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Abstract

A non-contradictible axiomatic theory is constructed under the local reversibility of the metric trian-
gle inequality. The obtained notion includes the metric spaces as particular cases and the generated
metric topology is T1-separated and generally, non-Hausdorff.
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1. Introduction

As it is well-known, a metric space is a pair (X, d) with the metric d : X × X → R+ having the
following properties:
(M1) d (x, x) = 0, for all x ∈ X (reflexivity)
(M2) d (x, y) = 0 =⇒ x = y (separation, identity of indiscernibles)
(M3) d (x, y) = d (y, x), for all x, y ∈ X (symmetry)
(M4) d (x, z) ≤ d (x, y) + d (y, z) for all x, y, z ∈ X (triangle inequality).

Several extensions of this notion were proposed by replacing the set R+ of metric values with
other structures (such as R+ ∪ {∞}, a positive cone in a Banach space, an ordered semigroup, a
complete lattice, a lattice ordered group, or the set of fuzzy numbers with positive support, as can
be viewed in [4]), or by considering various variants of the axioms (M1)-(M4) and obtaining more
modifications of a metric: semi-metric, quasi-metric, quasi-pseudometric, relaxed metric, relaxed
pseudo-metric, weak quasi-metric, and so on (see [3] and [4]). Regarding the generalizations of the
triangle inequality we can mention:
(i) the tetrahedral inequality: d (x, y) ≤ d (x, z) + d (z, w) + d (w, y) , (see [1]);
(ii) the well-known ultrametric inequality: d (x, y) ≤ max{d (x, z) , d (y, z)};
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(iii) the near-metric inequality: d (x, y) ≤ ρ · (d (x, z) + d (y, z)) , with given ρ ≥ 1, (see [8]);
(iv) the inframetric inequality: d (x, y) ≤ ρ ·max{d (x, z) , d (y, z)}, (see [4]);
(v) the sharp triangle inequality (arising at partial metric spaces [2]): d (x, z) ≤ d (x, y) + d (y, z)−
d (y, y) , ∀x, y, z ∈ X.

Concerning the reversibility of the triangle inequality, from

d (x, z) ≥ d (x, y) + d (y, z) , ∀x, y, z ∈ X,

under the conditions (M1)-(M3), we obtain only the trivial zero-distance d (x, y) = 0 for all x, y ∈ X.
Although, there are known at least two nontrivial examples for which the triangle inequality is
violated: the lp-metric on Rn for 0 < p < 1 :

dp (x, y) = ‖x− y‖p =

(
n∑
i=1

|xi − yi|p
) 1

p

,

and the time-like metric arising in Cosmology.
In the Relativity Theory, it appears the Einstein time inequality:

‖x+ y‖ ≥ ‖x‖+ ‖y‖

where the ”distance” is the length of the time-like line joining two events in the frame of the Minkowski
space-time. The set X of space-time consists of events x = (x0, x1) where, x0 ∈ R is the time and
x1 ∈ R3 is the spatial location of the event x. A kinematic metric (or time-like metric, [4]) is a
function τ : X ×X → R+ ∪ {∞} such that, for all x, y, z ∈ X :

τ (x, x) = 0 (1.1)

τ (x, y) > 0 implies τ (y, x) = 0 (anti-symmetry) (1.2)

and
τ (x, y) > 0, τ (y, z) > 0 implies τ (x, z) > τ (x, y) + τ (y, z)

(inverse triangle inequality).
(1.3)

Here, the inequality τ (x, y) > 0 means causality (x can influence y) and the value τ (x, y) is under-
stood as the largest (speed dependent) proper time of moving from x to y.

In the case of a kinematic metric the triangle inequality was reversed replacing the symmetry
axiom by (1.2), while for the lp-metric are preserved all the other axioms (M1)-(M3). The lp-metrics
are applied in Psychology for the problem of geometric representation of stimuli in a perceptual space
(see [5] and [7]).

Related to the triangle inequality for lp-metrics in the case 0 < p < 1, we can see that for
each pair (x, y) ∈ Rn × Rn there exist z, w ∈ Rn such that dp (x, y) ≤ dp (x,w) + dp (w, y) and
dp (x, y) > dp (x, z)+dp (z, y). For instance, taking n = 2, x = (0, 1), y = (1, 0), z = (0, 0), w = (2, 1),
and p = 1

2
, we have 4 = dp (x, y) > dp (x, z)+dp (z, y) = 2 and 4 = dp (x, y) ≤ dp (x, z)+dp (z, y) = 6.

The purpose of this short paper is to provide a noncontradictible axiomatic theory which is verified
in spaces like (Rn, dp), with 0 < p < 1, considering an appropriate triangle inequality variant.
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2. Extrametric spaces

As we have observed before in the case (Rn, dp) with 0 < p < 1, we can replace the triangle inequality
by the following variant: for each pair (x, y) ∈ Rn×Rn there exist two subsets H (x, y) , N (x, y) ⊂ Rn

such that Rn = N (x, y) ∪H (x, y) ,

dp (x, y) ≤ dp (x, z) + dp (z, y) , ∀z ∈ N (x, y)

and
dp (x, y) > dp (x, z) + dp (z, y) , ∀z ∈ H (x, y) .

In this way, we arrive to the following definition where the triangle inequality is locally reversed
preserving the symmetry axiom. For the obtained notion we have chosen the name extrametric.

Definition 2.1. Let X be a nonempty set. A function d : X × X → R is an extrametric if the
following properties hold:
(E1) d (x, y) ≥ 0, for all x, y ∈ X;
(E2) d (x, y) = 0 iff x = y;
(E3) d (x, y) = d (y, x), for all x, y ∈ X;
(E4) for each pair (x, y) ∈ X × X, there exist two subsets H (x, y) , N (x, y) ⊂ X such that X =
N (x, y) ∪H (x, y) ,

d (x, y) ≤ d (x, z) + d (z, y) , ∀z ∈ N (x, y)

and
d (x, y) > d (x, z) + d (z, y) , ∀z ∈ H (x, y) .

The pair (X, d) is called extrametric space.

Remark 2.2. (i) In the case x = y the triangle inequality is obviously valid having H (x, x) = ∅
and N (x, x) = X for all x ∈ X. Therefore, the axiom (E4) becomes interesting for the case x 6= y.
Any metric space is an extrametric space with H (x, y) = ∅ for all pairs (x, y) ∈ X ×X.
(ii) The set N (x, y) can be divided in two parts E (x, y) and C (x, y) such that

z ∈ E (x, y)⇐⇒ d (x, z) < d (x, y) + d (y, z)

and
z ∈ C (x, y)⇐⇒ d (x, z) = d (x, y) + d (y, z) .

The notion of extrametric space is noncontradictible iff the generated axiomatic theory is con-
sistent, and this fact can be proved by constructing a model that satisfies the axioms (E1)-(E4) of
Definition 2.1.

Theorem 2.3. (i) The topology of an extrametric space is T1-separated.
(ii) There exists at least one nontrivial model of extrametric space with X = Rn, where for any pair
(x, y) ∈ Rn × Rn, x 6= y, the geometry of the region H (x, y) is non-Euclidean.

Proof . (i) The topology of an extrametric space (X, d) can be generated by open balls. The open
ball centered in u0 ∈ X and with radius r > 0 is the set

B (u0, r) = {u ∈ X : d (u0, u) < r}.
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It is obvious that for r1 < r2 we have B (u0, r1) ⊂ B (u0, r2) . A set A ⊂ X is called open iff for any
x ∈ A there exists r > 0 such that B (x, r) ⊂ A.
Denoting = = {A ⊂ X : A is open set}∪{X,∅}, we can prove in the classical way that = is a topology
on X, called the natural topology generated by the extrametric. For instance, let {Ai : i = 1, n} ⊂ =

and x ∈
n⋂
i−1

Ai. Since Ai ∈ =, ∀i = 1, n, it follows that there exist ri > 0, i = 1, n, such that

B (x, ri) ⊂ Ai, ∀i = 1, n. For r = min{ri : i = 1, n} we have B (x, r) ⊂ B (x, ri) ⊂ Ai, ∀i = 1, n.

Then B (x, r) ⊂
n⋂
i−1

Ai and
n⋂
i−1

Ai ∈ =. It is easy to prove that
⋃
i∈I

Ai ∈ = for arbitrary family of open

sets {Ai}i∈I ⊂ =. So, = is a topology on X. Now, let us consider arbitrary x, y ∈ X, x 6= y. Then
r = d (x, y) > 0 and we have x /∈ B

(
y, r

2

)
, y /∈ B

(
x, r

2

)
. We conclude that (X,=) is a T1-separated

topological space.
(ii) Consider the Euclidean plane X = R2 and D : R2 × R2 → R be defined as follows: for arbitrary
x, y ∈ R2 we construct the segment [x, y] joining the points x and y, and using the Euclidean norm
‖·‖e let

D (x, y) =
π

4
‖x− y‖2e . (2.1)

D (x, y) is the area of the disk having as diameter the segment [x, y].
Of course, D (x, y) ≥ 0, for all x, y ∈ R2. If x = y, then the disk collapses into a point and
D (x, y) = 0. If D (x, y) = 0 then the length of the diameter [x, y] is zero, and thus x = y. The
equality D (x, y) = D (y, x), for all x, y ∈ R2 is obvious.
Now, let arbitrary x, y ∈ R2, with x 6= y, and A (x) , B (y) be the corresponding points in the
Euclidean plane. Since these points are distinct we can construct the disk having as diameter the
segment [x, y] = AB. Denoting the boundary of this disk by C (x, y) and its interior by H (x, y),
we can consider the set E (x, y) = R2 \ {C (x, y) ∪ H (x, y)} which contains all the points situated
outside the disk. Thus C (x, y)∪H (x, y) represents the corresponding closed disk. According to the
Pythagora’s generalized identity, for any z ∈ C (x, y) we have ‖x− y‖2e = ‖x− z‖2e + ‖z − y‖2e and
consequently, D (x, y) = D (x, z) + D (z, y) . Let z ∈ H (x, y) and P (z) be the corresponding point
in the Euclidean plane. We have

‖x− y‖2e = ‖x− z‖2e + ‖z − y‖2e − 2 ‖x− z‖e · ‖z − y‖e cos
(
ÂP, PB

)
(2.2)

and since cos
(
ÂP, PB

)
< 0, it follows that ‖x− y‖2e > ‖x− z‖

2
e+‖z − y‖

2
e . So, D (x, y) > D (x, z)+

D (z, y) for any z ∈ H (x, y). If z ∈ E (x, y) and M (z) is the corresponding point in the Euclidean

plane, then cos
(

̂AM,MB
)
> 0 and from (2.2) we infer that ‖x− y‖2e < ‖x− z‖

2
e +‖z − y‖2e, that is

D (x, y) < D (x, z)+D (z, y) . Thus, D (x, y) ≤ D (x, z)+D (z, y) , ∀z ∈ N (x, y) = C (x, y)∪E (x, y) ,
and we conclude that (R2, D) is a nontrivial extrametric space. Therefore, we can assert that the
axiomatic theory of extrametric spaces in noncontradictible.
Now, we see that the region H (x, y) which reverses the triangle inequality is the interior of the circle
having the diameter [x, y] represented by the segment AB. In the set H (x, y) we can consider the
Cayley’s model of non-Euclidean (hyperbolic) geometry. If z ∈ H (x, y) is represented by the point
P (z) and P /∈ (AB), then PA and PB are the two non-Euclidean parallel to the non-Euclidean
”straight-line” AB. There are infinitely many straight-lines through P intersecting AB in H (x, y)
and infinitely many straight-lines through P which not intersect AB inside H (x, y). So, in H (x, y)
the geometry is non-Euclidean hyperbolic for each pair (x, y) ∈ R2 × R2 with x 6= y. �
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Remark 2.4. In order to give a geometric model of an extrametric, our intuition must to leave the
image of one-dimensional length and to fancy a two-dimensional area that will correspond here to
the ”distance”.
For u0 = (x0, y0) ∈ R2, we can observe a connection between the open ball B (u0, r) in the extrametric
space (R2, D) and the corresponding open ball in the Euclidean space (R2, ‖·‖e). More exactly, for
u = (x, y) ∈ R2 we have

u ∈ B (u0, r)⇐⇒ D (u, u0) < r ⇐⇒ π


√

(x− x0)2 + (y − y0)2

2

2

< r

⇐⇒ (x− x0)2 + (y − y0)2 <
4r

π
⇐⇒ ‖u− u0‖e < 2

√
r

π
.

According to Theorem 2.3, the topology induced by an extrametric is T1-separated. This topology
is not necessarily T2−separated (Hausdorff), as can be observed in the following examples. In [6] it
is shown that in the case of a quasi-metric space, the corresponding metric topology is T1-separated
but not generally Hausdorff separated, and this fact holds in the absence of the symmetry axiom.
Here, in the case of an extrametric space, the missing of the Hausdorff separated property will be
proved on an example (see Example 2.6) in the presence of the symmetry axiom.

Remark 2.5. The topology of the extrametric space (R2, D) presented above is Hausdorff separated.
Indeed, in (R2, D), for arbitrary x, y ∈ R2, x 6= y, we have D (x, y) = r > 0. Consider the open balls
B
(
x, r

4

)
and B

(
y, r

4

)
, and by reduction to a contradiction we suppose that B

(
x, r

4

)
∩B

(
y, r

4

)
6= ∅.

Then, there exists z ∈ B
(
x, r

4

)
∩ B

(
y, r

4

)
and consequently, D (x, z) < r

4
and D (y, z) < r

4
. So,

π
4
‖x− z‖2e <

r
4

and π
4
‖z − y‖2e <

r
4
, obtaining ‖x− z‖e + ‖z − y‖e < 2

√
r
π

(according to Remark

2.4). Since D (x, y) = r, we infer that ‖x− y‖e = 2
√

r
π

and

2

√
r

π
= ‖x− y‖e ≤ ‖x− z‖e + ‖z − y‖e < 2

√
r

π
=⇒ 1 < 1.

With this contradiction we get B
(
x, r

4

)
∩B

(
y, r

4

)
= ∅ and (R2, D) is Hausdorff separated.

Example 2.6. Denoting the set of all nonzero natural numbers by N∗, let d : N∗ × N∗ → R be
defined by

d (x, y) =

{
0, if x = y
1
|x−y| , if x 6= y.

The axioms (E1)-(E3) are obviously satisfied. For x, y ∈ N∗, x 6= y, and for arbitrary z ∈ N∗ we
distinguish the cases: (i) z = x or z = y; (ii) z 6= x and z 6= y.
(i) When z = x or z = y, it follows that d (x, y) = d (x, z) + d (z, y) .
(ii) If z 6= x and z 6= y, then denoting N (x, y) = {z ∈ N∗ | 1

|x−y| ≤
1
|x−z| +

1
|z−y|} and H (x, y) = {z ∈

N∗ | 1
|x−y| >

1
|x−z| +

1
|z−y|}, we see that N∗ = N (x, y) ∪H (x, y). There exists at least one pair (x, y) ,

x 6= y such that H (x, y) 6= ∅. Indeed, taking x = 1, y = 3 we have N (x, y) = {1, 2, 3, 4, 5, 6} and
H (x, y) = [7,∞) ∩ N∗. For instance, if x = 1, y = 3, z = 7 we have

d (x, y) =
1

|x− y|
=

1

2
>

1

6
+

1

4
=

1

|x− z|
+

1

|z − y|
= d (x, z) + d (y, z) .
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So, (N∗, d) is an extrametric space. In order to investigate the structure of the open balls B (x, r) in
(N∗, d) we can observe that in the case r > 1 it obtains B (x, r) = N∗, for any x ∈ N∗. We see that
y ∈ B (x, 1)r {x} ⇐⇒ |x− y| > 1, and if 0 < r < 1 then there exists a natural number k ∈ N∗ such
that 1

k+1
< r ≤ 1

k
. For arbitrary x ∈ N∗ and for any y 6= x it follows that y ∈ B (x, r)⇐⇒ |x− y| > k,

and therefore B (x, r) = {x} ∪ {y ∈ N∗ : |x− y| > k}.
The space (N∗, d) is obviously T1-separated as is stated in Theorem 2.3. In this context, for any
x, y ∈ N∗, x 6= y, we have y /∈ B

(
x, 1

k

)
and x /∈ B

(
y, 1

k

)
, where |x− y| = k ≥ 1. Now, in order

to prove that (N∗, d) is not T2−separated, we take a pair (x, y) ∈ N∗ × N∗, x 6= y, and show that
B (x, r) ∩ B (y, r) 6= ∅ for any r > 0. In this purpose, consider x, y ∈ N∗, be consecutive natural
numbers, that is |x− y| = 1. The case r > 1 is obvious since B (x, r) = B (y, r) = N∗. In the case
0 < r ≤ 1, having k ∈ N∗ with 1

k+1
< r ≤ 1

k
, we observe that {[x+k+3,∞)∩N∗} ⊂ B (x, r)∩B (y, r) .

So, (N∗, d) is not T2−separated.

3. Conclusions

We have locally reversed the triangle inequality, obtaining a metric type T1-separated topology
(without Hausdorff separation property, in general) and a noncontradictible axiomatic theory which
contains the metric spaces as particular cases. For the obtained notion we have proposed the name
of extrametric space, providing an interesting geometric model that illustrates the existence of the
hyperbolic non-Euclidean geometry on the place where the triangle inequality is reversed.
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