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Abstract

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory
of Inequality. In this paper, Hermite-Hadamard inequalities for B-convex and B−1-convex functions
are proven.
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1. Introduction

Theory of Inequality is one of the most important application fields of convex analysis. A great
number of inequalities can be obtained by taking advantage of convexity concept. Hermite-Hadamard
inequality is one of the most important applications within these inequalities. Firstly, for convex
functions Hermite-Hadamard inequality was proven by Hermite in [11] and then, ten years later,
Hadamard rediscovered its left-hand side in [10] (see also [8] for the historical considerations), then
examined in numerous article, like [8, 14]. Moreover, Hermite-Hadamard inequalities for different
types of abstract convex functions were studied in [1, 2, 3, 6, 8, 12, 15, 16, 18, 20].

In this article, Hermite-Hadamard inequalities for B-convex and B−1-convex functions which are
new kinds of abstract convex functions are proven.

In section of preliminaries, we mention some definitions and theorems of B-convexity and B−1-
convexity which will be necessary in the sequel (Section 2.1 and Section 2.2), also recall Hermite-
Hadamard inequalities of some types of abstract convex functions (Section 2.3). In Section 3 and
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Section 4, we prove Hermite-Hadamard inequalities for B-convex functions and B−1-convex functions,
respectively.

In this paper, we will use the following notations:
Z− is the set of negative integers;
R∗ is R \ {0};
Rn is the n-dimensional vector space;
Rn

+ {(x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n};
Rn

++ {(x1, . . . , xn) ∈ Rn : xi > 0, i = 1, 2, . . . , n};
Cor(A) is the r-convex hull of A;
Co∞(A) is the B-polytope of A;
Co−∞(A) is the B−1-polytope of A;
epi(f) {(x, µ) |x ∈ U, µ ∈ R, µ ≥ f (x)};
epi∗(f) {(x, µ) |x ∈ U, µ ∈ R∗, µ ≥ f (x)};
m
∨
i=1
x(i)

m
∨
i=1
x(i) =

(
max

{
x
(1)
1 , x

(2)
1 , . . . , x

(m)
1

}
, . . . ,max

{
x
(1)
n , x

(2)
n , . . . , x

(m)
n

})
;

m
∧
i=1
x(i)

m
∧
i=1
x(i) =

(
min

{
x
(1)
1 , x

(2)
1 , . . . , x

(m)
1

}
, . . . ,min

{
x
(1)
n , x

(2)
n , . . . , x

(m)
n

})
.

2. Preliminaries

2.1. B-convexity
Let r ∈ N, ϕr : R → R, ϕr(x) = x2r+1 and Φr : Rn → Rn, Φr(x) = Φr(x1, x2, . . . , xn) =
(ϕr(x1), ϕr(x2), . . . , ϕr(xn)). For a finite nonempty set A =

{
x(1), x(2), . . . , x(m)

}
⊂ Rn, the r-convex

hull of A, denoted as Cor(A), is given by

Cor(A) =

{
Φ−1r

(
m∑
i=1

tiΦr(x
(i))

)
: ti ≥ 0,

m∑
i=1

ti = 1

}
.

Definition 2.1. [5] The Kuratowski-Painleve upper limit of the sequence of sets (Cor(A))r∈N, de-
noted by Co∞(A) where A is a finite subset of Rn, is called B-polytope of A.

Definition 2.2. A subset U of Rn is B-convex if for all finite subset A ⊂ U the B-polytope Co∞(A)
is contained in U .

In Rn
+, B-convex set is defined in a different way [5]:

A subset U of Rn
+ is B-convex if and only if for all x(1), x(2) ∈ U and all λ ∈ [0, 1] one has

λx(1) ∨ x(2) ∈ U .
Here, we denote the least upper bound with respect to the coordinate-wise order relation of

x(1), x(2), . . . , x(m) ∈ Rn by
m
∨
i=1
x(i) , that is:

m
∨
i=1
x(i) =

(
max

{
x
(1)
1 , x

(2)
1 , . . . , x

(m)
1

}
, . . . ,max

{
x(1)n , x(2)n , . . . , x(m)

n

})
where, x

(i)
j denotes jth coordinate of the point x(i).

Remark 2.3. In R+, B-convex sets are intervals because of definition.

Furthermore, in [5, 13], the definition of B-convex functions is given as follows:
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Definition 2.4. Let U ⊂ Rn. A function f : U → R
⋃
{±∞} is called a B-convex function if

epi (f) = {(x, µ) |x ∈ U, µ ∈ R, µ ≥ f (x)} is a B-convex set.

The following theorem provides a sufficient and necessary condition for B-convex functions in Rn
+

[5, 13].

Theorem 2.5. Let U ⊂ Rn
+, f : U → R+ ∪ {+∞}. The function f is B-convex if and only if U is a

B-convex set and for all x, y ∈ U and all λ ∈ [0, 1] the following inequality holds:

f (λx ∨ y) ≤ λf (x) ∨ f (y) . (2.1)

2.2. B−1-convexity
For r ∈ Z−, the map x → ϕr(x) = x2r+1 is a homeomorphism from R∗ = R \ {0} to itself; x =
(x1, x2, . . . , xn)→ Φr(x) = (ϕr(x1), ϕr(x2), . . . , ϕr(xn)) is homeomorphism from Rn

∗ to itself.
For a finite nonempty set A =

{
x(1), x(2), . . . , x(m)

}
⊂ Rn

∗ the Φr-convex hull (shortly r-convex
hull) of A, which we denote Cor(A) is given by

Cor(A) =

{
Φ−1r

(
m∑
i=1

tiΦr(x
(i))

)
: ti ≥ 0,

m∑
i=1

ti = 1

}
.

We denote by
m
∧
i=1
x(i) the greatest lower bound with respect to the coordinate-wise order relation

of x(1), x(2), . . . , x(m) ∈ Rn, that is:

m
∧
i=1
x(i) =

(
min

{
x
(1)
1 , x

(2)
1 , . . . , x

(m)
1

}
, . . . ,min

{
x(1)n , x(2)n , . . . , x(m)

n

})
where, x

(i)
j denotes jth coordinate of the point x(i).

Thus, we can define B−1-polytopes as follows:

Definition 2.6. [4] The Kuratowski-Painleve upper limit of the sequence of sets {Cor(A)}r∈Z− ,
denoted by Co−∞(A) where A is a finite subset of Rn

∗ , is called B−1-polytope of A.

The definition of B−1-polytope can be expressed in the following form in Rn
++.

Theorem 2.7. [4] For all nonempty finite subsets A =
{
x(1), x(2), . . . , x(m)

}
⊂ Rn

++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =

{
m
∧
i=1
tix

(i) : ti ≥ 1, min
1≤i≤m

ti = 1

}
.

Next, we give the definition of B−1-convex sets.

Definition 2.8. [4] A subset U of Rn
∗ is called a B−1-convex if for all finite subsets A ⊂ U the

B−1-polytope Co−∞(A) is contained in U .

By Theorem 2.7, we can reformulate the above definition for subsets of Rn
++:

Theorem 2.9. [4] A subset U of Rn
++ is B−1-convex if and only if for all x(1), x(2) ∈ U and all

λ ∈ [1,∞) one has λx(1) ∧ x(2) ∈ U .
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Remark 2.10. As a result of Theorem 2.9, we can say that B−1-convex sets in R++ are positive
intervals.

Definition 2.11. [13] For U ⊂ Rn
∗ , a function f : U → R∗ is called a B−1-convex function if

epi∗(f) = {(x, µ) |x ∈ U, µ ∈ R∗, µ ≥ f (x)} is a B−1-convex set.

In Rn
++, we can give the following fundamental theorem which provides a sufficient and necessary

condition for B−1-convex functions [13].

Theorem 2.12. Let U ⊂ Rn
++ and f : U → R++. The function f is B−1-convex if and only if the

set U is B−1-convex and one has the inequality

f (λx ∧ y) ≤ λf (x) ∧ f (y) (2.2)

for all x, y ∈ U and all λ ∈ [1,+∞).

2.3. Abstract Convexity Classes and Hermite-Hadamard inequalities.

Recall that for a function f : [a, b] ⊂ R→ R, which is convex on [a, b], we have the following

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ 1

2
(f (a) + f (b)) .

This inequality is well known as the Hermite-Hadamard inequality. Moreover, for different classes
of abstract convex functions, Hermite-Hadamard inequalities which are suitable for these function
classes are obtained. For example:

1) A function f : [a, b] → (0,+∞) is said to be log-convex or multiplicatively convex if for all
x, y ∈ [a, b] and λ ∈ [0, 1] we have ([17])

f (λx+ (1− λ) y) ≤ [f (x)]λ [f (y)]1−λ

and for f , we have that

f

(
a+ b

2

)
≤ exp

[
1

b− a

∫ b

a

f (t) dt

]
≤
√

(f (a) + f (b))

which is an Inequality of Hermite-Hadamard for log-convex functions.
2) A function p : [a, b]→ (0,+∞) is said to be p-function if for all x, y ∈ [a, b] and λ ∈ [0, 1] one

has the inequality ([19])
p (λx+ (1− λ) y) ≤ p (x) + p (y)

and Hermite-Hadamard inequality for the function p is

p

(
a+ b

2

)
≤ 2

b− a

∫ b

a

p (t) dt ≤ 2 (p (a) + p (b)) .

3) A positive function f is quasi-convex on a real interval [a, b] if for all x, y ∈ [a, b] and λ ∈ [0, 1]
we have ([7])

f (λx+ (1− λ) y) ≤ max {f (x) , f (y)} .
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We know that the class of p-functions consists of the class of nonnegative quasi-convex functions.
Hence, the Hermite-Hadamard inequality for p-functions is also valid for nonnegative quasi-convex
functions. Additionally, different inequalities for Jensen-quasi-convex functions which is a special
form of quasi-convex functions were studied:

A function f : [a, b] → (0,+∞) is Jensen or J-quasi-convex if for all x, y ∈ [a, b] one has the
inequality ([7])

f

(
x+ y

2

)
≤ max {f (x) , f (y)}

and Hermite-Hadamard inequality for J-quasi-convex functions is

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt+
1

2 (b− a)

∫ b

a

|f (t)− f (a+ b− t)| dt .

4) A function f : [a, b]→ (0,+∞) is said to belong to the class Q(I) if it is nonnegative and for
all x, y ∈ [a, b] and λ ∈ (0, 1), satisfies the inequality ([9])

f (λx+ (1− λ) y) ≤ f (x)

λ
+
f (y)

1− λ
and for the Q(I) class of functions, one has the inequality

f

(
a+ b

2

)
≤ 4

b− a

∫ b

a

f (t) dt

that is Hermite-Hadamard inequality for the Q(I) class of functions.
Accordingly, as we take importance of Hermite-Hadamard inequality and its applications into

consideration, we prove the Hermite-Hadamard inequalities for B-convex and B−1-convex functions
which are new abstract convex function classes in this paper.

3. Hermite-Hadamard inequality for B-convex Functions.

Theorem 3.1. Let f : [a, b] ⊂ R+ → R+ be a B-convex function. Then one has the inequalities

1

b− a

∫ b

a

f (t) dt ≤

{
f (a) , f (a) ≥ f (b)
b([f(a)]2+[f(b)]2)−2af(a)f(b)

2(b−a)f(b) , f (a) < f (b) .
(3.1)

Proof . Since a ≤ b, for all λ ∈ [0, 1] we have max {λa, b} = b. Then, from the inequality (2.1) in
Theorem 2.5

f (b) = f (max {λa, b}) ≤ max {λf (a) , f (b)}
is obtained. Since it is valid for all functions, there is no point in examining this case.

Thus, let us examine the case of max {a, λb}. If we make the substitution t = λb, we obtain that∫ 1

0

f (max {a, λb}) dλ =

∫ a/b

0

f (max {a, λb}) dλ+

∫ 1

a/b

f (max {a, λb}) dλ

=

∫ a/b

0

f (a) dλ+

∫ 1

a/b

f (λb) dλ

= f (a)
a

b
+

1

b

∫ b

a

f (t) dt .
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From B-convexity of the function f , following inequality holds∫ 1

0

f (max {a, λb}) dλ ≤
∫ 1

0

max {f (a) , λf (b)} dλ .

For the right-hand side of the inequality, there are the following two possible cases:
1) It can be f (a) ≥ f (b). In this case, we have∫ 1

0

max {f (a) , λf (b)} dλ =

∫ 1

0

f (a) dλ = f (a) .

Hence, we obtain that

f (a)
a

b
+

1

b

∫ b

a

f (t) dt ≤ f (a) ⇒ 1

b− a

∫ b

a

f (t) dt ≤ f (a) .

2) If f (a) < f (b), we deduce that∫ 1

0

max {f (a) , λf (b)} dλ =

∫ f(a)/f(b)

0

max {f (a) , λf (b)} dλ

+

∫ 1

f(a)/f(b)

max {f (a) , λf (b)} dλ

=

∫ f(a)/f(b)

0

f (a) dλ+

∫ 1

f(a)/f(b)

λf (b) dλ

=
(f (a))2 + (f (b))2

2f (b)
.

Thus,

1

b− a

∫ b

a

f (t) dt ≤
b
(
[f (a)]2 + [f (b)]2

)
− 2af (a) f (b)

2 (b− a) f (b)

is obtained. Thence, Hermite-Hadamard inequality for B-convex functions is

1

b− a

∫ b

a

f (t) dt ≤

{
f (a) , f (a) ≥ f (b)
b([f(a)]2+[f(b)]2)−2af(a)f(b)

2(b−a)f(b) , f (a) < f (b) .

�

4. Hermite-Hadamard inequality for B−1-convex Functions

Theorem 4.1. Suppose f : [a, b] ⊂ R++ −→ R++ is a B−1-convex function. Then the following
inequalities hold

1

b− a

∫ b

a

f (t) dt ≤


2bf(a)f(b)−a[(f(a))2+(f(b))2]

2(b−a)f(a) , 1 ≤ f(b)
f(a)

< b
a

f(a)(a+b)
2a

, b
a
≤ f(b)

f(a)
.

(4.1)
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Proof . Because of a ≤ b, for all λ ∈ [1,+∞) we have min {a, λb} = a. Hence, using the inequality
(2.2) in Theorem 2.12, for all B−1-convex functions f it can be seen that

f (a) = f (min {a, λb}) ≤ min {f (a) , λf (b)} .

Namely, for all λ ∈ [1,+∞) we get f (a) ≤ λf (b). Since it is valid for all λ, also it holds for λ = 1.
Because this investigation is provided for every x, y ∈ [a, b], x ≤ y; we obtain that a B−1-convex
function is monotone nondecreasing function.

Now, let us examine the case of min {λa, b}. Then, we have∫ +∞

1

f (min {λa, b}) dλ =

∫ b/a

1

f (min {λa, b}) dλ+

∫ +∞

b/a

f (min {λa, b}) dλ

=

∫ b/a

1

f (λa) dλ+

∫ +∞

b/a

f (b) dλ .

Here,
∫ +∞
b/a

f (b) dλ = +∞ and a similar case occurs in the right side of the inequality. Therefore,

since
∫ +∞
1

f (min {λa, b}) dλ =
∫ +∞
1

min {λf (a) , f (b)} dλ = +∞, the inequality holds when we take
the region of integration as [1,+∞). Let’s get the region of integration as

[
1, b

a

]
. Thus, from the

B−1-convexity of f , we deduce that∫ b/a

1

f (min {λa, b}) dλ ≤
∫ b/a

1

min {λf (a) , f (b)} dλ .

If we make the substitution t = λa, we obtain that∫ b/a

1

f (min {λa, b}) dλ =

∫ b/a

1

f (λa) dλ

=
1

a

∫ b

a

f (t) dt ≤
∫ b/a

1

min {λf (a) , f (b)} dλ .

To this inequality, there are two possibilities:
1) It can be 1 ≤ f(b)

f(a)
< b

a
. Then, we have that∫ b/a

1

min {λf (a) , f (b)} dλ =

∫ f(b)
f(a)

1

min {λf (a) , f (b)} dλ

+

∫ b/a

f(b)
f(a)

min {λf (a) , f (b)} dλ

=

∫ f(b)
f(a)

1

λf (a) dλ+

∫ b/a

f(b)
f(a)

f (b) dλ

=
f (a)

2

(f (b))2 − (f (a))2

(f (a))2
+ f (b)

bf (a)− af (b)

af (a)

=
2bf (a) f (b)− a (f (a))2 − a (f (b))2

2af (a)
.

Thereby, we get

1

b− a

∫ b

a

f (t) dt ≤
2bf (a) f (b)− a

[
(f (a))2 + (f (b))2

]
2 (b− a) f (a)

.
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2) If f(b)
f(a)
≥ b

a
, then we deduce that∫ b/a

1

min {λf (a) , f (b)} dλ =

∫ b/a

1

λf (a) dλ

= f (a)
b2 − a2

2a2
.

Thus, we have the following inequalities:

1

b− a

∫ b

a

f (t) dt ≤ f (a) (a+ b)

2a
.

Consequently, as we take all of the foregoing inequalities into consideration, Hermite-Hadamard
inequality for B−1-convex functions is obtained as in the inequality (4.1). �
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