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Abstract

Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational
semantics of data flow networks. In 2014 Asadi and et al. [New Extension of p-Metric Spaces with
Some fixed point Results on M -metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial
metric spaces to M -metric spaces. In this work, we introduce the class of F (ψ, ϕ)-contractions and
investigate the existence and uniqueness of fixed points for the new class C in the setting of M -metric
spaces. The theorems that we prove generalize many previously obtained results. We also give some
examples showing that our theorems are indeed proper extensions.
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1. Introduction and preliminaries

The notion of metric space was introduced by Fréchet [3] in 1906. Later, many authors attempted
to generalize the notion of metric space such as pseudo metric space, quasi metric space, semi metric
spaces and partial metric spaces. In this paper, we consider another generalization of a metric space,
so called M -metric space. This notion was introduced by Asadi et al. (see e.g. [2]) to solve some
difficulties in domain theory of computer science. Geraghty in 1973 introduced an interesting class
of auxiliary function to refine the Banach contraction mapping principle. Let F denote all functions
β : [0,∞)→ [0, 1) which satisfies the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.
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By using the function β ∈ F Geraghty [4] proved the following remarkable theorem.

Theorem 1.1. (Geraghty [4]) Let (X, d) be a complete metric space and T : X → X be an operator.
Suppose that there exists β : [0,∞)→ [0, 1) satisfying the condition,

β(tn)→ 1 implies tn → 0

If T satisfies the following inequality

d(Tx, Ty) ≤ β(d(x, y))d(x, y), for any x, y ∈ X, (1.1)

then T has a unique fixed point.

In 2014 Asadi et al. [2] introduced the M -metric space which extends partial metric space [7], by
some of certain fixed point theorems obtained therein, and they have given a theorem that its proof
is still open as follows.

Theorem 1.2. Let (X,m) be a complete M -metric space and T : X → X be mapping satisfying:

∃k ∈ [0,
1

2
) such that m(Tx, Ty) ≤ k(m(x, Ty) +m(y, Tx)) ∀x, y ∈ X.

Monfared et al. [8] presented a proof when k ∈ [0,
√
3−1
2

), also they proved the Matkowski, Boyd

and Wong’s, fixed point theorems [11] which covered Ćirić-contractions and also Geraghty’s fixed
point theorem for M -metric spaces. In this work, we introduce the class of F (ψ, ϕ)-contractions
and investigate the existence and uniqueness of fixed points for the new class C in the setting of
M -metric spaces. Also we show that the Geraghty’s fixed point theorem in [4] is one of corollaries
of our theorems in this work. An illustrated example is also given and whenever every p-metric and
ordinary metric are m-metric, all of the related results automatically hold. In this section, we review
some of definitions and auxiliary results to use.

Admissible mappings have been defined recently by Samet et al [12] and employed quite often in
order to generalize the results on various contractions. So we state next definitions of α-admissible
mapping and triangular α-admissible mapping.

Definition 1.3. Let α : X ×X → [0.∞). A self-mapping T : X → X is called α-admissible if the
condition

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1, (1.2)

is satisfied for all x, y ∈ X.

Definition 1.4. A mapping T : X → X is called triangular α-admissible if it is α-admissible and
satisfies

α(x, y) ≥ 1, α(y, z) ≥ 1⇒ α(x, z) ≥ 1. (1.3)

where x, y, z ∈ X and α : X ×X → [0.∞) is a given function.

In what follows we recall the notion of (triangular) α-orbital admissible, introduced by Popescu
[10], that is inspired from [12].
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Definition 1.5. ([10]) For a fixed mapping α : X × X → [0,∞), we say that a self-mapping
T : X → X is an α-orbital admissible if

(O1) α(u, Tu) ≥ 1⇒ α(Tu, T 2u) ≥ 1.

Let A be the collection of all α-orbital admissible T : X → X.
In addition, T is called triangular α-orbital admissible if T is α-orbital admissible and

(O2) α(u, v) ≥ 1 and α(v, Tv) ≥ 1⇒ α(u, Tv) ≥ 1

Let O be the collection of all triangular α-orbital admissible T : M →M.

Definition 1.6. ([2]) Let X be a non empty set. A function m : X ×X → R+ is called M -metric
if the following conditions are satisfied:

(m1) m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,

(m2) mxy ≤ m(x, y),

(m3) m(x, y) = m(y, x),

(m4) (m(x, y)−mxy) ≤ (m(x, z)−mxz) + (m(z, y)−mzy) .

Where
mxy := min{m(x, x),m(y, y)} = m(x, x) ∨m(y, y),

Then the pair (X,m) is called a M -metric space.

The following notation are useful in the sequel.

mxy := max{m(x, x),m(y, y)} = m(x, x) ∧m(y, y).

The next examples state that ms and mw are ordinary metric.

Example 1.7. ([2]) Let m be a m-metric. Put

1. mw(x, y) = m(x, y)− 2mxy +Mxy,

2. ms(x, y) = m(x, y)−mxy when x 6= y and ms(x, y) = 0 if x = y.

Then mw and ms are ordinary metrics.

In the following example we present an example of a m-metric which is not p-metric.

Example 1.8. ([2]) Let X = {1, 2, 3}. Define

m(1, 2) = m(2, 1) = m(1, 1) = 8

m(1, 3) = m(3, 1) = m(3, 2) = m(2, 3) = 7 m(2, 2) = 9 m(3, 3) = 5

so m is m-metric but m is not p-metric. Since m(2, 2) 6≤ m(1, 2) means m is not p-metric. If
D(x, y) = m(x, y)−mx,y then m(1, 2) = m1,2 = 8 but it means D(1, 2) = 0 while 1 6= 2 which means
D is not metric.
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Example 1.9. ([2]) Let (X, d) be a metric space. And φ : [0,∞)→ [φ(0),∞) be an one to one and
nondecreasing or strictly increasing mapping with φ(0) ≥ 0 is defined, such that

φ(x+ y) ≤ φ(x) + φ(y)− φ(0), ∀x, y ≥ 0.

Then m(x, y) = φ(d(x, y)) is a m-metric.

Remark 1.10. ([2]) For every x, y ∈ X

1. 0 ≤Mxy +mxy = m(x, x) +m(y, y)

2. 0 ≤Mxy −mxy = |m(x, x)−m(y, y)|
3. Mxy −mxy ≤ (Mxz −mxz) + (Mzy −mzy)

Lemma 1.11. ([2]) Every p-metric is a m-metric.

2. Topology for M -metric space

It is clear that each m-metric p on X generates a T0 topology τm on X. The set

{Bm(x, ε) : x ∈ X, ε > 0},

where
Bm(x, ε) = {y ∈ X : m(x, y) < mx,y + ε},

for all x ∈ X and ε > 0, forms the base of τm.

Definition 2.1. ([2]) Let (X,m) be a M -metric space. Then:

1. A sequence {xn} in a M -metric space (X,m) converges to a point x ∈ X if and only if

lim
n→∞

(m(xn, x)−mxn,x) = 0. (2.1)

2. A sequence {xn} in a M -metric space (X,m) is called a m-Cauchy sequence if

lim
n,m→∞

(m(xn, xm)−mxn,xm) & lim
n,m→∞

(Mxn,xm −mxn,xm) (2.2)

there exist (and are finite).

3. A M -metric space (X,m) is said to be complete if every m-Cauchy sequence {xn} in X con-
verges, with respect to τm, to a point x ∈ X such that(

lim
n→∞

(m(xn, x)−mxn,x) = 0 & lim
n→∞

(Mxn,x −mxn,x) = 0
)
.

Lemma 2.2. ([2]) Let (X,m) be a M -metric space. Then:

1. {xn} is a m-Cauchy sequence in (X,m) if and only if it is a Cauchy sequence in the metric
space (X,mw).

2. A M -metric space (X,m) is complete if and only if the metric space (X,mw) is complete.
Furthermore,

lim
n→∞

mw(xn, x) = 0 ⇐⇒
(

lim
n→∞

(m(xn, x)−mxn,x) = 0 & lim
n→∞

(Mxn,x −mxn,x) = 0
)
.
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Likewise above definition holds also for ms.

Lemma 2.3. ([2]) Assume that xn → x and yn → y as n→∞ in a M -metric space (X,m). Then

lim
n→∞

(m(xn, yn)−mxn,yn) = m(x, y)−mxy.

Lemma 2.4. ([2]) Assume that xn → x as n→∞ in a M -metric space (X,m). Then

lim
n→∞

(m(xn, y)−mxn,y) = m(x, y)−mx,y,

for all y ∈ X.

Lemma 2.5. ([2]) Assume that xn → x and xn → y as n→∞ in a M -metric space (X,m). Then
m(x, y) = mxy. Further if m(x, x) = m(y, y), then x = y.

Definition 2.6. ([6]) A function ψ : [0,∞) → [0,∞) is called an altering distance function if the
following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

Remark 2.7. We let Ψ denote the class of the altering distance functions.

Definition 2.8. ([1]) An ultra altering distance function is a continuous, nondecreasing mapping
ϕ : [0,∞)→ [0,∞) such that ϕ(t) > 0 for t > 0 and ϕ(0) ≥ 0.

Remark 2.9. We let Φ denote the class of the ultra altering distance functions.

Definition 2.10. ([1]) A mapping F : [0,∞)2 → R is called C-class function if it is continuous
and satisfies following axioms:

1. F (s, t) ≤ s;

2. F (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Note for some F we have that F (0, 0) = 0.
We denote C-class functions as C.

Example 2.11. ([1]) The following functions F : [0,∞)2 → R are elements of C, for all s, t ∈ [0,∞):

1. F (s, t) = s− t.
2. F (s, t) = ms, 0<m<1.

3. F (s, t) = s
(1+t)r

; r ∈ (0,∞).

4. F (s, t) = log(t+ as)/(1 + t), a > 1.

5. F (s, t) = ln(1 + as)/2, a > e.

6. F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞).

7. F (s, t) = s logt+a a, a > 1.

8. F (s, t) = s− (1+s
2+s

)( t
1+t

).

9. F (s, t) = sβ(s), β : [0,∞)→ (0, 1) and is continuous.

10. F (s, t) = s− t
k+t

.
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11. F (s, t) = s − ϕ(s) where ϕ : [0,∞) → [0,∞) is a continuous function such that ϕ(t) = 0 ⇔
t = 0.

12. F (s, t) = sh(s, t) where h : [0,∞) × [0,∞) → [0,∞) is a continuous function such that
h(t, s) < 1 for all t, s > 0.

13. F (s, t) = s− (2+t
1+t

)t.

14. F (s, t) = n
√

ln(1 + sn).

15. F (s, t) = φ(s) where φ : [0,∞)→ [0,∞) is a upper semicontinuous function such that φ(0) = 0
and φ(t) < t for t > 0.

16. F (s, t) = s
(1+s)r

, r ∈ (0,∞).

3. The main result

Admissible mappings have been defined recently by Samet et al. [12] and employed quite often in
order to generalize the results on various contractions. Therefore we state the following definitions
and α-admissible mapping and triangular α-admissible mapping.

Definition 3.1. Let (X,m) be an M -metric space, and let T : X → X be a given mapping. We
say that T is F (α, ψ)-contractive mapping if there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that

ψ(m(Tx, Ty)) ≤ F (ψ(m(x, y)), ϕ(m(x, y))), (3.1)

Definition 3.2. Let (X,m) be an M -metric space, and let T : X → X be an α-admissible mapping.
We say that T is an α-admissible F (α, ψ)-contractive mapping if there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C
such that

α(x, y)ψ(m(Tx, Ty)) ≤ F (ψ(m(x, y)), ϕ(m(x, y))), (3.2)

Definition 3.3. Let (X,m) be an M -metric space, and let T : X → X be an α-admissible mapping.
We say that T is a generalized α-admissible F (α, ψ)-contractive mapping if there exist ψ ∈ Ψ, ϕ ∈ Φ
and F ∈ C such that

α(x, y)ψ(m(Tx, Ty)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), (3.3)

Where M(x, y) = max{m(x, y),m(x, Tx),m(y, Ty)}

Theorem 3.4. (X,m) be a complete M-metric space, and let T : X → X be a generalized α-
admissible F (α, ψ)-contractive mapping, and satisfies the following conditions:
(i) T ∈ O;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point v ∈ X and {T nx0} converges to v.

Proof . Due to the assumption of the theorem, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Let
x0 ∈ X such that α(x0, Tx0) ≥ 1. Set-up an iterative sequence {xn} in X by letting xn+1 = Txn for
all n ≥ 0, n ∈ N. If xn = xn+1 for some n ∈ N ∪ {0}, then x∗ = xn is a fixed point of T . Assume
further that xn 6= xn+1 for each n ∈ N ∪ {0}. Define

mn := m(xn, xn+1).
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Regarding that T is α-admissible, we derive

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Recursively, we obtain that

α(xn, xn+1) ≥ 1 for all n = 0, 1, . . . (3.4)

Therefore, by (3.3) and (3.4)

ψ(m(xn, xn+1)) ≤ α(xn, xn+1)ψ(m(xn, xn+1))

≤ F (ψ(M(xn−1, xn)), ϕ(M(xn−1, xn))) (3.5)

≤ ψ(M(xn−1, xn)),

for each n ≥ 1, where

M(xn−1, xn) = max{m(xn−1, xn),m(xn−1, xn),m(xn, xn+1)}
= max{m(xn−1, xn),m(xn, xn+1)}. (3.6)

If max{m(xn−1, xn),m(xn, xn+1)} = m(xn, xn+1), then by (3.5), we get

ψ(m(xn, xn+1)) ≤ F (ψ(m(xn, xn+1)), ϕ(m(xn, xn+1))) ≤ ψ(m(xn, xn+1)),

so, ψ(m(xn, xn+1)) = 0 or ϕ(m(xn, xn+1)) = 0 therefore m(xn, xn+1) = 0, which is a contradiction.
Hence max{m(xn−1, xn),m(xn, xn+1)} = m(xn−1, xn) therefore (3.5) gives

ψ(m(xn, xn+1)) ≤ F (ψ(m(xn−1, xn)), ϕ(m(xn−1, xn))) ≤ ψ(m(xn−1, xn)), (3.7)

for all n ∈ N. This yield that, for each n ∈ N

m(xn, xn+1) ≤ m(xn−1, xn) (3.8)

Thus, we conclude that the sequence {m(xn, xn+1)} is nonnegative and nonincreasing. As a result,
there exists t ≥ 0 such that limn→∞m(xn, xn+1) = t. We claim that t = 0. Suppose, on the contrary,
that t > 0. Then, on account of (3.5), we get that

ψ(t) ≤ F (ψ(t), ϕ(t)),

which yields that ψ(t) = 0, or , ϕ(t) = 0. We derive

lim
n→∞

m(xn, xn+1) = 0. (3.9)

We shall prove that {xn} is M -Cauchy. We have

1. limn→∞m(xn, xn+1) = 0.

2. 0 ≤ mxn,xn+1 ≤ m(xn, xn+1)⇒ limn→∞mxn,xn+1 = 0.

3. mxn,xn+1 = min{m(xn, xn),m(xn+1, xn+1)} ⇒ limn→∞m(xn, xn) = 0.
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On the other hand

mxn,xm = min{m(xn, xn),m(xm, xm)} so, lim
n,m→∞

mxn,xm = 0,

therefore,
lim

n,m→∞
(Mxn,xm −mxn,xm) = 0.

We show
lim

n,m→∞
(m(xn, xm)−mxn,xm) = 0.

Define
M∗(x, y) := m(x, y)−mx,y, ∀x, y ∈ X.

If limn,m→∞M
∗(xn, xm) 6= 0, so there exist ε > 0 and {lk} ⊂ N such that

M∗(xlk , xnk
) ≥ ε.

suppose that k is the smallest number which satisfies above equation such that

M∗(xlk−1, xnk
) < ε.

Now by (m4) we have

ε ≤M∗(xlk , xnk
) ≤M∗(xlk , xlk−1) +M∗(xlk−1, xnk

) < mlk−1 + ε,

Thus
lim
k→∞

M∗(xlk , xnk
) = ε,

which means
lim
k→∞

m(xlk , xnk
)−mxlk

,xnk
= ε.

On the other hand
lim
k→∞

mxlk
,xnk

= 0,

so we have
lim
k→∞

m(xlk , xnk
) = ε.

Now

ε ≤ M∗(xlk , xnk
) ≤M∗(xlk , xlk+1

) +M∗(xlk+1
, xnk+1

) +M∗(xnk+1
, xnk

)

= mlk −mxlk
,xlk+1

+m(xlk+1, xnk+1)−mxlk+1,xnk+1 +mnk
−mxnk

,xnk+1 .

Moreover by (i) since T is triangular α-orbital admissible we have

α(xlk , xnk
) ≥ 1. (3.10)

So by (3.3) and (3.10)

ψ(ε) ≤ lim sup
k→∞

ψ(M∗(xlk , xnk
)) ≤ lim sup

k→∞
ψ(m(xlk+1, xnk+1))

≤ lim sup
k→∞

α(xlk , xnk
)ψ(m(xlk+1, xnk+1))

≤ lim sup
k→∞

F (ψ(M(xlk , xnk
)), ϕ((M(xlk , xnk

))).
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which

M(xlk , xnk
) = max

{
m(xlk , xnk

),m(xlk , xlk+1),m(xnk
, xnk+1)

}
.

On the other hand, by (m4) we have

m(xlk , xnk+1)−mxlk
,xnk+1 ≤ m(xlk , xlk+1)−mxlk

,xlk+1

+ m(xlk+1, xnk+1)−mxlk+1,xnk+1

≤ m(xlk , xlk+1)−mxlk
,xlk+1

+ m(xlk+1, xnk
)−mxlk+1,xnk

+ m(xnk
, xnk+1)−mxnk

,xnk+1 .

Thus
lim sup
k→∞

m(xlk , xnk+1) ≤ lim sup
k→∞

m(xlk+1, xnk
),

similarly
lim sup
k→∞

m(xlk+1, xnk
) ≤ lim sup

k→∞
m(xlk , xnk+1).

Therefore
lim sup
k→∞

m(xlk+1, xnk
) = lim sup

k→∞
m(xlk , xnk+1).

On the other hand

lim sup
k→∞

m(xlk+1, xnk
) ≤ lim sup

k→∞
(m(xlk+1, xlk)−mxlk+1,xlk

+ m(xlk , xnk
)−mxlk

,xnk
+mxlk+1,xnk

)

= 0 + lim
k→∞

m(xlk , xnk
)− 0 + 0 = ε.

So we see
lim
k→∞

M(xlk , xnk
) = ε.

Hence

ψ(ε) ≤ F (ψ(ε), ϕ(ε)) ≤ ψ(ε).

So we get
F (ψ(ε), ϕ(ε)) = ψ(ε),

and so ψ(ε) = 0, or ϕ(ε) = 0, hence we have ε = 0. which is contradiction and then {xn} is
M -Cauchy. So by completeness of X, xn → x for some v ∈ X in τm topology which means

lim
n→∞

(m(xn, v)−mxn,v) = 0.

and
lim
n→∞

(Mxn,v −mxn,v) = 0.

We have
mxn,v = min{m(xn, xn),m(v, v)}.

So
lim
n→∞

mxn,v = 0,
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hence limn→∞m(xn, v) = 0 and by Remark 1.10 m(v, v) = 0. Now we want to show that v is the
fixed point of T . T is continuous so

lim
n→∞

(m(Txn, T v)−mTxn,T v) = 0,

that means
lim
n→∞

(m(xn+1, T v)−mxn+1,Tu) = 0,

and similar to the above, we have limn→∞mxn+1,T v = 0, hence limn→∞m(xn+1, T v) = 0 and by
Remark 1.10, m(Tv, Tv) = 0. On the other hand, xn → v as n→∞ so by Lemma 2.3, we get

(m(xn, T v)−mxn,T v)→ (m(v, Tv)−mv,Tv) = m(v, Tv) as n→∞,

but we have
(m(xn, T v)−mxn,T v)→ 0 as n→∞.

Thus
m(v, Tv) = 0,

therefore m(v, Tv) = m(Tv, Tv) = m(v, v) = 0 and by (m1) we get

Tv = v.

�

Theorem 3.5. Let (X,m) be a complete M-metric space, and let T : X → X be a generalized
α-admissible F (α, ψ)-contractive mapping. and satisfies the following conditions:
(i) T ∈ O;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then
there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k.

Then T has a fixed point v ∈ X and {T nx0} converges to v.

Proof . Following the proof of Theorem 3.4, we know that the sequence {xn} defined by xn+1 = Txn
for all n ≥ 0, converges for some v ∈ X. From (3.10) and (iii) , there exists a subsequence {xnk

} of
{xn} such that α(xnk

, v) ≥ 1 for all k. Applying (3.3), for all k, we get that

ψ(m(xnk+1, T v)) ≤ α(xnk
, v)ψ(m(Txnk

, T v)) ≤ F (ψ(M(xnk
, v)), ϕ(M(xnk

, v)))

≤ ψ(M(xnk
, v))→ ψ(m(v, Tv)) as n→∞.

(3.11)

On the other hand by Lemma 2.4

lim
k→∞

m(xnk+1, T v) = m(v, Tv). (3.12)

Now by (3.11) and (3.12) we have

F (ψ(m(v, Tv)), ϕ(m(v, Tv))) = lim
k→∞

F (ψ(M(xnk
, v)), ϕ(M(xnk

, v))) = ψ(m(v, Tv)).

So by the property of F , we get ψ(m(v, Tv)) = 0, thus m(v, Tv) = 0. Therefore by (3.12) we get
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m(xnk+1, T v)→ 0 as k →∞.
Therefore as in proof of Theorem 3.4 we have Tv = v. �

For the uniqueness of a fixed point of a generalized α-admissible F (α, ψ)-contractive mapping,
we shall suggest the following hypothesis.

(∗) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1.

Here, Fix(T ) denotes the set of fixed points of T .

Theorem 3.6. Adding condition (∗) to the hypotheses of Theorem 3.4 (resp. Theorem 3.5), we
obtain that v is the unique fixed point of T .

Proof . Suppose that u, v ∈ X are two fixed points of T .

ψ(m(u, u)) = ψ(m(Tu, Tu)) ≤ α(u, u)ψ(m(Tu, Tu))

≤ F (ψ(M(u, u)), ϕ(M(u, u)))

= F (ψ(m(u, u)), ϕ(m(u, u))) ≤ ψ(m(u, u),

so we have
F (ψ(m(u, u)), ϕ(m(u, u))) = ψ(m(u, u),

and by the property of functions F and ψ we get m(u, u) = 0. By similar way we have m(u, v) =
m(v, v) = 0. hence by (m1)

u = v.

�

If we let α(x, y) = 1 for all x, y ∈ X, then we get the following Corollaries.

Corollary 3.7. Let (X,m) be a complete M -metric space, and let T : X → X be a map. Suppose
that the following conditions are satisfied:

ψ(m(Tx, Ty)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), (3.13)

Where M(x, y) = max{m(x, y),m(x, Tx),m(y, Ty)}, ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Then T has unique
fixed point x∗ ∈ X and {T nx0} converges to x∗.

Corollary 3.8. Let (X,m) be a complete M -metric space and T : X → X be a self-mapping
satisfying

ψ(m(Tx, Ty)) ≤ F (ψ(m(x, y)), ϕ(m(x, y))), (3.14)

Where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Then T has unique fixed point v ∈ X and {T nx0} converges to v.

If we let F (s, t) = ks in Corollary 3.8, we get the following result.

Corollary 3.9. Let (X,m) be a complete M -metric space, and let T : X → X be a map. Suppose
that the following conditions are satisfied:

ψ(m(Tx, Ty)) ≤ kψ(m(x, y))

Then, T has unique fixed point v ∈ X, and {T nx0} converges to v.
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If we let ψ(t) = t in Corollary 3.8, we get the following result.

Corollary 3.10. Let (X,m) be a complete M -metric space, and let T : X → X be a map. Suppose
that the following conditions are satisfied:

m(Tx, Ty) ≤ F (m(x, y), ϕ(m(x, y))),

Then, T has unique fixed point v ∈ X, and {T nx0} converges to v.

If we take ψ(t) = t in Corollary 3.7, we get the following.

Corollary 3.11. Let (X,m) be a complete M -metric space, and let T : X → X be a map. Suppose
that the following conditions are satisfied:

m(Tx, Ty) ≤ F (M(x, y), ϕ(M(x, y))),

Where M(x, y) = max{m(x, y),m(x, Tx),m(y, Ty)} and ϕ ∈ Φ, F ∈ C. Then, T has a unique fixed
point v ∈ X, and {T nx0} converges to v.

4. Consequences

By Corollaries 3.7 and 3.8, we obtain the following corollaries as an extension of several known results
in the literature.

Corollary 4.1. Let (X,m) be a complete M -metric space and T : X → X be a continuous map.
Assume that there exists two function β ∈ F and ψ ∈ Ψ such that

ψ(m(Tx, Ty)) ≤ β(ψ(m(x, y)))ψ(m(x, y)), (4.1)

for all x, y ∈ X. Then T has unique fixed point.

Corollary 4.2. Let (X,m) be a complete M -metric space and T : X → X be a continuous map.
Assume that there exists two function β ∈ F and ψ ∈ Ψ such that for all x, y ∈ X

ψ(m(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)), (4.2)

where M(x, y) = max{m(x, y),m(x, Tx),m(y, Ty)}.Then T has unique fixed point.

If we let ψ(t) = t, we get the following corollary that proved in [8, 9]:

Corollary 4.3. ([8]) Let (X,m) be a complete M -metric space and T : X → X be a continuous
map. Assume that there exists a function β ∈ F such that

m(Tx, Ty) ≤ β(m(x, y))m(x, y), (4.3)

for all x, y ∈ X. Then T has unique fixed point.

Corollary 4.4. Let (X,m) be a complete M-metric space and T : X → X be a continuous map.
Assume that there exists two function β ∈ F such that for all x, y ∈ X

m(Tx, Ty) ≤ β(M(x, y))M(x, y), (4.4)

where M(x, y) = max{m(x, y),m(x, Tx),m(y, Ty)}. Then T has unique fixed point.
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5. Fixed point theorems on M -metric spaces endowed with a partial order

In this section, we state some consequences of our main results in the context of a partially ordered
M -metric space.

Definition 5.1. Let (X,�) be a partially ordered set and T : X → X be a given mapping. We say
that T is nondecreasing with respect to � if

x � y =⇒ Tx � Ty, ∀x, y ∈ X.

Definition 5.2. Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be nonde-
creasing with respect to � if xn � xn+1 for all n.

Definition 5.3. Let (X,�) be a partially ordered set and m be an M -metric on X. We say that
(X,�,m) is regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ X as n→∞,
there exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

We have the following results.

Corollary 5.4. Let (X,�) be a partially ordered set and m be an M-metric on X such that (X,m)
is complete. Let T : X → X be a nondecreasing mapping with respect to �. Suppose that there exists
two functions ψ ∈ Ψ and β ∈ Fsuch that

ψ(m(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) T is continuous or (X,�,m) is regular.

Then T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z and
y � z, we have uniqueness of the fixed point.

Proof . Let us discuss the case that (X,�,m) is regular. Let {xn} be a sequence in X such that
xn → x ∈ X as n→∞. From the regularity hypothesis, there exists a subsequence {xn(k)} of {xn}
such that xn(k) � x for all k. In this case, the existence of a fixed point follows from Corollary 3.7.
The uniqueness follows from Corollary 3.7. �

The following results are immediate consequences of Corollary 5.4.

Corollary 5.5. Let (X,�) be a partially ordered set and m be an M -metric on X such that (X,m)
is complete. Let T : X → X be a nondecreasing mapping with respect to �. Suppose that there
exists two functions ψ ∈ Ψ and β ∈ Fsuch that

ψ(m(Tx, Ty)) ≤ β(ψ(m(x, y)))ψ(m(x, y)),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;
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(ii) T is continuous or (X,�,m) is regular.

Then T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z and
y � z, we have uniqueness of the fixed point.

The following two corollaries can be concluded from the above results by taking ψ(t) = t.

Corollary 5.6. Let (X,�) be a partially ordered set and m be an M -metric on X such that (X,m)
is complete. Let T : X → X be a nondecreasing mapping with respect to �. Suppose that there
exists a function β ∈ F such that

m(Tx, Ty) ≤ β(m(x, y))m(x, y),

for all x, y ∈ X with x � y. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) T is continuous or (X,�,m) is regular.

Then T has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z and
y � z, we have uniqueness of the fixed point.

In [5] Haghi et al. proved the following lemma.

Lemma 5.7. Let X be a nonempty set and f : X → X a function. Then there exists a subset
E ⊆ X such that f(E) = f(X) and f : E → X is one to one.

Theorem 5.8. Let (X,m) be an M-metric space and let T, f : X → X be two self maps such that
T (X) ⊆ f(X) and f(X) is a complete subset of X. If there exists functions F ∈ C, ψ ∈ Ψ and
ϕ ∈ Φ such that

ψ(m(Tx, Ty)) ≤ F (ψ(m(fx, fy)), ϕ(m(fx, fy))) (5.1)

for all x, y ∈ X. Then T and f have unique point of coincidence in X. Moreover, if T and f are
weakly compatible, then T and f have a unique common fixed point.

Proof . By Lemma 5.7, there exists E ⊆ X such that f(E) = f(X) and f : E → X is one to one.
We define a map g : f(E) → f(E) by g(fx) = Tx. Clearly, g is well defined, since f is one to one.
Now, using (5.1), we have

ψ(m(g(fx), g(fy))) = ψ(m(Tx, Ty))

≤ F (ψ(m(fx, fy)), ϕ(m(fx, fy)))

for all fx, fy ∈ f(E). Since f(E) = f(X) is complete, therefore by Corollary 3.7, there exists z ∈ X
such that g(fz) = fz which imply Tz = fz. Hence, T and f have a coincidence point. Again, if w
is another coincidence point of T and f such that z 6= w, then by (5.1)

ψ(m(Tw, Tz)) ≤ F (ψ(m(fw, fz)), ϕ(m(fw, fz)))

≤ ψ(m(Tw, Tz)),

then

F (ψ(m(fw, fz)), ϕ(m(fw, fz))) = ψ(m(Tw, Tz)) = ψ(m(fw, fz)),

and so we get ψ(m(fw, fz)) = 0 or ϕ(m(fw, fz)) = 0, hence m(fw, fz) = 0. Similarly we have
m(fw, fw) = 0, and m(fz, fz) = 0. Therefore by (m4) fw = fz, which is a contradiction. Hence
z is unique coincidence point of Tand f .It is clear that T and f have a unique common fixed point
whenever Tand f are weakly compatible. �
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Theorem 5.9. Let (X,m) be an M-metric space and let T, f : X → X be two self maps such that
T (X) ⊆ f(X) and f(X) is a complete subset of X. If there exists two function F ∈ C , ψ ∈ Ψ and
ϕ ∈ Φ such that for all x, y ∈ X

ψ(m(Tx, Ty)) ≤ F (ψ(M(fx, fy)), ϕ(M(fx, fy))) (5.2)

where, M(x, y) = max{m(fx, fy),m(fx, Tx),m(fy, Ty). Then T and f have a unique point of
coincidence in X. Moreover, if T and f are weakly compatible, then T and f have a unique common
fixed point.

Proof . Here, we utilize Corollary 4.4 instead of Corollary 4.3 in the proof of Theorem 5.8 and the
proof completely follows the lines of the proof of Theorem 5.8 and hence it is omitted. �

Now, we present an example in support of the proved results.

Example 5.10. Let X = {0, 1
4
, 1
2
}, m : X ×X → R+ be defined by m(x, y) = x+y

2
for all x, y ∈ X

and ψ : R+ → R+ by ψ(t) = t
4
, then ψ ∈ Ψ and (X,m) is a complete M -metric space. Define

T : X → X by

Tx =

{
x2, x = 0, 1

2
;

0, x = 1
4
.

We want to show that the condition of Corollary 4.1 holds. Without loss of generality, we assume
that x ≤ y.
To proof we consider some cases.
Case 1: If x = y = 0 the claim is obvious and hence (4.3) trivially holds.
Case 2: If x = y = 1

4
, we have

β(ψ(m(x, y)))ψ(m(x, y))− ψ(m(Tx, Ty)) = β(ψ(m(
1

4
,
1

4
)))ψ(m(

1

4
,
1

4
))− ψ(m(0, 0))

= β(ψ(
1

4
)ψ(

1

4
)− ψ(0)

= β(
1

16
)

1

16
− 0 > 0.

Case 3: If x = y = 1
2
, we have

β(ψ(m(x, y)))ψ(m(x, y))− ψ(m(Tx, Ty)) = β(ψ(m(
1

2
,
1

2
)))ψ(m(

1

2
,
1

2
))− ψ(m(

1

4
,
1

4
))

= β(ψ(
1

2
))ψ(

1

2
)− ψ(m(

1

4
,
1

4
))

= β(
1

8
)
1

8
− ψ(

1

4
)

=
1

1 + 1
8

1

8
− 1

8
=

1

9
− 1

16
> 0.

Case 4: If x = 0, y = 1
4
, we get

β(ψ(m(x, y)))ψ(m(x, y))− ψ(m(Tx, Ty)) = β(ψ(m(0,
1

4
)))ψ(m(0,

1

4
))− ψ(m(0, 0))

= β(ψ(
1

8
)ψ(

1

8
)− ψ(0)

= β(
1

32
)

1

32
− 0 > 0.
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Case 5: If x = 0, y = 1
2
, we have

β(ψ(m(x, y)))ψ(m(x, y))− ψ(m(Tx, Ty)) = β(ψ(m(0,
1

2
)))ψ(m(0,

1

2
))− ψ(m(0,

1

4
))

= β(ψ(
1

4
)ψ(

1

4
)− ψ(

1

8
)

= β(
1

16
)

1

16
− 1

32

=
1

1 + 1
16

1

16
− 1

32
=

1

17
− 1

32
> 0.

Case 6: If x = 1
4

and y = 1
2
, we get

β(ψ(m(x, y)))ψ(m(x, y))− ψ(m(Tx, Ty)) = β(ψ(m(
1

4
,
1

2
)))ψ(m(

1

4
,
1

2
))− ψ(m(0,

1

4
))

= β(ψ(
3

8
)ψ(

3

8
)− ψ(

1

8
)

= β(
3

32
)

3

32
− 1

32

=
1

1 + 3
32

3

32
− 1

32
=

3

35
− 1

32
=

61

1120
> 0.

Hence the inequality (4.4) is satisfied. So, T is contraction type map. Hence all the condition of
Corollary 4.1 are satisfied and consequently T has a unique fixed point. Here 0 is such point.
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