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Abstract

In this paper, we investigate the convergence of a sequence of minimizing trajectories in infinite horizon
optimization problems. The convergence is considered in the sense of ideals and their particular case
called the statistical convergence. The optimality is defined as a total cost over the infinite horizon.
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1. Introduction

Many important planning problems such as capacity expansion, equipment replacement and production
planning involve sequences of related decisions over an infinite time horizon. The mathematical
formulation of such problems lead to infinite horizon optimization which is the problem of selecting
an infinite sequence of decisions such that the associated cost over an unbounded horizon is minimum
[1, 2, 7, 10, 14, 16, 15, 17, 23].

In many studies an optimal solution/trajectory to infinite horizon problem is approximated by a
sequence of finite horizon optimal solutions [2, 18, 19, 23]. In [20], a general method for approximating
optimal solution via the solutions to a simpler approximating problems is presented.

The uniqueness of optimal solution is a common assumption used in many studies [1, 2, 10]. For
example in [2], under this assumption, an algorithm is developed for finding optimal solution and the
results are applied to undiscounted Markov decision processes. Among the studies that do not use
the uniqueness assumption we mention [17, 18, 23]. For example, in [18] a tie-breaking algorithm
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is presented based on selection of a nearest-point efficient solutions that converges to an optimal
solution and the results are applied to the scheduling production problem to meet demand over an
infinite horizon.

Since the cost over an unbounded horizon may be infinite or diverge, a discounting factor is
applied in the definition of the total cost. It is clear that even in the presence of discounting, the
total cost may still be infinite. In this case, different optimality criteria apart from minimal total
cost are required [5, 12, 19, 21, 22]; the average cost [3, 8, 26], overtaking optimality[5, 13, 27] and
1-optimality [4, 25] are some examples of such optimality criteria.

In this paper, we consider systems described by the decision network as in [2]. These systems
generate trajectories of decisions and there is a cost associated to each decision that could be used
to define the functional - the total cost for a trajectory. The aim of this paper is to investigate the
convergence of a sequence of trajectories under the assumption that the functional values (total costs)
converge to the optimal value (i.e. the minimal total cost). The convergence is considered in the
sense of ideals and their particular case called the statistical convergence.

The paper is organized as follows. Notations and the problem statement are presented in the next
section. Some preliminary results about convergence of the sequence of trajectories are established
in Section 3. The I-convergence and the statistical convergence of a sequences of trajectories are
considered in Section 4.

2. Notations and problem statement

We begin with the decision network, (Σ, A, C), where Σ is the set of states (nodes), A is the set of
decisions (arcs) and C is a real-valued cost function C : A→ R. We assume that the decision network
satisfies the following conditions [2]:

� there is a node called single root with the following properties

– there is no incoming arcs to this node,

– every other node can be reached from the single root,

� the set of decisions available at any node is nonempty and finite,

� the set of incoming decisions to any node is also finite.

Under these assumptions, it has been proved that [24, Theorem 1] the set of nodes can be numbered
as Σ = {σ1, σ2, σ3, ...} such that if (σi, σj) ∈ A where σi, σj ∈ N , then i < j.

An infinite trajectory s is an infinite sequence of states (s1, s2, s3, ....) where s1 is a given fixed
root, si ∈ Σ and (si, si+1) ∈ A for all i = 1, 2, ... . The cost C(si, si+1) associates with the decision
(si, si+1). The set of all trajectories s is denoted by

∏
.

Now we introduce the metric in the set of trajectories. Consider two trajectories s = (s1, s2, s3, ...)
and s′ = (s′1, s

′
2, s
′
3, ...). In [2], the metric ρ, on

∏
is constructed as follows:

ρ(s, s′) =
∞∑
i=1

φi(s, s
′)2−i, (2.1)
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where

φi(s, s
′) =

{
0 if si = s′i
1 otherwise

.

In [2] (Lemma 1), it is proved that the set
∏

is complete and hence compact in the sense of this
metric.

Under this metric, the closeness of trajectories depends on the number of initial nodes over which
they agree. For example, given any i ∈ N it can easily be verified that the following hold:

ρ(s, s′) >
1

2i
⇒ s′r 6= sr, ∃r ∈ {1, 2, · · · , i}. (2.2)

Functional - the total cost f(s) of trajectory s is defined as in [2] given by

f(s) =
∞∑
i=1

C(si, si+1). (2.3)

We will assume that f is uniformly convergent over
∏

; that is, for any ε > 0 there exists nε
such that for all trajectories s the relation

∑∞
i=nC(si, si+1) < ε holds for all n ≥ nε. In this case

f is continuous on
∏
. Note that this is not a restrictive assumption; it holds if the cost function

C(si, si+1) is uniformly bounded and also is discounted, for example, by (1/2)i (see Assumption 1
and Lemma 2 in [2]).

We consider the following optimization problem

Minimize f(s), subject to s ∈
∏

. (2.4)

Since f is continuous and
∏

is compact, an optimal solution s∗ to problem (2.4) exists. We call sn a
minimizing sequence if f(sn) converges to the minimal value f(s∗) of the objective function in this
problem. The aim of this paper is to investigate the convergence of minimizing sequence sn to s∗ by
considering different types of convergence.

3. Preliminary results

In this section, we consider the convergence of a sequence of trajectories {sn}n∈N to the trajectory
s in the sense of ideals as well as their particular case called the statistical convergence. We recall
that the initial point of all sequences is the same; that is, s1 = sn1 for all n. We will use the notation
{{s}} := {s1, s2, s3, ...} to denote the set of states for trajectory s.

First we give the definition of ideal and I-convergence.

Definition 3.1. A family I ⊂ 2X of subsets of a nonempty set X is said to be an ideal in X if

� A,B ∈ I implies A ∪B ∈ I,

� B ⊂ A, A ∈ I implies B ∈ I,

while an admissible ideal I of X further satisfy {x} ∈ I for each x ∈ X.

Clearly, an ideal admissible contains all finite sets in X. In the remainder of this section, we
assume that any ideal is admissible and I is an ideal in N.



126 Hassani, Mammadov

Definition 3.2. [6, 11] A sequence sn in a metric space (X, ρ) is said to be I-convergent to s ∈ X
(in short s = I− lim

n→∞
sn) if K(ε) ∈ I for each ε > 0, where K(ε) = {n ∈ N : ρ(sn, s) ≥ ε}.

Below we consider two special cases of ideals.

1. Classical convergence. In this case the ideal is the set of all finite subsets of N; that is

I = Ifin
.
= {A ⊂ N : |A| <∞}.

Clearly, both of the conditions in Definition 3.1 are satisfied.

2. Statistical convergence. First we give the definition of the statistical convergence in terms
of the notion of density. Assume K is a subset of the positive integers N. Kn = {k ∈ K : k ≤ n} and

|Kn| denotes the number of elements in Kn. The natural density of K is given by δ(K) = limn→∞
|Kn|
n

.
It may not exist; in this case the upper and lower asymptotic densities for the set K are defined as
follows:

δ̄(K) = lim sup
n→∞

|Kn|
n

and δ(K) = lim inf
n→∞

|Kn|
n

.

Note that δ(K) ≤ δ(K) ≤ δ̄(K).

Definition 3.3. [9] A sequence {sn}n∈N is statistically convergent to s provided that for every ε > 0,
the set K(ε) = {n ∈ N : ρ(sn, s) ≥ ε} has natural density zero.

It is not difficult to observe that both of the conditions in Definition 3.1 are satisfied if we define
the ideal as the set of subsets of N with density zero. Thus in this case we set

I = Id
.
= {A ⊂ N : δ(A) = 0}.

In the next lemma, the convergence of the sequence sn to the trajectory s is considered.

Lemma 3.4. Assume that δ({n ∈ N : sni 6= si}) = 0 for all i ∈ N. Then sequence sn statistically
converges to s.

Proof: Take an arbitrary ε > 0 and denote Aε := {n ∈ N : ρ(sn, s) > ε}. We show that δ(Aε) = 0.
Let rε ∈ N such that 1

2rε
< ε. Consider the sets

Arε := {n ∈ N : ρ(sn, s) >
1

2rε
}

and
Brε := {n ∈ N : sni 6= s∗i for some i ∈ {1, 2, ..., rε}}.

From (2.2) we have Aε ⊂ Arε ⊂ Brε . On the other hand, Brε can be represented in the form

Brε = ∪rεi=1{n ∈ N : sni 6= si}.
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By the assumption of the lemma, δ({n ∈ N : sni 6= si}) = 0 for all i = 1, ..., rε and therefore
δ(Brε) = 0. Thus, since Aε ⊂ Arε ⊂ Brε we have δ(Aε) = 0. Lemma is proved. �

It is clear that under the conditions of lemma 3.4, the classical convergence may not be true.
Indeed, for example, if sn = s for all n ∈ N \ {3j}j∈N and sn = (s1, s̄2, s3, s4, s5, ...) for n ∈ {3j}j∈N
where s̄2 6= s2 then it is not difficult to show that sn is statistically convergent to s while the classical
convergence is not true.

4. Convergence of a sequence of minimizing trajectories

In this section, we investigate the convergence of the minimizing sequence sn to the optimal trajectory
s∗ of the problem (2.4); that is, under the assumption that f(sn) → f(s∗) we investigate the
convergence sn → s∗ as n→∞. We do not assume the uniqueness of s∗; however, we will consider a
fixed optimal trajectory s∗ and will formulate the main assumptions by using this trajectory. Note
that sn may not converge to s∗, in this case the I−convergence and statistical convergence will be
considered.

Given sequence sn and set K ⊂ N we define

H(K) = {j ∈ N : s∗j ∈ {{sn}}, ∀ n ∈ K}. (4.1)

In the case K = N for the sake of simplicity we denote

H = H(N) = {j ∈ N : s∗j ∈ {{sn}}, ∀ n ∈ N}. (4.2)

For trajectory s, we denote the section connecting two nodes a and b by

P (s : a, b) = {sn1 , sn1+1, ..., sn2−1, sn2};

where sn1 = a and sn2 = b.
The corresponding cost is

f(P (s : a, b)) = C(sn1 , sn1+1) + ...+ C(sn2−1, sn2).

Let s∗ = (s∗1, s
∗
2, s
∗
3, s
∗
4, ...).

Condition A: For any s∗i , s
∗
j ∈ s∗ with i < j and any trajectory s connecting points s∗i , s

∗
j (that

is, sni = s∗i , snj = s∗j) the following inequality holds

f(P (s : sni , snj))− f(P (s∗ : s∗i , s
∗
j)) > 0.

A trajectory is said to be efficient if it reaches each of the states through which it passes at minimum
cost. Efficient solutions are shown in [19] to be average-cost optimal under a state reachability property.
Clearly, Condition A implies that s∗ is an efficient trajectory.

Condition A means any finite section (s∗i , s
∗
i+1, ..., s

∗
j) in terms of an “optimality” connecting nodes

s∗i and s∗j is unique. Note also that as s∗i , s
∗
j ∈ Σ and there is a finite number of nodes between s∗i and

s∗j ; that is, the number of trajectories connecting these two nodes is finite.
In the following example, we show that Condition A does not mean the uniqueness of optimal

trajectory.
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Example 4.1. Assume that the set of states (nodes) in a decision network consists of nodes {sk}k∈N
and the cost function is given by

C(s1, s2) =
1

2
, C(s2k−1, s2k+1) =

1

2k
, C(s2k, s2k+1) = C(s2k, s2k+2) =

1

2k+1
, ∀k ≥ 1. (4.3)

Clearly, s∗ = (s1, s3, s5, s7, · · · ) is an optimal trajectory. We construct a sequence of trajectories
sn in the following form:

sn = (s1, s2, s2+2, · · · , s2n, s2n+1, s2n+3, · · · ), n ∈ N. (4.4)

We show that the condition A holds. For this aim, it is enough to show that condition A holds for
s1, s2j+1 ∈ s∗, j ≥ 1. Taking into account the definition of the cost function in (4.3), we have

C(s1, s2) + (

j−1∑
k=1

C(s2k, s2k+2)) + C(s2j, s2j+1) +
∞∑
k=j

C(s2k−1, s2k+1) =
1

2j+1
> 0;

that is, condition A holds.
On the other hand, for the trajectory s̄ = (s1, s2, s4, ..., s2n, s2n+2, ...) the relation f(s̄) = f(s∗)

holds which means optimal trajectory s∗ is not unique. �

In the next theorem, we establish the I-convergence of the sequence sn to the optimal trajectory
s∗ when f(sn)→ f(s∗).

Theorem 4.2. Assume that optimal trajectory s∗ satisfies Condition A, sn is a minimizing sequence
and there exists K ⊂ N such that |H(K)| = ∞ and |K ∩ A| = ∞ for all A /∈ I. Then sn is
I-convergent to s∗ as n→∞.

Proof: On the contrary assume there exists ε > 0 such that {n ∈ N : ρ(sn, s∗) > ε} /∈ I. Take any
rε ∈ N satisfying 1

2rε
< ε and denote

Arε = {n ∈ N : ρ(sn, s∗) >
1

2rε
}. (4.5)

Clearly {n ∈ N : ρ(sn, s∗) > ε} ⊂ Arε and therefore Arε /∈ I. From (2.2) it follows that

Arε ⊂ {n ∈ N : sni 6= s∗i , ∃ i ∈ {2, 3, ..., i}}.

By the assumption of the lemma we have |K ∩Arε | =∞. Consider the set H(K) defined in (4.1) and
denote

t = min{m : rε ≤ m, m ∈ H(K) }.

We note that such t exists as |H(K)| =∞.
Now for any n ∈ K ∩ Arε the relation s∗t ∈ {{sn}} holds; that is, snjn = s∗t for some index jn.

Denote

α = inf
n∈K∩Arε

{
jn−1∑
r=1

C(snr , s
n
r+1)−

t−1∑
j=1

C(s∗j , s
∗
j+1)}. (4.6)

We note that there are only a finite number of possible different combinations (sn1 , · · · , snjn) with the
same fixed initial point s∗1 and the end point s∗t . Then, condition A implies α > 0.



Convergence of trajectories in infinite horizon optimization 8 (2017) No. 1, 123-131 129

Denote

an =

jn−1∑
r=1

C(snr , s
n
r+1), a =

t−1∑
j=1

C(s∗j , s
∗
j+1);

bn =
∞∑
r=jn

C(snr , s
n
r+1), b =

∞∑
j=t

C(s∗j , s
∗
j+1).

Clearly, f(sn) = an + bn and f(s∗) = a+ b. From (4.6) we have an ≥ a+ α. Since s∗ is optimal
and snjn = s∗t we have bn ≥ b. Thus

f(sn) = an + bn ≥ an + b ≥ a+ b+ α = f(s∗) + α, ∀n ∈ K ∩ Arε .

This means that f(sn) does not converge to f(s∗); that is, sn is not a minimizing sequence. This is a
contradiction. Lemma proved.�

In this lemma, condition |K ∩A| =∞ for all A /∈ I means that the set K should be quite “large”.
We describe it in Corollary 4.5 in terms of the density of K.

In the next lemma, we investigate the classical convergence of the sequence {sn}n∈N to the optimal
trajectory s∗. It is shown that stronger condition is required in comparison to Theorem 4.2.

Corollary 4.3. Assume that optimal trajectory s∗ satisfies Condition A, sn is a minimizing sequence
and |H| =∞. Then sn → s∗ as n→∞.

Here H is defined in (4.2) which corresponds to K = N in terms of Theorem 4.2.
Proof: We apply Theorem 4.2 assuming that K = N and the ideal I is the set of finite subsets of
N; that is, I = Ifin. Firstly, we have |H(K)| = |H| = ∞. On the other hand, for any A /∈ Ifin the
relation |A| =∞ holds and therefore

|K ∩ A| = |N ∩ A| = |A| =∞.

Thus, all the assumptions of Theorem 4.2 hold. The ideal convergence in this case is the classical
convergence sn → s∗ as n→∞.

The corollary is proved. �

The condition |H| =∞ means the number of nodes in s∗ that is “common” in all trajectories sn

is infinite; in other words, all trajectories sn pass through an infinite number of nodes in s∗.
In the following example, we investigate the necessity of condition A in this corollary.

Example 4.4. Let s∗ = (s1, s3, s4, · · · ), sn = (s1, s2, s3, s4, · · · ) and

C(s1, s2) + C(s2, s3) = C(s1, s3).

Then f(sn) = f(s∗) for all n; however sn does not converge to s∗ as ρ(sn, s∗) ≥ 0.5 for all n. We also
mention that in this example, H = N. �

To consider the necessity of condition |H| =∞ in Corollary 4.3, we refer to the decision network
in Example 4.1. In this example, given any k ≥ 2, the relation s2k−1 /∈ {{sn}} holds for all n ≥ k.
This means that the set H contains just one element; that is, the condition |H| 6=∞ does not hold.
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Clearly, f(sn)→ f(s∗) however sn does not converge to s∗.

Now we consider a special case of Theorem 4.2 when the ideal convergence is defined by the
statistical convergence. We have

Corollary 4.5. Assume that optimal trajectory s∗ satisfies Condition A, sn is a minimizing sequence,
there exists K ⊂ N such that |H(K)| = ∞ and δ(K) = 1. Then sn statistically converges to s∗ as
n→∞.

Proof: We apply Theorem 4.2 assuming that the ideal I is the set of subsets of N having density 0;
that is, I = {A ⊂ N : δ(A) = 0}. The relation A /∈ I in this case means A has a nonzero density. Then
for any set K ⊂ N with δ(K) = 1, K ∩ A also has nonzero density. This means that |K ∩ A| =∞
and all the assumptions of Theorem 4.2 hold. The corollary is proved. �

Clearly, Corollary 4.5 is a special case of Corollary 4.3. Next we provide an example where sn

statistically converges to s∗ however the classical convergence sn → s∗ is not true.

Example 4.6. Assume that the set of states (nodes) in a decision network consists of nodes {sk}k∈N,
{ξk}k∈N and the cost function is given by

C(s1, s2) =
1

2
, C(s2k−1, s2k+1) =

1

2k
, C(s2k, s2k+1) = C(s2k, s2k+2) =

1

2k+1
, ∀k ≥ 1. (4.7)

C(s3κ(n)−1 , ξn) = C(ξn, s3κ(n)−1+2) =
1

2

[
C(s3κ(n)−1 , s3κ(n)−1+2) +

1

n

]
, ∀n ∈ N \ {3k}k∈N. (4.8)

In this example s∗ = (s1, s3, s5, s7, · · · ) is an optimal trajectory. Consider the function of indices
κ : N→ N defined by

κ(n) = i, ∀n ∈ {3i−1, 3i−1 + 1, · · · , 3i − 1}, i = 1, 2, · · · .

We construct a sequence of trajectories sn in the following form:

sn = (s1, s2, s2+2, · · · , s2n, s2n+1, s2n+3, · · · ), n ∈ {3k}k∈N;

sn = (s1, s3, · · · , s3κ(n)−1 , ξn, s3κ(n)−1+2, s3κ(n)−1+4, · · · ), n ∈ N \ {3k}k∈N.

Now we show that f(sn)→ f(s∗). For any n ∈ {3k}k∈N, from (4.7) we have

f(sn)− f(s∗) =
1

2n+1
.

Similarly, for any n ∈ N \ {3k}k∈N, it follows from (4.8) that

f(sn)− f(s∗) =
1

n
.

Therefore f(sn)→ f(s∗) as n→∞; that is, sn is a minimizing sequence.
Now consider the set K = N \ {3k}k∈N. Clearly, H(K) = {2n− 1}n∈N and δ(K) = 1; that is the

conditions of Corollary 4.5 are satisfied. It is not difficult to verify that sn statistically converges to
s∗. However, it does not converge to s∗ in the sense of classical convergence as ρ(sn, s∗) ≥ 0.5 for all
n ∈ {3k}k∈N. �
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