−G(t1, s)

]
f

(
s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds

∣∣∣∣
≤
∣∣∣∣∫ T

0

∣∣G(t2, s)−G(t1, s)
∣∣ ∣∣∣∣f (s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)∣∣∣∣ ds∣∣∣∣
≤Mf

∫ T

0

∣∣G(t2, s)−G(t1, s)
∣∣ ds

→ 0 as t1 → t2,

uniformly for all n ∈ N. This shows that the convergence T xn → T x uniformly and therefore, T is
a partially continuous operator on E.

Step III: T is partially compact operator on E.

Let C be an arbitrary chain in E. We will show that T (C) is a uniformly bounded and equicon-
tinuous set in E. To show that T (C) is uniformly bounded, let x ∈ C. Then,

|T x(t)| ≤
∣∣∣∣∫ T

0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

∣∣∣∣
≤

∫ T

0

G(t, s)

∣∣∣∣f (s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)∣∣∣∣ ds
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≤ KMf T

= r,

for all t ∈ J . Taking the supremum over t, we obtain ‖T x‖ ≤ r for all x ∈ C. Hence, T (C) is a
uniformly bounded subset of E.

To show that T (C) is an equicontinuous set in E, let t1, t2 ∈ J with t1 < t2. Then,

|T x(t2)− T x(t1)|

=

∣∣∣∣∫ T

0

G(t1, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

−
∫ T

0

G(t1, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

∣∣∣∣
≤
∣∣∣∣∫ T

0

[
G(t2, s)−G(t1, s)

]
f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

∣∣∣∣
≤
∣∣∣∣∫ T

0

∣∣G(t2, s)−G(t1, s)
∣∣ ∣∣∣∣f (s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)∣∣∣∣ ds∣∣∣∣
≤Mf

∫ T

0

∣∣G(t2, s)−G(t1, s)
∣∣ ds

→ 0 as t1 → t2,

uniformly for all x ∈ C. Hence T (C) is compact subset of E and consequently T is a partially
compact operator on E into itself.

Step IV: u satisfies the operator inequality u ≤ T u.

Since condition (H4) holds, u is a lower solution of (3.1) defined on J so that

u′(t) + λu(t) ≤ f

(
t, x(t),

∫ t

0

g(s, x(s)) ds

)
u(0) ≤ x(T )

 (3.17)

for all t ∈ J . Applying Lemma 3.4 to the inequality (3.17), we obtain

u(t) ≤
∫ t

t0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds, (3.18)

for all t ∈ J . This shows that u is a lower solution of the operator equation x = T x.

Thus, T satisfies all the conditions of Theorem 2.10, and in view of Remark 2.11, we can conclude
that the operator equation T x = x has a solution. Thus, the integral equation and the HIDE (1.1)
has a solution x∗ defined on J . Furthermore, the sequence {xn} of successive approximations defined
by (3.13) converges monotonically to x∗. This completes the proof of the theorem. �

Remark 3.7. The conclusion of Theorem 3.6 also remains true if we replace the condition (H4) with
the following one.
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(H′4) The HIDE (3.1) has an upper solution v ∈ C1(J,R).

We illustrate our result with the following example.

Example 3.8. Let J = [0, 1] and consider the HIDE

x′(t) + x(t) = tanh x(t) + tanh
(∫ t

0

g(s, x(s)) ds
)
, t ∈ J,

x(0) = x(1).

 (3.19)

where g : J × R→ R is the function defined by

g(t, x) =

{
x+ 1, if x ≤ 0,

1 + log(x+ 1), if x > 0.

Here, λ = 1, c = 1, and f(t, x, y) = tanh x+tanh y. Clearly, the functions f and g are continuous
on J × R, and f satisfies (H1) with Mf = 2. Moreover, g(t, x) is nondecreasing in x for each t ∈ J ,
and f(t, x, y) is nondecreasing in x and y for each t ∈ J , so conditions (H2) and (H3) are satisfied.

Finally, the HIDE (3.19) has a lower solution u defined by u(t) = −2et on J . Thus, all the
hypotheses of Theorem 3.6 are satisfied, and so (3.19) has a solution x∗ defined on J , and the
sequence {xn} defined by

x1(t) = u(t),

xn+1(t) =

∫ 1

0

G(t, s) tanhxn(s) ds

+

∫ 1

0

G(t, s) tanh

(∫ s

0

g(τ, xn(τ)) dτ

)
ds

for all t ∈ J , converges monotonically to x∗, where G(t, s) is a Green’s function associated with the
homogeneous PBVP

x′(t) + x(t) = 0, t ∈ J,

x(0) = x(1),

}
(3.20)

given by

G(t, s) =


es−t+1

e− 1
, if 0 ≤ s ≤ t ≤ 1,

es−t

e− 1
, if 0 ≤ t < s ≤ 1.

(3.21)

Again, a similar conclusion holds if we replace the lower solution u with the upper solution v(t) = 2et,
t ∈ [0, 1] in view of Remark 3.14.
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3.2. Uniqueness theorem

Next, we prove a uniqueness theorem for the HIDE (1.1) under the weaker partially Lipschitz con-
dition. We will need the following conditions.

(H5) There exists a constant L > 0 such that

0 ≤ g(t, x)− g(t, y) ≤ L(x− y)

for all t ∈ J and x, y ∈ R with x ≥ y.

(H6) There exists D-functions ψ1 and ψ2 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ ψ1(x1 − y1) + ψ2(x2 − y2)

for all x1, x2, y1, y2 ∈ R with x1 ≥ y1 and x2 ≥ y2. Moreover, ψ(r) = KT
[
ψ1(r)+ψ2(LTr)

]
< r

for each r > 0.

Theorem 3.9. Assume that conditions (H4)–(H6) hold. Then the HIDE (1.1) has a unique solution
x∗ defined on J , and the sequence {xn} of successive approximations defined by (3.13) converges
monotonically to x∗.

Proof . Set E = C(J,R). Clearly, E is a lattice w.r.t. the order relation ≤ and so lower and upper
bounds exist for every pair of elements in E. Define the operator T by (3.15). Then, the HIDE (1.1)
is equivalent to the operator equation (3.16). We shall show that T satisfies all the conditions of
Theorem 2.14.

Clearly, T is a nondecreasing operator from E into itself. We wish to show that the operator T
is a partially nonlinear D-contraction on E, so let x, y ∈ E with x ≥ y. Then, by (H5) and (H6),

|T x(t)− T y(t)|

≤
∣∣∣∣∫ T

0

G(t, s)f

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

−
∫ T

0

G(t, s)f

(
s, y(s),

∫ s

0

g(τ, y(τ)) dτ

)
ds

∣∣∣∣
≤
∫ T

0

G(t, s)

∣∣∣∣f (s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
−f
(
s, y(s),

∫ s

0

g(τ, y(τ)) dτ

)∣∣∣∣ ds
≤
∫ T

0

G(t, s)

[
ψ1(x(s)− y(s)) + ψ2

(∫ t

0

[g(τ, x(τ))− g(τ, x(τ))]τ

)]
ds

≤
∫ T

0

G(t, s)

[
ψ1(x(s)− y(s)) + ψ2

(∫ t

0

L(x(τ)− y(τ)) dτ

)]
ds

≤
∫ T

0

G(t, s)

[
ψ1(|x(s)− y(s)|) + ψ2

(∫ t

0

L|x(τ)− y(τ)| dτ
)]

ds
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≤
∫ T

0

K

[
ψ1(‖x− y‖) + ψ2

(∫ s

0

L‖x− y‖ dτ
)]

ds

≤
∫ T

0

K [ψ1(‖x− y‖) + ψ2(LT‖x− y‖)] ds

≤ ψ(‖x− y‖) (3.22)

for all t ∈ J , where ψ(r) = KT
[
ψ1(r) + ψ2(LTr)

]
< r, r > 0.

Taking the supremum over t, we obtain

‖T x− T y‖ ≤ ψ(‖x− y‖)

for all x, y ∈ E with x ≥ y. As a result, T is a partially nonlinear D-contraction on E. Furthermore,
as in the proof of Theorem 3.6, it can be shown that the function u given in condition (H4) satisfies
the operator inequality u ≤ T u on J . Now a direct application of Theorem 2.14 yields that the
HIDE (1.1) has a unique solution x∗, and the sequence {xn} of successive approximations defined by
(3.13) converges monotonically to x∗. �

Remark 3.10. The conclusion of Theorem 3.9 also remains true if we replace the hypothesis (H4)
with (H′4).

To illustrate this theorem, we present the following example.

Example 3.11. Let J = [0, 1] and consider the HIDE

x′(t) + x(t) =
1

2

[
tan−1 x(t) + tan−1

(∫ t

0

g(s, x(s)) ds
)]

, t ∈ J,

x(0) = x(1),

 (3.23)

where g : J × R→ R is the function defined by

g(t, x) =


1, if x ≤ 0,

1 +
x

1 + x
, if x > 0.

Here, λ = 1, c = 1, f(t, x, y) =
1

2
[tan−1 x+tan−1 y]. Clearly, the functions f and g are continuous

on J × R × R and J × R, respectively. The function f satisfies (H1) with Mf =
π

2
and it is easy

to show that g satisfies (H5) with L = 1. Moreover, f(t, x, y) is nondecreasing in x and y for each
t ∈ J . To show that f satisfies (H6) on J × R × R, let x1, x2, y1, y2 ∈ R be such that x1 ≥ y1 and
x2 ≥ y2. Then,

0 ≤ f(t, x1, x2)− f(t, y1, y2)

≤ 1

2

[
tan−1 x1 − tan−1 y1 + tan−1 x2 − tan−1 y2

]
≤ 1

2
· x1 − y1

1 + ξ21
+

1

2
· x2 − y2

1 + ξ22
≤ ψ1(x1 − y1) + ψ2(x2 − y2)
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for all t ∈ J and for some x1 > ξ1 > y1 and x2 > ξ2 > y2, where ψ1 and ψ2 are D-functions defined

by ψ1(r) =
1

2

r

1 + ξ21
and ψ2(r) =

1

2

r

1 + ξ22
for 0 < ξ1, ξ2 < r. Furthermore,

KT
[
ψ1(r) + ψ2(LTr)

]
≤ 1

2
·
[
ψ1(r) + ψ2(r)

]
=

r

1 + ξ2
< r,

where ξ = min{ξ1, ξ2}.
Finally, the HIDE (3.23) has a lower solution u(t) = −4et defined on J . Thus, all the hypotheses

of Theorem 3.9 are satisfied and so we conclude that the HIDE (3.23) has a unique solution x∗ defined
on J . In addition, the sequence {xn} defined by

x0(t) = u(t),

xn+1(t) =
1

2

∫ 1

0

G(t, s) tan−1 xn(s) ds

+
1

2

∫ 1

0

G(t, s) tan−1
(∫ s

0

g(τ, xn(τ)) dτ

)
ds

for all t ∈ J , converges monotonically to x∗, where G(t, s) is a Green’s function associated with the
homogeneous PBVP (3.20) given by (3.21).

4. Linear Perturbations of the First Type

Sometimes it is possible that the nonlinearity f involved in the HIDE (1.1) satisfies neither the
hypotheses of Theorem 3.6 nor the hypotheses of Theorem 3.9. However, by splitting the function
f into the form f = f1 + f2, the functions f1 and f2 may satisfy the conditions of Theorems 3.6 and
3.9, respectively. In the terminology of Dhage [3], the resulting equation is called a hybrid integro-
differential equation with a linear perturbation of the first type. The problems of this kind may be
tackled with the hybrid fixed point theorem involving the sum of two operators in a Banach space.
See Dhage [1] and the references therein. The purpose of this section is to obtain an existence result
for an equation of this type.

Given the notations in the previous sections, we consider the nonlinear hybrid HIDE

x′(t) + λx(t) = f1

(
t, x(t),

∫ t

0

g(s, x(s)) ds

)

+ f2

(
t, x(t),

∫ t

0

g(s, x(s)) ds

)
,

x(0) = x(T ),


(4.1)

for all t ∈ J , where f1, f2 : J × R× R→ R and g : J × R→ R are continuous functions.

By a solution of the HIDE (4.1) we mean a function x ∈ C1(J,R) that satisfies equation (4.1),
where C1(J,R) is the usual Banach space of continuously differentiable real-valued functions defined
on J .
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The HIDE (4.1) is a hybrid differential equation with a linear perturbation of the first type
(see Dhage [4] and the references therein). The HIDE (4.1) is well-known and existence and other
properties of its solutions have been discussed at length in the literature. Here, we show that existence
of solutions can be proved under mixed partial Lipschitz and partial compactness type conditions.
We will need the following definition.

Definition 4.1. A differentiable function u ∈ C(J,R) is said to be a lower solution of the HIDE
(4.1) if it satisfies

u′(t) + λu(t) ≤ f1

(
t, u(t),

∫ t

0

g(s, u(s)) ds

)

+ f2

(
t, u(t),

∫ t

0

g(s, u(s)) ds

)
,

u(0) ≤ u(T ),


for all t ∈ J . Similarly, an upper solution v ∈ C1(J,R) to the HIDE (4.1) is defined on J by reversing
the above inequalities.

We will also need the following condition.

(H7) The HIDE (4.1) has a lower solution u ∈ C1(J,R).

Theorem 4.2. Assume that (H1)–(H3) hold with f replaced by f2, and let (H1) and (H5)–(H6) hold
with f replaced by f1. If (H7) holds, then the HIDE (4.1) has a solution x∗ defined on J and the
sequence {xn} of successive approximations defined by

x1(t) = u(t),

xn+1(t) =

∫ T

0

G(t, s)f1

(
(s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds (4.2)

+

∫ T

0

G(t, s)f2

(
(s, xn(s),

∫ s

0

g(τ, xn(τ)) dτ

)
ds,

for t ∈ J , converges monotonically to x∗, where G(t, s) is a Green’s function defined by (3.5) on
J × J .

Proof . Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in E possesses
the compatibility property with respect to the norm ‖ · ‖ and the order relation ≤ in E. By Lemma
3.3, the HIDE (4.1) is equivalent to the nonlinear integral equation

x(t) =

∫ T

0

G(t, s)f1

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds

+

∫ T

0

G(t, s)f2

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds, t ∈ J, (4.3)

where G(t, s) is a Green’s function defined by (3.5) on J × J .

Define the operators A and B on E by

Ax(t) =

∫ T

0

G(t, s)f1

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds, t ∈ J, (4.4)
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and

Bx(t) =

∫ T

0

G(t, s)f2

(
s, x(s),

∫ s

0

g(τ, x(τ)) dτ

)
ds, t ∈ J. (4.5)

Clearly, A, B : E → E. Also, the HIDE (4.1) is equivalent to the operator equation

Ax(t) + Bx(t) = x(t), t ∈ J. (4.6)

Following arguments similar to those used in the proofs of Theorems 3.6 and 3.9, it can be
shown that the operator A is a partially bounded and nonlinear D-contraction and B is a partially
continuous and partially compact operator on E. Furthermore, as in the proof of Theorem 3.6, it can
be shown that the function u given in condition (H4) satisfies the operator inequality u ≤ Au + Bu
on J . A direct application of Theorem 2.15 yields that the operator equation Ax + Bx = x has a
solution x∗. Consequently, the HIDE (4.1) has a solution x∗, and the sequence {xn}∞n=1 defined by
(4.2) converges monotonically to x∗. This completes the proof of the theorem. �

The conclusion of Theorem 4.2 remains true if we replace the (H7) by

(H′7) The HIDE (4.1) has an upper solution v ∈ C1(J,R).

Example 4.3. Let J = [0, 1] and consider the HIDE

x′(t) + x(t) = tan−1 x(t) + tanh

(∫ t

0

g(s, x(s)) ds

)
, t ∈ J,

x(0) = x(T ).

 (4.7)

where g : J × R→ R is the function defined by

g(t, x) =

{
x+ 1, if x ≤ 0,

x2 + 1, if x > 0.

Here, λ = 1, c = 1, f1(t, x, y) = tan−1 x and f2(t, x, y) = tanh y. Then the function f1 satisfies

(H1) with Mf1 =
π

2
and satisfies (H6) with ψ1(r) =

r

1 + ξ2
, 0 < ξ < r, and ψ2(r) = 0. Now f2

satisfies (H1) with Mf2 = 1 and is nondecreasing in y, so (H2) holds. Similarly, g satisfies (H3).
Finally, u(t) = −3et for all t ∈ J is a lower solution of the HIDE (4.7) on J , and so (H7) is satisfied.
Therefore, by Theorem 4.2, the HIDE (4.7) has a solution x∗ on J , and the sequence {xn}∞n=1 defined
by

x1(t) = −3e−t,

xn+1(t) =

∫ 1

0

G(t, s) tan−1 xn(s) ds

+

∫ 1

0

G(t, s) tanh

(∫ s

0

g(τ, xn(τ)) dτ

)
ds

for each t ∈ J , converges monotonically to x∗, where G(t, s) is a Green’s function associated with
the homogeneous PBVP (3.20) given by (3.21).
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Remark 4.4. We note that if the HIDE (1.1) or (4.1) has a lower solution u as well as an upper
solution v such that u ≤ v, then the corresponding solutions x∗ and x∗ of the HIDE (1.1) or (4.1)
satisfy x∗ ≤ x∗ and they are the minimal and maximal solutions in the vector segment [u, v] of the
Banach space E = C(J,R). This is because the order relation ≤ defined by (3.2) is equivalent to
the order relation defined by the order cone K = {x ∈ C(J,R) | x ≥ θ} which is a closed set in
C(J,R). Thus, Dhage iteration method is also useful for proving the maximal and minimal solutions
in a vector segment of the partially ordered Banach space E.

5. Concluding Remarks

From the foregoing discussion it should be clear that the Dhage iteration method is a powerful tool
for proving existence results for certain PBVPs of nonlinear hybrid integro-differential equations.
However, it has some limitations in that unlike Picard’s method, it does not give the rate of conver-
gence of the sequence of successive approximations. However, if we consider linear partial contraction
instead of nonlinear partial contraction in Theorem 2.14, then it also yields the rate of convergence
of the sequence of successive approximations to the solution of the problem in question. Again as
mentioned in Dhage [12], the Dhage iteration method is different from that of generalized iteration
mehod of Heikkilá [19] and the monotone iterative technique presented in Ladde et al. [21] and
the references therein. Further we conjecture that other qualitative aspects of the solutions such as
maximal and minimal solutions, differential inequalities and comparison principle and stability etc.
could also be proved using Dhage iteration method. See Dhage [9] and the references therein. The
PBVP of integro-differential equations considered here for which we have illustrated the Dhage itera-
tion method to obtain algorithms for the solutions under weaker partially Lipschitz and compactness
conditions is of fairly simple nature. An analogous study could also be made for more complicated
integro-differential equations using a similar approach with appropriate modifications. Results along
these lines will be left to future work.
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