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Abstract

This paper concerns equilibrium problems in real metric linear spaces. Considering a modified notion
of upper sign property for bifunctions, we obtain the relationship between the solution sets of the
local Minty equilibrium problem and the equilibrium problem, where the technical conditions on f
used in the literature are relaxed. The KKM technique is used to generalize and unify some existence
results for the relaxed µ-quasimonotone equilibrium problems in the literature.
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1. Introduction

Equilibrium problem theory is a unified and general model to investigate a wide class of problems
arising in finance, economics, transportation, and optimization. In 1994, Blum and Oettli [8] in-
troduced the concept of equilibrium problems in order to unify some known problems in nonlinear
analysis such as variational inequalities, fixed point, Nash equilibrium, game theory and etc.

Let K be a nonempty convex subset of a real Hausdorff topological vector space X and f :
K ×K → R be a given bifunction. The definition of the equilibrium problem (in brief EP) is to find
x̄ ∈ K such that

f(x̄, y) ≥ 0 for all y ∈ K.
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To the best of our knowledge, this general model is closely related to the minimax inequalities
which studied by Fan [11], but after the paper of Blum and Oettli, a large number of publications
have been appeared for this developing area of analysis ([4, 5, 6, 9, 10, 17, 18] and the references
therein). Equilibrium problems were also studied from the perspective of convergence of numerical
algorithms and related topics, see more details and recent developments in the survey paper [7].

By some topological and algebraic assumptions on a bifunction f , Fan [11] obtained the existence
of solutions for minimax inequality which is closely related to equilibrium problems. For this aim,
the upper semicontinuity of f(., y) for all y ∈ K, the quasiconvexity of f(x, .) for all x ∈ K together
with the compactness of K was assumed. In this regard, using the generalized monotonicity, the
weak concepts of the continuity and some coercivity conditions, many researchers obtained existence
results for equilibria [4, 5, 15].

The relationship between Minty and Stampacchia variational inequalities is a key tool to in-
vestigate the existence results for variational inequalities [20]. Moreover, the existence results for
equilibrium problems are usually taken from the notions and tools introduced in the framework of
variational inequalities. Therefore inspired and motivated by the theory of the variational inequality,
establishing a link between the solution set of equilibrium problem and Minty equilibrium problem
(in brief MEP) are widely studied [4, 10, 13, 14]. The Minty equilibrium problem is as follows

find x̄ ∈ K such that f(y, x̄) ≤ 0 for all y ∈ K.

We designate by S(f,K) the solution set of EP and by M(f,K) the solution set of MEP.
Since, the solution set M(f,K) may be empty, Bianchi and Pini [4] used a relationship between

the solution set S(f,K) and a greater solution set of local Minty equilibrium problem which defined
as follows:

If x̄ ∈ K and there exists an open neighborhood U of x̄ such that

f(y, x̄) ≤ 0 for all y ∈ K ∩ U ,

then x̄ is a solution of the local Minty equilibrium problem and the solution set of it will be denoted
by ML(f,K).

For presenting the above definition, the authors followed the idea and steps of variational in-
equality theory [2]. The assumptions in Bianchi and Pini’s paper [4] which guaranteed, the solution
set S(f,K) involves the solution set ML(f,K), also obtained from the adaptation of a notion in the
variational inequality context to the equilibrium problem setting. Indeed, investigating continuity
and maximality properties of pseudomonotone operators, Hadjisavvas [16] defined the notion of the
sign continuity of an operator in the case of the variational inequalities. Bianchi and Pini [4] gen-
eralized the concept of the upper sign continuity to bifunctions. Let us say the definition of upper
sign continuity for set-valued mappings and bifunctions.

Consider the set-valued map T : K ⇒ X∗ and bifunction f : K×K → R, T and f are respectively
called upper sign continuous at x ∈ K, if for every y ∈ K, the following implications respectively
hold

( inf
z∗t ∈T (zt)

〈z∗t , y − x〉 ≥ 0, ∀t ∈ (0, 1))⇒ sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0,

and

f(zt, y) ≥ 0, ∀t ∈ (0, 1)⇒ f(x, y) ≥ 0,

where zt = (1− t)x+ ty.
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The approach of [4] has been pursued by Farajzadeh and Zafarani [13] who provided necessary
and sufficient conditions for the non-emptiness of ML(f,K). It must be noted that if the set-valued
mapping T : K ⇒ X∗ has w∗-compact and nonempty values (which is always assumed), then the
associated bifunction to T and K is denoted by fT : K ×K → R and defined by

fT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉.

Unfortunately, we cannot deduce upper sign continuity of T by the upper sign continuity of
the bifunction fT . Hence, a natural question is how the definition of upper sign continuity can be
modified such that the upper sign continuity fT implies the upper sign continuity of T . Recently,
Castellani and Giuli [10] answered to the question by proposing a new definition named (local) upper
sign property. We say that the bifunction f : K ×K → R has the (local) upper sign property (with
respect to the first variable) at x ∈ K, if there exists an open neighborhood U of x such that for any
y ∈ K ∩ U , the following implication holds:

f(zt, x) ≤ 0, ∀t ∈ (0, 1) ⇒ f(x, y) ≥ 0,

where zt = (1− t)x+ ty.
The aim of this paper is to weaken the assumptions of Castellani and Giuli [10] in such a way that

we deduce the important relationship ML(f,K) ⊆ S(f,K) by using a modified notion of the upper
sign property which is named, strong upper sign property. We also introduced the notion of the
strong µ-upper sign property in order to obtain existence results for µ-quasimonotone equilibrium
problems.

The remainder of the paper is organized as follows: in Section 2 we fix the notations and recall
some definitions and discuss about different technical conditions on the bifunctions for deriving the
important inclusionML(f,K) ⊆ S(f,K), Section 3 is devoted to the notion of the upper sign property
and its generalizations, while Section 4 deals with a modified notion of the upper sign property in
order to relaxed the conditions on f(x, x) for every x ∈ K and the technical condition for deriving
ML(f,K) ⊆ S(f,K) and in Section 5 we introduce the notion of the strong µ-upper sign property
in order to obtain the relationship between S(f,K) and Mµ

L(f,K). Using the KKM technique, we
end in Section 6 with establishing existence results for EP (f,K) in real metric linear spaces.

2. Preliminaries

A real linear topological space E is called a metric real linear space if its topology is given by a meter.
Throughout the paper, unless otherwise stated, we assume that X is a metric real linear space and
X∗ is its dual.

It is well known that every normed space is a metric linear space, but the converse may fail. For
instance, Fréchet spaces are locally convex spaces that are complete with respect to a translation
invariant metric and the metric need not arise from a norm.

The symbol 〈., .〉 signifies the duality pairing between X and X∗. Let A be a nonempty subset of
X, conv(A) denotes the convex hull of A and the neighborhood with center x ∈ X and radius r > 0
is denoted by Br(x).

In recent years, some applications of the generalized convexity and the generalized monotonicity
to obtain results for equilibrium problems were investigated [4, 10, 13, 17].

Let f : K → R be a function, f is called convex, if for every x, y ∈ K and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).



168 Jafari, Farajzadeh

Let f : K×K → R and y ∈ K. We say that f(., y) is upper hemicontinuous in the first argument
at x ∈ K, if the restriction of f on all lines is upper semicontinuous at x ∈ K, i.e.,

f(x, y) ≥ lim sup
t↓0

f((1− t)x+ tz, y), ∀z ∈ K.

Several definitions of monotonicity for bifunctions have been introduced. In the following for
some µ ≥ 0, the definitions of parametric generalized monotonicity for bifunctions are presented [10].

Definition 2.1. [10] Given a bifunction f : K ×K → R and fixed µ ≥ 0. f is called

• relaxed µ-monotone if for all x, y ∈ K, we have

f(x, y) + f(y, x) ≤ µ(d(x, y))2;

• relaxed µ-pseudomonotone if for all x, y ∈ K, we have

f(x, y) ≥ 0 ⇒ f(y, x) ≤ µ(d(x, y))2;

• relaxed µ-quasimonotone if for all x, y ∈ K, we have

f(x, y) > 0 ⇒ f(y, x) ≤ µ(d(x, y))2;

• properly relaxed µ-quasimonotone if for all n ∈ N, x1, . . . , xn ∈ K and x̄ ∈ conv{x1, . . . , xn},
there exists 0 ≤ k ≤ n such that

f(xk, x̄) ≤ µ(d(xk, x̄))2.

If µ = 0, the above definitions reduce to the usual definitions of monotonicity, pseudomonotonicity,
quasimonotonicity, and properly quasimonotonicity of f . Clearly, if f is relaxed µ-monotone, then
it is relaxed µ-pseudomonotone, which implies relaxed µ-quasimonotonicity of f .

Let X and Y be Hausdorff topological vector spaces, A set-valued mapping F : X ⇒ Y is called
upper semicontinuous at x ∈ X if, for any neighborhood G of the set F (x), there is a neighborhood
of x, say O(x), such that F (y) ⊆ G for all y ∈ O(x). F is upper hemicontinuous at x ∈ X if the
restriction of F on all lines is upper semicontinuous at x ∈ X.

Let us compare different technical conditions which frequently used in [4, 10, 13] to derive the
important relationship ML(f,K) ⊆ S(f,K).

Suppose that f : K ×K → R be a bifunction:

(F1) For every x, y1, y2 ∈ K

f(x, y1) ≤ 0 and f(x, y2) < 0 ⇒ f(x, zt) < 0 ∀t ∈ (0, 1),

where zt = (1− t)y1 + ty2;

(F2) For every x, y1, y2 ∈ K

f(x, y1) = 0 and f(x, y2) < 0 ⇒ f(x, zt) < 0 ∀t ∈ (0, 1),

where zt = (1− t)y1 + ty2;
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(F3) For every x, y ∈ K
f(x, y) < 0 ⇒ f(x, zt) < 0, ∀t ∈ (0, 1),

where zt = (1− t)x+ ty.

It is obvious that condition (F1) implies condition (F2) and condition (F2) implies condition (F3)
provided that f(x, x) = 0 for every x ∈ K. In order to show the important relationship ML(f,K) ⊆
S(f,K), we use the following condition for f which is weaker than conditions (F1), (F2) and (F3)
provided that f(x, x) = 0 for every x ∈ K.

(F4) For every x, y ∈ K

f(x, y) < 0 ⇒ ∃(tn)n∈N ⊆ (0, 1) : tn → 0 and f(x, ztn) < 0 ∀n ∈ N, (2.1)

where ztn = (1− tn)x+ tny.

Let f : R× R→ R be defined as follows:

f(x, y) =

{
−1, if x and y are rational and x 6= y

0, if x or y is irrational or x = y.

One can shows that the bifunction f satisfies (F4), but it doesn’t satisfy conditions (F1), (F2) and
(F3).

3. Upper sign property

Motivated by the definition of the upper sign continuity for an operator T , Bianchi and Pini [4]
introduced the notion of the upper sign continuity for a bifunction and applied it to establish a link
between S(f,K) and ML(f,K).

If the set-valued mapping T : K ⇒ X∗ has w∗-compact and convex values, then the associated
bifunction to T and K is defined by

fT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉.

In this case the upper sign continuity of T doesn’t imply the upper sign continuity of fT . Hence
a natural question is how the definition of upper sign continuity of fT can be modified such that the
mentioned notions imply each other. Recently, Castellani and Giuli in [10] answered to the question
by proposing a new definition named upper sign property. In the next definition, we restate the
definition in Hausdorff real topological vector spaces.

Definition 3.1. Let K be a convex subset of a Hausdorff real topological linear space X. We say
that the bifunction f : K × K → R has the local upper sign property (with respect to the first
variable) at x ∈ K if there exists an open neighborhood U of x such that for any y ∈ K ∩ U , the
following implication holds:

f(zt, x) ≤ 0 for all t ∈ (0, 1) =⇒ f(x, y) ≥ 0, (3.1)

where zt = (1−t)x+ty. We say that f has the upper sign property (with respect to the first variable)
at x ∈ K if for every y ∈ K, the implication 3.1 is satisfied.
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Recently, Aussel et al.[1] showed the upper sign property and its local counterpart coincide under
condition (F1). In the next lemma, the same was proved under condition (F4).

Lemma 3.2. Let K be a convex subset of X and f : K×K → R be a given bifunction. Suppose that
(F4) is also satisfied. Then f has the local upper sign property on K if and only if f has the upper
sign property on K.
Proof . It is obvious that f with the upper sign property on K has also the local upper sign property
on K. Conversely, assume that f has the local upper sign property at x ∈ K. Let y ∈ K and

f(zt, x) ≤ 0, ∀t ∈ (0, 1),

where zt = (1 − t)x + ty. From the local upper sign property of f at x ∈ K, there exists r > 0 such
that f(x, y) ≥ 0 provided that y ∈ Br(x) ∩K.

Take y′ ∈ K. Arguing by a contradiction assume that f(x, y′) < 0. Then by using (F4) there
exists (tn)n∈N in (0, 1) which converges to zero and f(x, ztn) < 0 for all n ∈ N. Moreover we can
choose n0 ∈ N such that ztn0 ∈ Br(x) ∩ K (ztn0 = (1 − tn0)x + tn0y

′). Therefore it follows by the
local upper sign property that f(x, ztn0 ) ≥ 0 and this is a contradiction. Hence, f(x, y′) ≥ 0 and this
completes the proof. �

Existence results for equilibrium problems can be obtained by establishing a link between ML(f,K)
and S(f,K) and showing the non-emptiness of the solution set of local Minty equilibrium problem.
The following theorem extends Lemma 2.1 in [4], Lemma 2.1 in [13] and consequently Theorem 1 in
[10].

Theorem 3.3. Let f : K × K → R be a bifunction with the upper sign property. If f satisfies
condition (F4), then ML(f,K) ⊆ S(f,K).
Proof . Let x̄ be an element of ML(f,K). So, there exists r > 0 such that

f(y, x̄) ≤ 0, ∀y ∈ Br(x) ∩K.

Take y′ ∈ K. If f(x, y′) < 0, then by condition (F4), there exists (tn)n∈N in (0, 1) which converges
to zero and f(x, ztn) < 0 for all n ∈ N. Moreover, for any sequence (tn)n∈N in (0, 1) which converges
to zero, we can find n0 ∈ N such that ztn0 ∈ Br(x) ∩K, where ztn0 = (1− tn0)x+ tn0y

′. Thus

f(zt, x̄) ≤ 0, ∀t ∈ (0, 1),

where zt = (1− t)x̄+ tztn0 . Now from the upper sign property of f we deduce that f(x, ztn0 ) ≥ 0 and
this is a contradiction. Hence f(x, y′) ≥ 0 and this completes the proof. �

Remark 3.4. By using of above theorem we can derive ML(f,R) ⊆ S(f,R) for the bifunction
f : R× R→ R which defined as follows

f(x, y) =


x+ y, if x < 0, y > 0, x, y ∈ Q
0, if x = y

1, otherwise.

Notice that by the results in literature, we cannot obtain this important inclusion for f .
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4. Strong upper sign property

In this subsection, we introduce the notions of the strong upper sign property and the strong upper
sign continuity. The notion of the strong sign property is useful due to it directly implies the link
between ML(f,K) and S(f,K).

Definition 4.1. Let f : K ×K → R be a given bifunction. f is said to have the strong upper sign
property (with respect to the first variable) at x ∈ K if for every y ∈ K the following implication
holds

∃δ ∈ (0, 1] : f(zt, x) ≤ 0, ∀t ∈ (0, δ) ⇒ f(x, y) ≥ 0,

where zt = (1− t)x+ ty. We say that f has the strong upper sign property, if f has the property at
every x ∈ K.

Notice that if for every y ∈ K we have δ = 1, then the notions of the strong upper sign property and
the upper sign property are the same.

Definition 4.2. Let f : K×K → R be a bifunction. We say that f is strong upper sign continuous
(with respect to the first variable) at x ∈ K if for every y ∈ K the following implication holds

∃δ ∈ (0, 1] : f(zt, y) ≥ 0, ∀t ∈ (0, δ) ⇒ f(x, y) ≥ 0,

where zt = (1 − t)x + ty. We say that f is strong upper sign continuous, if f is strong upper sign
continuous at every x ∈ K.

The strong sign continuity is a very weak form of continuity. In fact, we may derive the strong upper
sign continuity of f at x ∈ K by upper hemicontinuity of f with respect to the first variable at
x ∈ K. It must be mentioned that the strong upper sign continuity of f at x ∈ K implies the upper
sign continuity of f at x ∈ K in the sense of Bianchi and Pini [4].

The following proposition shows that the concept of the strong upper sign property is weaker
than the strong upper sign continuity under some mild assumptions which is also used in [10].

Proposition 4.3. Let f : K × K → R be a bifunction satisfying f(x, x) = 0 for every x ∈ K. If
f is strong upper sign continuous and condition (F1) is satisfied, then f has the strong upper sign
property.

Proof . Let f is strong upper sign continuous at x ∈ K and let for some y ∈ K there exists δ ∈ (0, 1]
such that

f(zt, x) ≤ 0 ∀t ∈ (0, δ). (4.1)

On the contradiction, let f(x, y) < 0. By the strong upper sign continuity of f , there exists tδ ∈ (0, δ)
such that f(ztδ , y) < 0, where ztδ = (1 − tδ)x + tδy. Moreover by (4.1) f(ztδ , x) ≤ 0. Now, using
condition (F1) we get that

f(ztδ , zt) < 0 ∀t ∈ (0, 1),

where zt = (1− t)x+ ty. This contradicts to f(ztδ , ztδ) = 0. �

Notice that although the strong upper sign property is a stronger notion than the upper sign
property, but the strong upper sign property could be more useful.

Theorem 4.4. If the bifunction f : K × K → R has the strong upper sign property. Then
ML(f,K) ⊆ S(f,K).
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Proof . Take x ∈ML(f,K). Then there exists r > 0 such that

f(y′, x) ≤ 0, ∀y′ ∈ K ∩Br(x).

Let y ∈ K and consider the open line segment between x and y, namely all zt = (1− t)x + ty such
that t ∈ (0, 1). We can choose δ ∈ (0, 1] such that zt ∈ K ∩Br(x) for all t ∈ (0, δ). Thus, f(zt, x) ≤ 0
for all t ∈ (0, δ). Now the strong upper sign property of f implies that f(x, y) ≥ 0. This means that
x ∈ S(f,K). This completes the proof. �

Notice that we relaxed the condition f(x, x) = 0 for every x ∈ K which is frequently supposed
in literature [4, 10] for deriving the relationship between ML(f,K) and S(f,K).

In the following proposition we prove that the strong upper sign property is a weaker assumption
to derive ML(f,K) ⊆ S(f,K) than the assumptions in literature. Hence, Theorem 4.4 is a real
generalization of Lemma 2.1 in [4], Lemma 2.1 in [13] and Theorem 1 in [10]. Moreover, one can
consider Theorem 3.3 as a special case of it.

Proposition 4.5. Let f : K ×K → R be a bifunction with the upper sign property. If f fulfills the
condition (F4), then it has the strong upper sign property.

Proof . Assume that x ∈ K and f satisfies the upper sign property at x ∈ K. Let y ∈ K and there
exists δ ∈ (0, 1] such that

f(xt, x) ≤ 0, ∀t ∈ (0, δ),

where xt = (1− t)x+ ty. If f(x, y) < 0 then there exists a sequence (tn)n∈N in (0, 1) which converges
to zero such that f(x, ztn) < 0 for all n ∈ N. Moreover we can choose n0 ∈ N such that tn ∈ (0, δ)
for all n ≥ n0. Therefore

f(zs, x) ≤ 0, ∀s ∈ (0, 1),

where zs = (1 − s)x + sztn0 . It follows from the upper sign property of f that f(x, ztn0 ) ≥ 0 which
is a contradiction. This completes the proof. �

The next example shows the importance of Theorem 4.4.

Example 4.6. Let f : R× R→ R be defined by

f(x, y) =


y, x > 0, y < 0

0, x = y

xy, x < 0, y > 0

1, otherwise.

Let x ∈ R. For every y ∈ R, there is no δ ∈ (0, 1) such that f(zt, x) ≤ 0 for all t ∈ (0, δ) where
zt = (1 − t)x + ty. Therefore f has the strong sign property at x. Thus by Theorem 4.4, we have
ML(f,R) ⊆ S(f,R).

Note that f doesn’t satisfy condition (F4) and consequently (F1), (F2) and (F3). For example if
you take x = 1 and y = −1, then f(1,−1) = −1 < 0. But for every sequence (tn)n∈N which converges
to zero, there exists n0 ∈ N such that

f(1, (1− tn)1 + tn(−1)) = 1 > 0, ∀n ≥ n0.

Therefore by Theorem 3.3, Lemma 2.1 in [4], Lemma 2.1 in [13] and Theorem 1 in [10], we cannot
obtain ML(f,R) ⊆ S(f,R).
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5. Strong µ-upper sign property

The notion of the relaxed µ-quasimonotonicity in the setting of set-valued mappings has been
considered by Bai and Hadjisavvas [3]. They established a link between the solution set of the
variational inequality and the solution set of a suitable µ-Minty problem. Recently, this approach
has been investigated also for equilibrium problems.

Definition 5.1. [10] Let f : K×K → R be a given bifunction and µ ≥ 0 be fixed. A local µ-Minty
solution is a point x ∈ K for which there exists r > 0 such that

f(y, x) ≤ µ(d(x, y))2 for all y ∈ K ∩Br(x).

The solution set of the all local µ-Minty solutions is denoted by Mµ
L(f,K).

Notice that if µ = 0, then M0
L(f,K) = ML(f,K) and if µ < µ′, then Mµ

L(f,K) ⊆Mµ′

L (f,K).

Definition 5.2. [10] Let f : K ×K → R be a given bifunction and µ ≥ 0 be fixed. We say that f
has the µ-upper sign property (with respect to the first variable) at x ∈ K if there exists r > 0 such
that for every y ∈ K ∩Br(x) the following implication holds

f(zt, x) ≤ µ(d(zt, x))2, ∀t ∈ (0, 1) ⇒ f(x, y) ≥ 0

where zt = (1− t)x+ ty.

In order to show that Mµ
L(f,K) ⊆ S(f,K), in the following, we introduce the strong µ-upper sign

property.

Definition 5.3. Let f : K ×K → R be a given bifunction and µ ≥ 0 be fixed. We say that f has
the strong µ-upper sign property (with respect to the first variable) at x ∈ K if for all y ∈ K the
following implication holds

∃δ ∈ (0, 1] : f(zt, x) ≤ µ(d(zt, x))2, ∀t ∈ (0, δ) ⇒ f(x, y) ≥ 0

where zt = (1− t)x+ ty.

Remark 5.4. 1) It must be mentioned that if for all y ∈ K, there exists δ = 1 satisfying f(zt, x) ≤
µ(d(zt, x))2 for all t ∈ (0, δ), then f satisfies the µ-upper sign property if and only if f fulfills the
µ-upper sign property.
2) If µ > µ′, every bifunction with the strong µ-upper sign property has the strong µ′-upper sign
property and the strong upper sign property coincides with the strong 0-upper sign property.
3) As it was shown in Lemma 4 of [10], under a mild assumption of convexity, the µ-upper sign
property is a kind of weak continuity. It is easy to check that under some assumptions of convexity
for the bifunction f , the strong µ-upper sign property is also a kind of weak continuity.

By the same lines given in Theorem 4.4 and Proposition 4.5, we can get the following results.

Theorem 5.5. Let µ ≥ 0 be fixed and f : K×K → R be a given bifunction with the strong µ-upper
sign property. Then Mµ

L(f,K) ⊆ S(f,K).

Proposition 5.6. Let µ ≥ 0 be fixed and f : K × K → R be a bifunction with the µ-upper sign
property. If condition (F4) holds, then f has the strong µ-upper sign property.

Corollary 5.7. Let µ ≥ 0 be fixed and f : K ×K → R be a given bifunction with the µ-upper sign
property. If f satisfies condition (F4), then Mµ

L(f,K) ⊆ S(f,K).
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6. Existence results

In this section, we use the KKM theory to prove the non-emptiness of Mµ
L(f,K) for a suitable µ ≥ 0

and then we apply Theorem 5.5 to obtain the non-emptiness of S(f,K). For every x ∈ K consider
the set-valued map Fµ : K ⇒ K as following

Fµ(x) = {y ∈ K : f(x, y) ≤ µ(d(x, y))2}.

Theorem 6.1. Assume that µ ≥ 0 is fixed and f : K × K → R is a relaxed µ-quasimonotone
bifunction which is not properly relaxed µ-quasimonotone. If the set Fµ(x) is closed and convex for
every x ∈ K, then Mµ

L(f,K) is nonempty.

Proof . Let µ > 0. Since f is not properly relaxed µ-quasimonotone, there exist x1, . . . , xn ∈ K and
x̄ ∈ conv{x1, . . . , xn} such that for all i ∈ {1, . . . , n}

f(xi, x̄) > µ(d(xi, x̄))2.

From the the fact that Fµ(xi) is closed for every i ∈ {1, . . . , n}, the set {y ∈ K : f(xi, y) >
µ(d(xi, y))2} which includes x̄ is open. So there exists r > 0 such that for every fixed y ∈ K ∩Br(x̄)
we have

f(xi, y) > µ(d(xi, y))2 > 0, i ∈ {1, . . . , n}.

It follows from the relaxed µ-quasimonotonicity of f that

f(y, xi) ≤ µ(d(y, xi))
2, i ∈ {1, . . . , n}.

For every y ∈ Br(x̄) ∩K, the set Fµ(y) is convex, thus

f(y, x̄) ≤ µ(d(y, x̄))2.

So x̄ ∈Mµ
L(f,K).

Now, let µ = 0. In this case, since F0(x) = lev(f, x) (lev(f, x) = {y ∈ K : f(x, y) ≤ 0} for every
x ∈ K), the proof follows from Theorem 3 in [10]. �

Remark 6.2. 1) Notice that in [10], the same result was obtained under the convexity of lev(f, x)
for every x ∈ K, instead of using the convexity of Fµ(x) for every x ∈ K.
2) The result of Theorem 5 in [10] was obtained in the framework of reflexive Banach space where
we have to assume that Fµ(x) is weakly closed for every x ∈ K (however it was not mentioned in
Theorem 5 of [10]). According to the fact that every closed and convex set is weakly closed, the
assumption of convexity of Fµ(x) for every x ∈ K is more useful in Theorem 5 of [10].

Corollary 6.3. Assume that µ ≥ 0 is fixed and f : K × K → R is a relaxed µ-quasimonotone
bifunction which is not properly relaxed µ-quasimonotone. Suppose that f has the strong µ-upper
sign property and the set Fµ(x) is closed for every x ∈ K. Then S(f,K) is nonempty.

It is well known that Fan [11] in 1961 extended the famous Knaster–Kuratowski–Mazurkiewicz
Theorem [19] (known also as the KKM Theorem, or the three Polish Lemma). The KKM theory is
the wide area of the nonlinear analysis that could provide key tools and techniques for the study of
equilibrium problems. In the sequel, we use the following lemma by Fan [12].
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Definition 6.4. Let K be a subset of a Hausdorff topological vector space X. A set-valued map
Γ : K ⇒ X is called a KKM map if for any n ∈ N and x1, . . . , xn ∈ K

conv{x1, . . . , xn} ⊆
n⋃
i=1

Γ(xi).

Lemma 6.5. (Fan-KKM lemma)[12] Let K be a nonempty subset of a Hausdorff topological vector
space X and Γ : K ⇒ X be a KKM mapping with closed values. Assume that there exists a
nonempty compact convex subset B of K such that ∩x∈BΓ(x) is compact. Then

∩x∈KΓ(x) 6= ∅.

Note that f is properly relaxed µ-quasimonotone if and only if Fµ is a KKM-map.

Corollary 6.6. Let µ ≥ 0 be fixed. Assume that K is compact and f : K × K → R is properly
relaxed µ-quasimonotone. If Fµ(x) is closed for every x ∈ K, then there exists x̄ ∈ K such that

f(y, x̄) ≤ µ(d(y, x̄))2, ∀y ∈ K.

Namely, the set of µ-Miny solutions (Mµ(f,K)) is non-empty.

Proof . It is easy to verify that ∩x∈KFµ(x) ⊆Mµ(f,K). So by Fan-KKM lemma we get the result.
�

The next theorem is the main result of the paper.

Theorem 6.7. Let µ ≥ 0 be fixed. Assume that f : K × K → R be a bifunction satisfing the
following conditions:

(i) f is relaxed µ-quasimonotone.

(ii) f has the strong µ-upper sign property.

(iii) Fµ(x) is closed for every x ∈ K.

(iv) Fµ(x) is convex for every x ∈ K.

Moreover suppose that the following coercivity condition holds:
(C) there exist a nonempty compact subset D ⊆ K and a non-empty convex compact subset B ⊆ K
such that for each x ∈ K\D, there exists y ∈ B such that f(x, y) > µ(d(x, y))2.
Then S(f,K) is non-empty.

Proof . We consider two cases:
a) f is relaxed µ-quasimonotone bifunction which is not properly relaxed µ-quasimonotone. In this
case by Theorem 6.1 and Theorem 5.5 we derive that S(f,K) is non-empty.
b) f is properly relaxed µ-quasimonotone. So Fµ is a KKM map. The coercivity condition (C)
implies that

∩x∈BFµ(x) ⊆ D ∩K = D,

which implies that ∩x∈BFµ(x) is compact. Thus by Fan-KKM Lemma, we conclude that ∩x∈KFµ(x) 6=
∅. But, considering the fact that ∩x∈BFµ(x) ⊆ Mµ(f,K), it follows that Mµ(f,K) 6= ∅. Now, the
strong µ-upper sign property of f implies that S(f,K) 6= ∅. �
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Remark 6.8. 1) We didn’t assume any condition on f(x, x) where x ∈ K. Indeed, we relaxed the
condition f(x, x) = 0 for every x ∈ K which is used in [4, 10] and the condition f(x, x) ≥ 0 which is
used in [13].
2) No technical condition was supposed on f . In fact, the conditions (F1)-(F3) which are frequently
used in literature were relaxed.
3) Existence results in this paper was obtained in a metric linear space, where we use a stronger
coercivity condition (C) than the one used in [10]. We know that every reflexive Banach space is
a metric linear space, but the converse is not true. For instance, a Fréchet space is a metric linear
space which is not a normed space.
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