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Abstract

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is
investigated. Some lower bounds for the radius of stability of these subclasses are found.
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1. Introduction and preliminaries

A complex-valued harmonic function F = u + iv in the unit disk D = {z : |z| < 1} admits the
decomposition F = h+ g, where both h and g are analytic in D (see [9]). Here h and g are referred
to as analytic and co-analytic parts of f . A complex-valued harmonic function F (z) = h(z) + g(z)
is locally univalent if and only if the Jacobian JF (z) = |h′(z)|2 − |g′(z)|2 is non-vanishing in D. The
reader is referred to [9, 11] for the properties of harmonic functions.

Let H be the class of complex-valued harmonic functions in D such that F (0) = 0 and Fz(0) = 1.
Then every function F ∈ H can be expressed as the form:

F (z) = h(z) + g(z) = z +
∞∑
n=2

anz
n +

∞∑
n=1

bnzn. (1.1)
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The class of functions F ∈ H that are sense-preserving and univalent in D is denoted by SH .
Also, let

S∗H = {F ∈ SH : F (D) is a starlike domain with respect to the origin} .

Functions in S∗H are called starlike functions. In the sequel, we also need

H1 = {F ∈ H : b1 = Fz(0) = 0}, S0
H = {F ∈ SH : Fz(0) = 0}, S∗0H = {F ∈ S∗H : Fz(0) = 0}.

Harmonic starlikeness is not a hereditary property, because it is possible that for f ∈ S∗H , f(|z| < r)
is not necessarily starlike for each r < 1 (see [11]).

Definition 1.1. A harmonic mapping f ∈ H is said to be fully starlike (resp. fully convex ) if each
|z| < r is mapped onto a starlike (resp. convex) domain (see [8]).

Fully convex mappings are known to be fully starlike but not the converse as the function f(z) =
z + (1/n)zn (n ≥ 2) shows.

It is easy to see that the harmonic koebe function K with the dilation w(z) = z is not fully
starlike, although K = H +G ∈ S∗0H , where

H(z) =
z − 1

2
z2 + 1

6
z3

(1− z)3
, G(z) =

1
2
z2 + 1

6
z3

(1− z)3
.

For further details, we refer to [8].
Let C0

H denote the class of harmonic,univalent, convex functions F of the form (1.1) with b1 = 0.
It is known [9] that the below sharp inequalities hold:

|an| ≤
n+ 1

2
, |bn| ≤

n− 1

2
. (1.2)

In the sequel, we need

FS∗0H = {F ∈ S0
H : F is fully starlike in D}, C1H = {F ∈ SH : Re Fz(z) > |Fz(z)| in D}.

Definition 1.2. Let 0 ≤ λ ≤ 1. A function F ∈ H1 with the form (1.1) is said to be in the class
HS0(λ) if

∞∑
n=2

n(λn+ 1− λ)(|an|+ |bn|) ≤ 1.

The class HS0(λ) is a special case of the class HS0
p(λ) of polyharmonic mappings (see [7]). If

λ = 0 or λ = 1, then the class HS0(λ) reduces to HS0 or HC0, respectively. The classes HS0 and
HC0 introduced by Avci and Z lotkiewicz [3].

If

F (z) = z +
∞∑
n=2

(
anz

n + bnzn
)
,

and

G(z) = z +
∞∑
n=2

(
Anz

n +Bnzn
)
,
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then the convolution F ∗G is defined to be the function

(F ∗G)(z) = z +
∞∑
n=2

(
anAnz

n + bnBnzn
)
, (1.3)

while the integral convolution is defined by

(F �G)(z) = z +
∞∑
n=2

(
anAn
n

zn +
bnBn

n
zn
)
. (1.4)

See [10] for similar operators defined on the class of analytic functions.
For V ⊂ H1, its dual V ∗ is defined as

V∗ =
{
G ∈ H1 : (F ∗G)(z) 6= 0, for all z ∈ Ď, f ∈ V

}
,

where Ď = D \ {0}. We say that V is a dual class if V = W ∗ for some W ⊂ H1 (see [2]). Denote by
Σ the dual set of S∗0H . Then for F ∈ H1, we have

F ∈ S∗0H ⇐⇒ (F ∗H)(z) 6= 0, ∀H ∈ Σ,∀z ∈ Ď.

Following Goodman [12] and Ruscheweyeh [13], we define the set δ−neighborhood of
F = h+ g ∈ H1 by

Nδ(F ) =

{
G(z) : G(z) = z +

∞∑
n=2

(
Anz

n +Bnzn
)
,
∞∑
n=2

n(|an − An|+ |bn −Bn|) ≤ δ, δ ≥ 0

}
(see [14]). Also, let

Ñδ(F ) =

{
G(z) : G(z) = z +

∞∑
n=2

(
Anz

n +Bnzn
)
,
∞∑
n=2

n2(|an − An|+ |bn −Bn|) ≤ δ, δ ≥ 0

}
.

Clearly, we have Ñδ(F ) ⊂ Nδ(F ).
By Nδ(A), A ⊂ H1, we denote the union of all neighborhoods Nδ(F ) with F ranging over the

class A. And similarly, define Ñδ(A) = ∪F∈AÑδ(F ).
Assume that A,B are subclasses of the class H1. Then the set of all functions F ∗ G and

F � G, where F ∈ A and G ∈ B, will be denoted by A ∗ B and A � B, respectively. Let
A ∗ B ⊂ C, the convolution is called stabel on the pair of classes (A,B) if there exists δ > 0 such
that Nδ(A) ∗Nδ(B) ⊂ C and unstable otherwise. Stability of the integral convolution is defined in a
similar way.
The constant δ which characterizes the stability of the convolution or integral convolution is called
the radius of stability and it is defined as follows.

Definition 1.3. Let A, B, C be the subclasses of the class H1 and A ∗ B ⊂ C. Then a constant
δ(A ∗B,C), such that

δ(A ∗B,C) = sup{δ : Nδ(A) ∗Nδ(B) ⊂ C},

is called the radius of stability of the convolution on the pair (A, B). And a constant δ(A � B,C),
such that

δ(A �B,C) = sup{δ : Nδ(A) �Nδ(B) ⊂ C},

is called the radius of stability of the integral convolution on the pair (A, B).
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Remark 1.4. In a same way as in the above we have

δ̃(A ∗B,C) = sup{δ : Ñδ(A) ∗ Ñδ(B) ⊂ C}

δ̃(A �B,C) = sup{δ : Ñδ(A) � Ñδ(B) ⊂ C}.

Recently, in [1, 4, 5], the authors investigated the problem of stability for certain classes of analytic
functions. In this paper, we investigate the problem of stability for certain classes of harmonic
univalent functions. We find the lower bounds for the radius of stability of these classes.

2. main results

In order to establish our main theorems, we shall require the following lemmas.

Lemma 2.1. (see [6]) Let F = h+ g ∈ S0
H . Then F is fully starlike in D if and only if

h(z) ∗ A(z)− g(z) ∗B(z) 6= 0 for |ζ| = 1, 0 < |z| < 1,

where

A(z) =
z + ((ζ − 1)/2)z2

(1− z)2
and B(z) =

ζz − ((ζ − 1)/2)z2

(1− z)2
. (2.1)

Corollary 2.2. Let F = h+g ∈ S0
H . Then F ∈ FS∗0H if and only if (F ∗H)(z) 6= 0 for |ζ| = 1, z ∈ Ď,

where H(z) = A(z)−B(z) and A(z), B(z) are given by (2.1).

Proof . From Lemma 2.1 and the definition of the convolution of harmonic functions, immediately,
the result follows. �

Corollary 2.3. Suppose that

Σ =
{
H(z) ∈ H1 : H(z) = A(z)−B(z)

}
,

where A(z) and B(z) are given by (2.1). Then FS∗0H = Σ∗.

Proof . The proof is obvious. In view of the definition of dual set and Corollary 2.2 , we can easily
obtain the result. �

Lemma 2.4. Let H(z) = z +
∑∞

n=2(enz
n + fnzn) ∈ Σ. Then |en| ≤ n and |fn| ≤ n.

Proof . Since H(z) ∈ Σ, then we have H(z) = A(z) − B(z). From the series expansion A(z) and
B(z) we obtain

H(z) = A(z)−B(z)

=
z + ((ζ − 1)/2)z2

(1− z)2
− ζz − ((ζ − 1)/2)z2

(1− z)2

= z +
∞∑
n=2

(
n+

(n− 1)(ζ − 1)

2

)
zn −

∞∑
n=2

(
nζ − (n− 1)(ζ − 1)

2

)
zn

= z +
∞∑
n=2

((
n+

(n− 1)(ζ − 1)

2

)
zn −

(
nζ − (n− 1)(ζ − 1)

2

)
zn
)
.
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Therefore, we have

en = n+
(n− 1)(ζ − 1)

2
, fn = nζ − (n− 1)(ζ − 1)

2
.

Consequently,

|en| =
∣∣∣∣n+

(n− 1)(ζ − 1)

2

∣∣∣∣
=

∣∣∣∣2n+ (n− 1)(ζ − 1)

2

∣∣∣∣
=

∣∣∣∣n+ 1 + (n− 1)ζ

2

∣∣∣∣
≤ n+ 1 + (n− 1)|ζ|

2

≤ n+ 1 + n− 1

2
= n,

and similarly, we get |fn| ≤ n. This completes the proof. �

Lemma 2.5. (see [6]) Let F = h+ g be a harmonic function of the form (1.1) with b1 = g′(0) = 0.
If

∞∑
n=2

n(|an|+ |bn|) ≤ 1,

then F ∈ C1H ∩ S∗0H . Moreover, F is fully starlike in D. Consequently, F ∈ FS∗0H .

Lemma 2.6. Let F = h+ g ∈ HS0(λ) be of the form (1.1), then

∞∑
n=2

n(|an|+ |bn|) ≤
1

λ+ 1
,

and

∞∑
n=2

n2(|an|+ |bn|) ≤
1

λ
.

Proof . Since 0 ≤ λ ≤ 1 and λn + 1− λ is an increasing function of n (n ≥ 2), from the definition
of the class HS0(λ), the result follows. �

Lemma 2.7. Let F = h+ g ∈ HS0(λ) be of the form (1.1), then

|an| ≤
1

2(λ+ 1)
, |bn| ≤

1

2(λ+ 1)
.

Proof . From Lemma 2.6, we obtain

∞∑
n=2

n(|an|+ |bn|) ≤
1

λ+ 1
,
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and therefore

∞∑
n=2

n|an| ≤
1

λ+ 1
, (2.2)

and

∞∑
n=2

n|bn| ≤
1

λ+ 1
. (2.3)

From the inequalities (2.2) and (2.3), it follows that

∞∑
n=2

|an| ≤
1

2(λ+ 1)
,

and

∞∑
n=2

|bn| ≤
1

2(λ+ 1)
.

The above inequalities, give the desired result. �

Lemma 2.8. (see [7]) Suppose that G(z) = z +
∑∞

n=2(Anz
n +Bnzn) ∈ C0

H and F ∈ HS0(λ). Then
for 1/2 ≤ λ ≤ 1, the convolution F ∗G is univalent and starlike, and the integral convolution F �G
is convex.

Corollary 2.9. For 1/2 ≤ λ ≤ 1, we have

C0
H ∗HS0(λ) ⊆ FS∗0H , C0

H �HS0(λ) ⊆ C0
H .

Lemma 2.10. For 0 ≤ λ ≤ 1, we have
(i) C0

H �HS0(λ) ⊆ FS∗0H .
(ii) HS0(λ) ∗HS0(λ) ⊆ FS∗0H .
(iii) HC0 ∗HS0(λ) ⊆ FS∗0H .
(iv) HS0(λ) �HS0(λ) ⊆ FS∗0H .
(v) HC0 �HS0(λ) ⊆ FS∗0H .

Proof . We only prove the parts (i) and (ii). The other parts are proved in a similar way.
(i) Let F (z) = z +

∑∞
n=2(Anz

n + Bnzn) ∈ C0
H and G(z) = z +

∑∞
n=2(anz

n + bnzn) ∈ HS0(λ). Then
for F �G, by Lemma 2.6 and the inequalities (1.2), we obtain

∞∑
n=2

n

(∣∣∣∣anAnn

∣∣∣∣+

∣∣∣∣bnBn

n

∣∣∣∣) ≤ ∞∑
n=2

n

(
n+ 1

2n
|an|+

n− 1

2n
|bn|
)

≤
∞∑
n=2

n(|an|+ |bn|)

≤ 1

λ+ 1
≤ 1.
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Now, from Lemma 2.5, the result follows.
(ii) If F,G ∈ HS0(λ), then for F ∗G, using Lemma 2.6 and Lmma 2.7, we obtain

∞∑
n=2

n (|anAn|+ |bnBn|) ≤
1

2(λ+ 1)

∞∑
n=2

n (|an|+ |bn|)

≤ 1

2

∞∑
n=2

n (|an|+ |bn|)

≤ 1

2(λ+ 1)
< 1.

Hence, by Lemma 2.5, F ∗G ∈ FS∗0H . �

Theorem 2.11. Let 0 ≤ λ ≤ 1. For 0 ≤ δ ≤
√

2− 1

λ+ 1
, we have

Nδ(HS
0(λ)) ∗Nδ(HS

0(λ)) ⊂ FS∗0H .

Proof . Let

F0(z) = z +
∞∑
n=2

(a0nz
n + b0nzn) ∈ HS0(λ),

G0(z) = z +
∞∑
n=2

(c0nz
n + d0nzn) ∈ HS0(λ)

and

F (z) = z +
∞∑
n=2

(anz
n + bnzn) ∈ Nδ(F0), G(z)

= z +
∞∑
n=2

(cnz
n + dnzn) ∈ Nδ(G0),

H(z) = z +
∞∑
n=2

(enz
n + fnz

n) ∈ Σ.

We want to show that
(F ∗G ∗H)(z) 6= 0 (H ∈ Σ, z ∈ Ď).

By the identity

F ∗G ∗H = F0 ∗G0 ∗H + F0 ∗ (G−G0) ∗H + (F − F0) ∗G0 ∗H + (F − F0) ∗ (G−G0) ∗ h,

we obtain

|(F ∗G ∗H)(z)| ≥ |(F0 ∗G0 ∗H)(z)| − |(F0 ∗ (G−G0) ∗H)(z)| (2.4)

− |((F − F0) ∗G0 ∗H)(z)| − |((F − F0) ∗ (G−G0) ∗H)(z)| .
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Since G0 ∈ HS0(λ), so by Lemma 2.7 we have |c0n| ≤
1

2(λ+ 1)
and |d0n| ≤

1

2(λ+ 1)
. Moreover from

Lemma 2.4, |en| ≤ n and |fn| ≤ n. Therefore, using Lemma 2.6 ,we obtain

|(F0 ∗G0 ∗H)(z)| =

∣∣∣∣∣z +
∞∑
n=2

(a0nc0nenz
n + b0nd0nf0nzn)

∣∣∣∣∣
≥ |z|

[
1−

∞∑
n=2

(|a0n||c0n||en||z|n−1 + |b0n||d0n||fn||z|n−1)

]

> |z|

[
1−

∞∑
n=2

(|a0n||c0n||en|+ |b0n||d0n||fn|)

]

≥ |z|

[
1− 1

2(λ+ 1)

∞∑
n=2

n(|a0n|+ |b0n|)

]

≥ |z|
[
1− 1

2(λ+ 1)2

]
= |z|

[
2(λ+ 1)2 − 1

2(λ+ 1)2

]
. (2.5)

On the other hand, from F ∈ Nδ(F0) and G ∈ Nδ(G0), we conclude that

|(F − F0) ∗G0 ∗H)(z)| =

∣∣∣∣∣
∞∑
n=2

(
c0nen(an − a0n)zn + d0nfn(bn − b0n)zn

)∣∣∣∣∣
< |z| 1

2(λ+ 1)

∞∑
n=2

n(|an − a0n|+ |bn − b0n|)

≤ |z| δ

2(λ+ 1)
. (2.6)

Similarly, we get

|F0 ∗ (G−G0) ∗H)(z)| < |z| δ

2(λ+ 1)
, (2.7)

and

|(F − F0) ∗ (G−G0) ∗H)(z)| < |z|δ
2

2
. (2.8)

By virtue of (2.5),(2.6),(2.7) and (2.8), inequality (2.4) gives

|(F ∗G ∗H)(z)| ≥ |z|
[

2(λ+ 1)2 − 1

2(λ+ 1)2
− δ

λ+ 1
− δ2

2

]
. (2.9)

The right side of (2.9) is non-negative whenever

0 ≤ δ ≤
√

2− 1

λ+ 1
.

�
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Corollary 2.12. For 0 ≤ λ ≤ 1, we have

δ(HS0(λ) ∗HS0(λ),FS∗0H ) ≥
√

2− 1

λ+ 1
.

Corollary 2.13. We have

δ(HS0 ∗HS0,FS∗0H ) ≥
√

2− 1.

Corollary 2.14. We have

δ(HC0 ∗HC0,FS∗0H ) ≥ 2
√

2− 1

2
.

Theorem 2.15. Let 0 ≤ λ ≤ 1. For 0 ≤ δ ≤

√[
λ+ 3

4(λ+ 1)

]2
+

4λ+ 3

2(λ+ 1)
− λ+ 3

4(λ+ 1)
, we have

Nδ(HC
0) ∗Nδ(HS

0(λ)) ⊂ FS∗0H .

Proof . Let

F0(z) = z +
∞∑
n=2

(a0nz
n + b0nzn) ∈ HC0,

G0(z) = z +
∞∑
n=2

(c0nz
n + d0nzn) ∈ HS0(λ)

and

F (z) = z +
∞∑
n=2

(anz
n + bnzn) ∈ Nδ(F0), G(z) = z +

∞∑
n=2

(cnz
n + dnzn) ∈ Nδ(G0),

H(z) = z +
∞∑
n=2

(enz
n + fnz

n) ∈ Σ.

We need to show that
(F ∗G ∗H)(z) 6= 0 (H ∈ Σ, z ∈ Ď).

Using the same method as in the proof of Theorem 2.11, we obtain

|(F0 ∗G0 ∗H)(z)| > |z|
[

4λ+ 3

4(λ+ 1)

]
,

|(F − F0) ∗G0 ∗H)(z)| < |z|δ
4
,

|F0 ∗ (G−G0) ∗H)(z)| < |z| δ

2(λ+ 1)
,

and

|(F − F0) ∗ (G−G0) ∗H)(z)| < |z|δ
2

2
.

The remainder of the proof is similar to that of Theorem 2.11 and we omit the details. �
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Corollary 2.16. For 0 ≤ λ ≤ 1, we have

δ(HC0 ∗HS0(λ),FS∗0H ) ≥

√[
λ+ 3

4(λ+ 1)

]2
+

4λ+ 3

2(λ+ 1)
− λ+ 3

4(λ+ 1)
.

Corollary 2.17. We have

δ(HC0 ∗HS0,FS∗0H ) ≥
√

33− 3

4
.

Using the same techniques as in the proof of Theorems 2.11 and 2.15, we obtain the following
theorems and we omit the details.

Theorem 2.18. Let 0 ≤ λ ≤ 1. For 0 ≤ δ ≤ 2− 1

λ+ 1
, we have

Nδ(HS
0(λ)) �Nδ(HS

0(λ)) ⊂ FS∗0H .

Theorem 2.19. Let 0 ≤ λ ≤ 1. For 0 ≤ δ ≤

√[
λ+ 3

4(λ+ 1)

]2
+

8λ+ 7

2(λ+ 1)
− λ+ 3

4(λ+ 1)
, we have

Nδ(HC
0) �Nδ(HS

0(λ)) ⊂ FS∗0H .

From Theorems 2.18 and 2.19, we obtain the following results.

Corollary 2.20. Let 0 ≤ λ ≤ 1. We have

δ(HS0(λ) �HS0(λ),FS∗0H ) ≥ 2− 1

λ+ 1
.

Corollary 2.21. For 0 ≤ λ ≤ 1, we have

δ(HC0 �HS0(λ),FS∗0H ) ≥

√[
λ+ 3

4(λ+ 1)

]2
+

8λ+ 7

2(λ+ 1)
− λ+ 3

4(λ+ 1)
.

Corollary 2.22. We have

δ(HS0 �HS0,FS∗0H ) ≥ 1.

Corollary 2.23. We have

δ(HC0 �HC0,FS∗0H ) ≥ 3

2
.

Corollary 2.24. We have

δ(HC0 �HS0,FS∗0H ) ≥
√

65− 3

4
.
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Theorem 2.25. Let 1/2 ≤ λ ≤ 1. For 0 ≤ δ ≤

√[
2λ+ 3

λ+ 1

]2
+

2(2λ2 − 1)

λ(λ+ 1)
− 2λ+ 3

λ+ 1
, we have

Ñδ(C
0
H) ∗ Ñδ(HS

0(λ)) ⊂ FS∗0H .

Proof . Let

F0(z) = z +
∞∑
n=2

(a0nz
n + b0nzn) ∈ C0

H ,

G0(z) = z +
∞∑
n=2

(c0nz
n + d0nzn) ∈ HS0(λ)

and

F (z) = z +
∞∑
n=2

(anz
n + bnzn) ∈ Nδ(F0), G(z) = z +

∞∑
n=2

(cnz
n + dnzn) ∈ Nδ(G0),

H(z) = z +
∞∑
n=2

(enz
n + fnzn) ∈ Σ.

We need to prove that
(F ∗G ∗H)(z) 6= 0(H ∈ Σ, z ∈ Ď).

From Lemmas 2.4 and 2.6 and the relation (1.2), we have

|(F0 ∗G0 ∗H)(z)| =

∣∣∣∣∣z +
∞∑
n=2

(a0nc0nenz
n + b0nd0nf0nzn)

∣∣∣∣∣
≥ |z|

[
1−

∞∑
n=2

(|a0n||c0n||en||z|n−1 + |b0n||d0n||fn||z|n−1)

]

> |z|

[
1−

∞∑
n=2

(|a0n||c0n||en|+ |b0n||d0n||fn|)

]

≥ |z|

[
1−

∞∑
n=2

n(
n+ 1

2
|c0n|+

n− 1

2
|d0n|)

]

≥ |z|

[
1− n(n+ 1)

2

∞∑
n=2

(|c0n|+ |d0n|)

]

= |z|

[
1− 1

2

∞∑
n=2

n2(|c0n|+ |d0n|+
∞∑
n=2

n(|c0n|+ |d0n|)

]

≥ |z|
[
1− 1

2

[
1

λ
+

1

λ+ 1

]]
= |z|

[
2λ2 − 1

2λ(λ+ 1)

]
.

In the same way as in the proof of Theorem 2.11, we get

|(F − F0) ∗G0 ∗H)(z)| < δ|z|
2(λ+ 1)

,
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|F0 ∗ (G−G0) ∗H)(z)| < δ|z|,

and

|(F − F0) ∗ (G−G0) ∗H)(z)| < δ2|z|
4

.

The remainder of the proof is similar to that of Theorem 2.11. �

Corollary 2.26. For 1/2 ≤ λ ≤ 1, we have

δ̃(C0
H ∗HS0(λ),FS∗0H ) ≥

√[
2λ+ 3

λ+ 1

]2
+

2(2λ2 − 1)

λ(λ+ 1)
− 2λ+ 3

λ+ 1
.

Corollary 2.27. We have

δ̃(C0
H ∗HC0,FS∗0H ) ≥

√
29− 5

2
.

Using the same techniques as in the proof of Theorems 2.25, we obtain the following theorem and
we omit the details.

Theorem 2.28. Let 0 ≤ λ ≤ 1. For 0 ≤ δ ≤

√[
8λ+ 9

λ+ 1

]2
+

4(4λ+ 1)

λ+ 1
− 8λ+ 9

λ+ 1
, we have

Ñδ(C
0
H) � Ñδ(HS

0(λ)) ⊂ FS∗0H .

Corollary 2.29. For 0 ≤ λ ≤ 1, we have

δ̃(C0
H �HS0(λ),FS∗0H ) ≥

√[
8λ+ 9

λ+ 1

]2
+

4(4λ+ 1)

λ+ 1
− 8λ+ 9

λ+ 1
.

Corollary 2.30. We have

δ̃(C0
H �HS0,FS∗0H ) ≥

√
85− 9.

Corollary 2.31. We have

δ̃(C0
H �HC0,FS∗0H ) ≥

√
329− 17

2
.
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