Hermite-Hadamard inequalities for \mathbb{B}-convex and \mathbb{B}^{-1}-convex functions

Ilknur Yesilcea, ${ }^{\text {a,*, Gabil Adilov }}{ }^{\text {b }}$
${ }^{a}$ Mersin University, Faculty of Science and Letters, Department of Mathematics, 33343, Mersin, Turkey
${ }^{b}$ Akdeniz University, Faculty of Education, Department of Mathematics, 07058, Antalya, Turkey
(Communicated by Themistocles M. Rassias)

Abstract

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for \mathbb{B}-convex and \mathbb{B}^{-1}-convex functions are proven.

Keywords: Hermite-Hadamard Inequality; \mathbb{B}-convex functions; \mathbb{B}^{-1}-convex functions; abstract convexity.
2010 MSC: Primary 39B62; Secondary 26B25.

1. Introduction

Theory of Inequality is one of the most important application fields of convex analysis. A great number of inequalities can be obtained by taking advantage of convexity concept. Hermite-Hadamard inequality is one of the most important applications within these inequalities. Firstly, for convex functions Hermite-Hadamard inequality was proven by Hermite in [11] and then, ten years later, Hadamard rediscovered its left-hand side in [10] (see also [8] for the historical considerations), then examined in numerous article, like [8, 14]. Moreover, Hermite-Hadamard inequalities for different types of abstract convex functions were studied in [1, 2, , 3, , 6, 8, , 12, 15, 16, 18, 20,

In this article, Hermite-Hadamard inequalities for \mathbb{B}-convex and \mathbb{B}^{-1}-convex functions which are new kinds of abstract convex functions are proven.

In section of preliminaries, we mention some definitions and theorems of \mathbb{B}-convexity and \mathbb{B}^{-1} convexity which will be necessary in the sequel (Section 2.1 and Section 2.2), also recall HermiteHadamard inequalities of some types of abstract convex functions (Section 2.3). In Section 3 and

[^0]Section 4, we prove Hermite-Hadamard inequalities for \mathbb{B}-convex functions and \mathbb{B}^{-1}-convex functions, respectively.

In this paper, we will use the following notations:
$\mathbb{Z}^{-} \quad$ is the set of negative integers;
$\mathbb{R}_{*} \quad$ is $\mathbb{R} \backslash\{0\} ;$
$\mathbb{R}^{n} \quad$ is the n -dimensional vector space;
$\mathbb{R}_{+}^{n} \quad\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i} \geq 0, i=1,2, \ldots, n\right\} ;$
$\mathbb{R}_{++}^{n} \quad\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0, i=1,2, \ldots, n\right\} ;$
$\operatorname{Co}^{r}(A) \quad$ is the r-convex hull of A;
$C o^{\infty}(A) \quad$ is the \mathbb{B}-polytope of A;
$C o^{-\infty}(A) \quad$ is the \mathbb{B}^{-1}-polytope of A;
$e p i(f) \quad\{(x, \mu) \mid x \in U, \mu \in \mathbb{R}, \mu \geq f(x)\}$;
$e p i^{*}(f) \quad\left\{(x, \mu) \mid x \in U, \mu \in \mathbb{R}_{*}, \mu \geq f(x)\right\} ;$
$\bigvee_{i=1}^{m} x^{(i)} \quad \bigvee_{i=1}^{m} x^{(i)}=\left(\max \left\{x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(m)}\right\}, \ldots, \max \left\{x_{n}^{(1)}, x_{n}^{(2)}, \ldots, x_{n}^{(m)}\right\}\right) ;$
$\wedge_{i=1}^{\underset{m}{m}} x^{(i)} \wedge_{i=1}^{m} x^{(i)}=\left(\min \left\{x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(m)}\right\}, \ldots, \min \left\{x_{n}^{(1)}, x_{n}^{(2)}, \ldots, x_{n}^{(m)}\right\}\right)$.

2. Preliminaries

2.1. \mathbb{B}-convexity

Let $r \in \mathbb{N}, \varphi_{r}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{r}(x)=x^{2 r+1}$ and $\Phi_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \Phi_{r}(x)=\Phi_{r}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\left(\varphi_{r}\left(x_{1}\right), \varphi_{r}\left(x_{2}\right), \ldots, \varphi_{r}\left(x_{n}\right)\right)$. For a finite nonempty set $A=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\} \subset \mathbb{R}^{n}$, the r-convex hull of A, denoted as $C o^{r}(A)$, is given by

$$
C o^{r}(A)=\left\{\Phi_{r}^{-1}\left(\sum_{i=1}^{m} t_{i} \Phi_{r}\left(x^{(i)}\right)\right): t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1\right\}
$$

Definition 2.1. [5] The Kuratowski-Painleve upper limit of the sequence of sets $\left(C o^{r}(A)\right)_{r \in \mathbb{N}}$, denoted by $C o^{\infty}(A)$ where A is a finite subset of \mathbb{R}^{n}, is called \mathbb{B}-polytope of A.

Definition 2.2. A subset U of \mathbb{R}^{n} is \mathbb{B}-convex if for all finite subset $A \subset U$ the \mathbb{B}-polytope $C o^{\infty}(A)$ is contained in U.

In $\mathbb{R}_{+}^{n}, \mathbb{B}$-convex set is defined in a different way [5]:
A subset U of \mathbb{R}_{+}^{n} is \mathbb{B}-convex if and only if for all $x^{(1)}, x^{(2)} \in U$ and all $\lambda \in[0,1]$ one has $\lambda x^{(1)} \vee x^{(2)} \in U$.

Here, we denote the least upper bound with respect to the coordinate-wise order relation of $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in \mathbb{R}^{n}$ by $\vee_{i=1}^{m} x^{(i)}$, that is:
where, $x_{j}^{(i)}$ denotes j th coordinate of the point $x^{(i)}$.
Remark 2.3. In \mathbb{R}_{+}, \mathbb{B}-convex sets are intervals because of definition.
Furthermore, in [5, 13], the definition of \mathbb{B}-convex functions is given as follows:

Definition 2.4. Let $U \subset \mathbb{R}^{n}$. A function $f: U \rightarrow \mathbb{R} \bigcup\{ \pm \infty\}$ is called a \mathbb{B}-convex function if $\operatorname{epi}(f)=\{(x, \mu) \mid x \in U, \mu \in \mathbb{R}, \mu \geq f(x)\}$ is a \mathbb{B}-convex set.

The following theorem provides a sufficient and necessary condition for \mathbb{B}-convex functions in \mathbb{R}_{+}^{n} [5, 13].

Theorem 2.5. Let $U \subset \mathbb{R}_{+}^{n}, f: U \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$. The function f is \mathbb{B}-convex if and only if U is a \mathbb{B}-convex set and for all $x, y \in U$ and all $\lambda \in[0,1]$ the following inequality holds:

$$
\begin{equation*}
f(\lambda x \vee y) \leq \lambda f(x) \vee f(y) . \tag{2.1}
\end{equation*}
$$

2.2. \mathbb{B}^{-1}-convexity

For $r \in \mathbb{Z}^{-}$, the map $x \rightarrow \varphi_{r}(x)=x^{2 r+1}$ is a homeomorphism from $\mathbb{R}_{*}=\mathbb{R} \backslash\{0\}$ to itself; $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \Phi_{r}(x)=\left(\varphi_{r}\left(x_{1}\right), \varphi_{r}\left(x_{2}\right), \ldots, \varphi_{r}\left(x_{n}\right)\right)$ is homeomorphism from \mathbb{R}_{*}^{n} to itself.

For a finite nonempty set $A=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\} \subset \mathbb{R}_{*}^{n}$ the Φ_{r}-convex hull (shortly r-convex hull) of A, which we denote $C o^{r}(A)$ is given by

$$
C o^{r}(A)=\left\{\Phi_{r}^{-1}\left(\sum_{i=1}^{m} t_{i} \Phi_{r}\left(x^{(i)}\right)\right): t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1\right\}
$$

We denote by ${ }_{i=1}^{m} x^{(i)}$ the greatest lower bound with respect to the coordinate-wise order relation of $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in \mathbb{R}^{n}$, that is:

$$
\wedge_{i=1}^{m} x^{(i)}=\left(\min \left\{x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(m)}\right\}, \ldots, \min \left\{x_{n}^{(1)}, x_{n}^{(2)}, \ldots, x_{n}^{(m)}\right\}\right)
$$

where, $x_{j}^{(i)}$ denotes j th coordinate of the point $x^{(i)}$.
Thus, we can define \mathbb{B}^{-1}-polytopes as follows:
Definition 2.6. [4] The Kuratowski-Painleve upper limit of the sequence of sets $\left\{C o^{r}(A)\right\}_{r \in \mathbb{Z}^{-}}$, denoted by $C o^{-\infty}(A)$ where A is a finite subset of \mathbb{R}_{*}^{n}, is called \mathbb{B}^{-1}-polytope of A.

The definition of \mathbb{B}^{-1}-polytope can be expressed in the following form in \mathbb{R}_{++}^{n}.
Theorem 2.7. [4] For all nonempty finite subsets $A=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\} \subset \mathbb{R}_{++}^{n}$ we have

$$
C o^{-\infty}(A)=\lim _{r \rightarrow-\infty} C o^{r}(A)=\left\{{\left.\underset{i=1}{m} t_{i} x^{(i)}: t_{i} \geq 1, \min _{1 \leq i \leq m} t_{i}=1\right\} ~ . ~}_{\text {ind }}\right.
$$

Next, we give the definition of \mathbb{B}^{-1}-convex sets.
Definition 2.8. [4] A subset U of \mathbb{R}_{*}^{n} is called a \mathbb{B}^{-1}-convex if for all finite subsets $A \subset U$ the \mathbb{B}^{-1}-polytope $C o^{-\infty}(A)$ is contained in U.

By Theorem 2.7, we can reformulate the above definition for subsets of \mathbb{R}_{++}^{n} :
Theorem 2.9. [4] A subset U of \mathbb{R}_{++}^{n} is \mathbb{B}^{-1}-convex if and only if for all $x^{(1)}, x^{(2)} \in U$ and all $\lambda \in[1, \infty)$ one has $\lambda x^{(1)} \wedge x^{(2)} \in U$.

Remark 2.10. As a result of Theorem 2.9, we can say that \mathbb{B}^{-1}-convex sets in \mathbb{R}_{++}are positive intervals.

Definition 2.11. [13] For $U \subset \mathbb{R}_{*}^{n}$, a function $f: U \rightarrow \mathbb{R}_{*}$ is called a \mathbb{B}^{-1}-convex function if $e p i^{*}(f)=\left\{(x, \mu) \mid x \in U, \mu \in \mathbb{R}_{*}, \mu \geq f(x)\right\}$ is a \mathbb{B}^{-1}-convex set.

In \mathbb{R}_{++}^{n}, we can give the following fundamental theorem which provides a sufficient and necessary condition for \mathbb{B}^{-1}-convex functions [13].
 set U is \mathbb{B}^{-1}-convex and one has the inequality

$$
\begin{equation*}
f(\lambda x \wedge y) \leq \lambda f(x) \wedge f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in U$ and all $\lambda \in[1,+\infty)$.

2.3. Abstract Convexity Classes and Hermite-Hadamard inequalities.

Recall that for a function $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$, which is convex on $[a, b]$, we have the following

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{1}{2}(f(a)+f(b))
$$

This inequality is well known as the Hermite-Hadamard inequality. Moreover, for different classes of abstract convex functions, Hermite-Hadamard inequalities which are suitable for these function classes are obtained. For example:

1) A function $f:[a, b] \rightarrow(0,+\infty)$ is said to be log-convex or multiplicatively convex if for all $x, y \in[a, b]$ and $\lambda \in[0,1]$ we have $([17])$

$$
f(\lambda x+(1-\lambda) y) \leq[f(x)]^{\lambda}[f(y)]^{1-\lambda}
$$

and for f, we have that

$$
f\left(\frac{a+b}{2}\right) \leq \exp \left[\frac{1}{b-a} \int_{a}^{b} f(t) d t\right] \leq \sqrt{(f(a)+f(b))}
$$

which is an Inequality of Hermite-Hadamard for log-convex functions.
2) A function $p:[a, b] \rightarrow(0,+\infty)$ is said to be p-function if for all $x, y \in[a, b]$ and $\lambda \in[0,1]$ one has the inequality ([19])

$$
p(\lambda x+(1-\lambda) y) \leq p(x)+p(y)
$$

and Hermite-Hadamard inequality for the function p is

$$
p\left(\frac{a+b}{2}\right) \leq \frac{2}{b-a} \int_{a}^{b} p(t) d t \leq 2(p(a)+p(b))
$$

3) A positive function f is quasi-convex on a real interval $[a, b]$ if for all $x, y \in[a, b]$ and $\lambda \in[0,1]$ we have ([7])

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}
$$

We know that the class of p-functions consists of the class of nonnegative quasi-convex functions. Hence, the Hermite-Hadamard inequality for p-functions is also valid for nonnegative quasi-convex functions. Additionally, different inequalities for Jensen-quasi-convex functions which is a special form of quasi-convex functions were studied:

A function $f:[a, b] \rightarrow(0,+\infty)$ is Jensen or J-quasi-convex if for all $x, y \in[a, b]$ one has the inequality ([7])

$$
f\left(\frac{x+y}{2}\right) \leq \max \{f(x), f(y)\}
$$

and Hermite-Hadamard inequality for J-quasi-convex functions is

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t+\frac{1}{2(b-a)} \int_{a}^{b}|f(t)-f(a+b-t)| d t
$$

4) A function $f:[a, b] \rightarrow(0,+\infty)$ is said to belong to the class $\mathrm{Q}(\mathrm{I})$ if it is nonnegative and for all $x, y \in[a, b]$ and $\lambda \in(0,1)$, satisfies the inequality (9$]$)

$$
f(\lambda x+(1-\lambda) y) \leq \frac{f(x)}{\lambda}+\frac{f(y)}{1-\lambda}
$$

and for the $\mathrm{Q}(\mathrm{I})$ class of functions, one has the inequality

$$
f\left(\frac{a+b}{2}\right) \leq \frac{4}{b-a} \int_{a}^{b} f(t) d t
$$

that is Hermite-Hadamard inequality for the $\mathrm{Q}(\mathrm{I})$ class of functions.
Accordingly, as we take importance of Hermite-Hadamard inequality and its applications into consideration, we prove the Hermite-Hadamard inequalities for \mathbb{B}-convex and \mathbb{B}^{-1}-convex functions which are new abstract convex function classes in this paper.

3. Hermite-Hadamard inequality for \mathbb{B}-convex Functions.

Theorem 3.1. Let $f:[a, b] \subset \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a \mathbb{B}-convex function. Then one has the inequalities

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \begin{cases}f(a), & f(a) \geq f(b) \tag{3.1}\\ \frac{b\left([f(a)]^{2}+[f(b))^{2}\right)-2 a f(a) f(b)}{2(b-a) f(b)}, & f(a)<f(b) .\end{cases}
$$

Proof . Since $a \leq b$, for all $\lambda \in[0,1]$ we have $\max \{\lambda a, b\}=b$. Then, from the inequality (2.1) in Theorem 2.5

$$
f(b)=f(\max \{\lambda a, b\}) \leq \max \{\lambda f(a), f(b)\}
$$

is obtained. Since it is valid for all functions, there is no point in examining this case.
Thus, let us examine the case of $\max \{a, \lambda b\}$. If we make the substitution $t=\lambda b$, we obtain that

$$
\begin{aligned}
\int_{0}^{1} f(\max \{a, \lambda b\}) d \lambda & =\int_{0}^{a / b} f(\max \{a, \lambda b\}) d \lambda+\int_{a / b}^{1} f(\max \{a, \lambda b\}) d \lambda \\
& =\int_{0}^{a / b} f(a) d \lambda+\int_{a / b}^{1} f(\lambda b) d \lambda \\
& =f(a) \frac{a}{b}+\frac{1}{b} \int_{a}^{b} f(t) d t
\end{aligned}
$$

From \mathbb{B}-convexity of the function f, following inequality holds

$$
\int_{0}^{1} f(\max \{a, \lambda b\}) d \lambda \leq \int_{0}^{1} \max \{f(a), \lambda f(b)\} d \lambda
$$

For the right-hand side of the inequality, there are the following two possible cases:

1) It can be $f(a) \geq f(b)$. In this case, we have

$$
\int_{0}^{1} \max \{f(a), \lambda f(b)\} d \lambda=\int_{0}^{1} f(a) d \lambda=f(a)
$$

Hence, we obtain that

$$
f(a) \frac{a}{b}+\frac{1}{b} \int_{a}^{b} f(t) d t \leq f(a) \Rightarrow \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq f(a) .
$$

2) If $f(a)<f(b)$, we deduce that

$$
\begin{aligned}
\int_{0}^{1} \max \{f(a), \lambda f(b)\} d \lambda= & \int_{0}^{f(a) / f(b)} \max \{f(a), \lambda f(b)\} d \lambda \\
& +\int_{f(a) / f(b)}^{1} \max \{f(a), \lambda f(b)\} d \lambda \\
= & \int_{0}^{f(a) / f(b)} f(a) d \lambda+\int_{f(a) / f(b)}^{1} \lambda f(b) d \lambda \\
= & \frac{(f(a))^{2}+(f(b))^{2}}{2 f(b)} .
\end{aligned}
$$

Thus,

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{b\left([f(a)]^{2}+[f(b)]^{2}\right)-2 a f(a) f(b)}{2(b-a) f(b)}
$$

is obtained. Thence, Hermite-Hadamard inequality for \mathbb{B}-convex functions is

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \begin{cases}f(a), & f(a) \geq f(b) \\ \frac{b\left([f(a)]^{2}+[f(b))^{2}\right)-2 a f(a) f(b)}{2(b-a) f(b)}, & f(a)<f(b) .\end{cases}
$$

4. Hermite-Hadamard inequality for \mathbb{B}^{-1}-convex Functions

Theorem 4.1. Suppose $f:[a, b] \subset \mathbb{R}_{++} \longrightarrow \mathbb{R}_{++}$is a \mathbb{B}^{-1}-convex function. Then the following inequalities hold

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \begin{cases}\frac{2 b f(a) f(b)-a\left[(f(a))^{2}+(f(b))^{2}\right]}{2(b-a) f(a)}, & 1 \leq \frac{f(b)}{f(a)}<\frac{b}{a} \tag{4.1}\\ \frac{f(a)(a+b)}{2 a}, & \frac{b}{a} \leq \frac{f(b)}{f(a)} .\end{cases}
$$

Proof . Because of $a \leq b$, for all $\lambda \in[1,+\infty)$ we have $\min \{a, \lambda b\}=a$. Hence, using the inequality (2.2) in Theorem 2.12, for all \mathbb{B}^{-1}-convex functions f it can be seen that

$$
f(a)=f(\min \{a, \lambda b\}) \leq \min \{f(a), \lambda f(b)\}
$$

Namely, for all $\lambda \in[1,+\infty)$ we get $f(a) \leq \lambda f(b)$. Since it is valid for all λ, also it holds for $\lambda=1$. Because this investigation is provided for every $x, y \in[a, b], x \leq y$; we obtain that a \mathbb{B}^{-1}-convex function is monotone nondecreasing function.

Now, let us examine the case of $\min \{\lambda a, b\}$. Then, we have

$$
\begin{aligned}
\int_{1}^{+\infty} f(\min \{\lambda a, b\}) d \lambda & =\int_{1}^{b / a} f(\min \{\lambda a, b\}) d \lambda+\int_{b / a}^{+\infty} f(\min \{\lambda a, b\}) d \lambda \\
& =\int_{1}^{b / a} f(\lambda a) d \lambda+\int_{b / a}^{+\infty} f(b) d \lambda
\end{aligned}
$$

Here, $\int_{b / a}^{+\infty} f(b) d \lambda=+\infty$ and a similar case occurs in the right side of the inequality. Therefore, since $\int_{1}^{+\infty} f(\min \{\lambda a, b\}) d \lambda=\int_{1}^{+\infty} \min \{\lambda f(a), f(b)\} d \lambda=+\infty$, the inequality holds when we take the region of integration as $[1,+\infty)$. Let's get the region of integration as $\left[1, \frac{b}{a}\right]$. Thus, from the \mathbb{B}^{-1}-convexity of f, we deduce that

$$
\int_{1}^{b / a} f(\min \{\lambda a, b\}) d \lambda \leq \int_{1}^{b / a} \min \{\lambda f(a), f(b)\} d \lambda
$$

If we make the substitution $t=\lambda a$, we obtain that

$$
\begin{aligned}
\int_{1}^{b / a} f(\min \{\lambda a, b\}) d \lambda & =\int_{1}^{b / a} f(\lambda a) d \lambda \\
& =\frac{1}{a} \int_{a}^{b} f(t) d t \leq \int_{1}^{b / a} \min \{\lambda f(a), f(b)\} d \lambda
\end{aligned}
$$

To this inequality, there are two possibilities:

1) It can be $1 \leq \frac{f(b)}{f(a)}<\frac{b}{a}$. Then, we have that

$$
\begin{aligned}
\int_{1}^{b / a} \min \{\lambda f(a), f(b)\} d \lambda= & \int_{1}^{\frac{f(b)}{f(a)}} \min \{\lambda f(a), f(b)\} d \lambda \\
& +\int_{\frac{f(b)}{f(a)}}^{b i n}\{\lambda f(a), f(b)\} d \lambda \\
= & \int_{1}^{\frac{f(b)}{f(a)}} \lambda f(a) d \lambda+\int_{\frac{f(b)}{f(a)}}^{b / a} f(b) d \lambda \\
= & \frac{f(a)}{2} \frac{(f(b))^{2}-(f(a))^{2}}{(f(a))^{2}}+f(b) \frac{b f(a)-a f(b)}{a f(a)} \\
= & \frac{2 b f(a) f(b)-a(f(a))^{2}-a(f(b))^{2}}{2 a f(a)} .
\end{aligned}
$$

Thereby, we get

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{2 b f(a) f(b)-a\left[(f(a))^{2}+(f(b))^{2}\right]}{2(b-a) f(a)}
$$

2) If $\frac{f(b)}{f(a)} \geq \frac{b}{a}$, then we deduce that

$$
\begin{aligned}
\int_{1}^{b / a} \min \{\lambda f(a), f(b)\} d \lambda & =\int_{1}^{b / a} \lambda f(a) d \lambda \\
& =f(a) \frac{b^{2}-a^{2}}{2 a^{2}}
\end{aligned}
$$

Thus, we have the following inequalities:

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)(a+b)}{2 a} .
$$

Consequently, as we take all of the foregoing inequalities into consideration, Hermite-Hadamard inequality for \mathbb{B}^{-1}-convex functions is obtained as in the inequality (4.1).

Acknowledgements

This work was supported by Akdeniz University, Mersin University and TUBITAK (The Scientific and Technological Research Council of Turkey).

References

[1] G. Adilov, Increasing Co-radiant Functions and Hermite-Hadamard Type Inequalities, Mathematical Inequalities and Applications. 14 (2011) 45-60.
[2] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard Type Inequalities, Journal of Inequalities and Applications, 2009 (2009) 13 pages.
[3] G. Adilov and S. Kemali, Hermite-Hadamard-Type Inequalities for Increasing Positively Homogeneous Functions, J. Ineq. Appl. 2007 (2007) 1-11.
[4] G. Adilov and I. Yesilce, \mathbb{B}^{-1}-convex Sets and \mathbb{B}^{-1}-measurable Maps, Numer. Funct. Anal. Optim. 33 (2012) 131-141.
[5] W. Briec and C.D. Horvath, \mathbb{B}-convexity, Optim. 53 (2004) 107-127.
[6] S.S. Dragomir, J. Dutta and A.M. Rubinov, Hermite-Hadamard Type Inequalities for Increasing Convex Alongrays Functions, Analysis (placeCityMunich) 24 (2004) 171-181.
[7] S.S. Dragomir and C.E.M. Pearce, Quasi-convex Functions and Hadamards Inequality, Bull. Australian Math. Soc. 57 (1998) 377-385.
[8] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[9] E.K. Godunova and V.I. Levin, Inequalities For Functions of a Broad Class That Contains Convex, Monotone and Some Other Forms of Functions, Numer. Math. Math. Phys. (Moskov. Gos. Ped. Inst, Moscow) 166 (1985) 138-142.
[10] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. des Math. Pures et Appl. 58 (1893) 171-215.
[11] C. Hermite, Sur deux limites d'une integrale define, Mathesis 3 (1883) 82.
[12] H. Kavurmaci, M. Avci and M.E. Ozdemir, New Inequalities of Hermite-Hadamard Type for Convex Functions with Applications, J. Ineq. Appl. 2011 (2011): 86, doi: 10.1186/1029-2011-86.
[13] S. Kemali, I. Yesilce and G. Adilov, \mathbb{B}-convexity, \mathbb{B}^{-1}-convexity, and Their Comparison, Numer. Funct. Anal. Optim. 36 (2015) 133-146.
[14] C.P. Niculescu and L.-E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange 29 (2003) 663-685.
[15] M.E. Ozdemir, E. Set and M.Z. Sarikaya, Some New Hadamard Type Inequalities for Co-Ordinated m-Convex and (α, m)-Convex Functions, Hacettepe J. Math. Stat. 40 (2011) 219-229.
[16] C.E.M. Pearce and A.M. Rubinov, P-functions, Quasi-convex Functions and Hadamard-Type Inequalities, J. Math. Anal. Appl. 240 (1999) 92-104.
[17] J. Pecaric, F. Proschan and YL. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press Inc., Boston, 1992.
[18] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston-DordrechtLondon, 2000.
[19] I. Singer, Abstract Convex Analysis, Wiley-Interscience Publication, New York, 1997.
[20] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for $L(j)$-convex functions and $S(j)$-convex Functions, Malaya J. Matematik 3 (2015) 346-359.

[^0]: *Corresponding author
 Email addresses: ilknuryesilce@gmail.com (Ilknur Yesilce), gabiladilov@gmail.com (Gabil Adilov)

