Int. J. Nonlinear Anal. Appl. 8 (2017) No. 1, 225-233 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.1621.1427

Hermite-Hadamard inequalities for $\mathbb B\text{-convex}$ and $\mathbb B^{-1}\text{-convex}$ functions

Ilknur Yesilce^{a,*}, Gabil Adilov^b

^aMersin University, Faculty of Science and Letters, Department of Mathematics, 33343, Mersin, Turkey ^bAkdeniz University, Faculty of Education, Department of Mathematics, 07058, Antalya, Turkey

(Communicated by Themistocles M. Rassias)

Abstract

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for \mathbb{B} -convex and \mathbb{B}^{-1} -convex functions are proven.

Keywords: Hermite-Hadamard Inequality; \mathbb{B} -convex functions; \mathbb{B}^{-1} -convex functions; abstract convexity.

2010 MSC: Primary 39B62; Secondary 26B25.

1. Introduction

Theory of Inequality is one of the most important application fields of convex analysis. A great number of inequalities can be obtained by taking advantage of convexity concept. Hermite-Hadamard inequality is one of the most important applications within these inequalities. Firstly, for convex functions Hermite-Hadamard inequality was proven by Hermite in [11] and then, ten years later, Hadamard rediscovered its left-hand side in [10] (see also [8] for the historical considerations), then examined in numerous article, like [8, 14]. Moreover, Hermite-Hadamard inequalities for different types of abstract convex functions were studied in [1, 2, 3, 6, 8, 12, 15, 16, 18, 20].

In this article, Hermite-Hadamard inequalities for \mathbb{B} -convex and \mathbb{B}^{-1} -convex functions which are new kinds of abstract convex functions are proven.

In section of preliminaries, we mention some definitions and theorems of \mathbb{B} -convexity and \mathbb{B}^{-1} convexity which will be necessary in the sequel (Section 2.1 and Section 2.2), also recall Hermite-Hadamard inequalities of some types of abstract convex functions (Section 2.3). In Section 3 and

*Corresponding author

Received: September 2016 Revised: April 2017

Email addresses: ilknuryesilce@gmail.com (Ilknur Yesilce), gabiladilov@gmail.com (Gabil Adilov)

Section 4, we prove Hermite-Hadamard inequalities for \mathbb{B} -convex functions and \mathbb{B}^{-1} -convex functions, respectively.

In this paper	, we will use the following notations:
\mathbb{Z}^{-}	is the set of negative integers;
\mathbb{R}_*	is $\mathbb{R} \setminus \{0\};$
\mathbb{R}^{n}	is the n-dimensional vector space;
\mathbb{R}^n_+	$\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0, \ i = 1, 2, \dots, n\};$
\mathbb{R}^{n}_{++}	$\{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i > 0, \ i = 1, 2, \ldots, n\};$
$Co^r(A)$	is the r-convex hull of A ;
$Co^{\infty}(A)$	is the \mathbb{B} -polytope of A ;
$Co^{-\infty}(A)$	is the \mathbb{B}^{-1} -polytope of A ;
epi(f)	$\{(x,\mu) \mid x \in U, \ \mu \in \mathbb{R}, \ \mu \ge f(x)\};\$
$epi^*(f)$	$\{(x,\mu) \mid x \in U, \ \mu \in \mathbb{R}_*, \ \mu \ge f(x)\};$
$\bigvee_{i=1}^{m} x^{(i)}$	$\bigvee_{i=1}^{m} x^{(i)} = \left(\max\left\{ x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(m)} \right\}, \dots, \max\left\{ x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(m)} \right\} \right);$
$\bigwedge_{i=1}^{m} x^{(i)}$	$\bigwedge_{i=1}^{n-1} x^{(i)} = \left(\min\left\{ x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(m)} \right\}, \dots, \min\left\{ x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(m)} \right\} \right).$

2. Preliminaries

2.1. \mathbb{B} -convexity

Let $r \in \mathbb{N}$, $\varphi_r : \mathbb{R} \to \mathbb{R}$, $\varphi_r(x) = x^{2r+1}$ and $\Phi_r : \mathbb{R}^n \to \mathbb{R}^n$, $\Phi_r(x) = \Phi_r(x_1, x_2, \dots, x_n) = (\varphi_r(x_1), \varphi_r(x_2), \dots, \varphi_r(x_n))$. For a finite nonempty set $A = \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\} \subset \mathbb{R}^n$, the r-convex hull of A, denoted as $Co^r(A)$, is given by

$$Co^{r}(A) = \left\{ \Phi_{r}^{-1}\left(\sum_{i=1}^{m} t_{i} \Phi_{r}(x^{(i)})\right) : t_{i} \ge 0, \sum_{i=1}^{m} t_{i} = 1 \right\} .$$

Definition 2.1. [5] The Kuratowski-Painleve upper limit of the sequence of sets $(Co^r(A))_{r\in\mathbb{N}}$, denoted by $Co^{\infty}(A)$ where A is a finite subset of \mathbb{R}^n , is called \mathbb{B} -polytope of A.

Definition 2.2. A subset U of \mathbb{R}^n is \mathbb{B} -convex if for all finite subset $A \subset U$ the \mathbb{B} -polytope $Co^{\infty}(A)$ is contained in U.

In \mathbb{R}^n_+ , \mathbb{B} -convex set is defined in a different way [5]:

A subset U of \mathbb{R}^n_+ is \mathbb{B} -convex if and only if for all $x^{(1)}, x^{(2)} \in U$ and all $\lambda \in [0, 1]$ one has $\lambda x^{(1)} \vee x^{(2)} \in U$.

Here, we denote the least upper bound with respect to the coordinate-wise order relation of $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in \mathbb{R}^n$ by $\bigvee_{i=1}^m x^{(i)}$, that is:

$$\bigvee_{i=1}^{m} x^{(i)} = \left(\max\left\{ x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(m)} \right\}, \dots, \max\left\{ x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(m)} \right\} \right)$$

where, $x_i^{(i)}$ denotes *j*th coordinate of the point $x^{(i)}$.

Remark 2.3. In \mathbb{R}_+ , \mathbb{B} -convex sets are intervals because of definition.

Furthermore, in [5, 13], the definition of \mathbb{B} -convex functions is given as follows:

Definition 2.4. Let $U \subset \mathbb{R}^n$. A function $f : U \to \mathbb{R} \bigcup \{\pm \infty\}$ is called a B-convex function if $epi(f) = \{(x, \mu) | x \in U, \mu \in \mathbb{R}, \mu \ge f(x)\}$ is a B-convex set.

The following theorem provides a sufficient and necessary condition for \mathbb{B} -convex functions in \mathbb{R}^n_+ [5, 13].

Theorem 2.5. Let $U \subset \mathbb{R}^n_+$, $f : U \to \mathbb{R}_+ \cup \{+\infty\}$. The function f is \mathbb{B} -convex if and only if U is a \mathbb{B} -convex set and for all $x, y \in U$ and all $\lambda \in [0, 1]$ the following inequality holds:

$$f(\lambda x \vee y) \le \lambda f(x) \vee f(y) \quad . \tag{2.1}$$

2.2. \mathbb{B}^{-1} -convexity

For $r \in \mathbb{Z}^-$, the map $x \to \varphi_r(x) = x^{2r+1}$ is a homeomorphism from $\mathbb{R}_* = \mathbb{R} \setminus \{0\}$ to itself; $x = (x_1, x_2, \dots, x_n) \to \Phi_r(x) = (\varphi_r(x_1), \varphi_r(x_2), \dots, \varphi_r(x_n))$ is homeomorphism from \mathbb{R}^n_* to itself.

For a finite nonempty set $A = \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\} \subset \mathbb{R}^n_*$ the Φ_r -convex hull (shortly r-convex hull) of A, which we denote $Co^r(A)$ is given by

$$Co^{r}(A) = \left\{ \Phi_{r}^{-1}\left(\sum_{i=1}^{m} t_{i} \Phi_{r}(x^{(i)})\right) : t_{i} \ge 0, \sum_{i=1}^{m} t_{i} = 1 \right\} .$$

We denote by $\bigwedge_{i=1}^{m} x^{(i)}$ the greatest lower bound with respect to the coordinate-wise order relation of $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \in \mathbb{R}^n$, that is:

$$\bigwedge_{i=1}^{m} x^{(i)} = \left(\min\left\{ x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(m)} \right\}, \dots, \min\left\{ x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(m)} \right\} \right)$$

where, $x_j^{(i)}$ denotes *j*th coordinate of the point $x^{(i)}$.

Thus, we can define \mathbb{B}^{-1} -polytopes as follows:

Definition 2.6. [4] The Kuratowski-Painleve upper limit of the sequence of sets $\{Co^r(A)\}_{r\in\mathbb{Z}^-}$, denoted by $Co^{-\infty}(A)$ where A is a finite subset of \mathbb{R}^n_* , is called \mathbb{B}^{-1} -polytope of A.

The definition of \mathbb{B}^{-1} -polytope can be expressed in the following form in \mathbb{R}^{n}_{++} .

Theorem 2.7. [4] For all nonempty finite subsets $A = \{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\} \subset \mathbb{R}^n_{++}$ we have

$$Co^{-\infty}(A) = \lim_{r \to -\infty} Co^{r}(A) = \left\{ \bigwedge_{i=1}^{m} t_{i} x^{(i)} : t_{i} \ge 1, \min_{1 \le i \le m} t_{i} = 1 \right\}$$

Next, we give the definition of \mathbb{B}^{-1} -convex sets.

Definition 2.8. [4] A subset U of \mathbb{R}^n_* is called a \mathbb{B}^{-1} -convex if for all finite subsets $A \subset U$ the \mathbb{B}^{-1} -polytope $Co^{-\infty}(A)$ is contained in U.

By Theorem 2.7, we can reformulate the above definition for subsets of \mathbb{R}^{n}_{++} :

Theorem 2.9. [4] A subset U of \mathbb{R}^n_{++} is \mathbb{B}^{-1} -convex if and only if for all $x^{(1)}, x^{(2)} \in U$ and all $\lambda \in [1, \infty)$ one has $\lambda x^{(1)} \wedge x^{(2)} \in U$.

Remark 2.10. As a result of Theorem 2.9, we can say that \mathbb{B}^{-1} -convex sets in \mathbb{R}_{++} are positive intervals.

Definition 2.11. [13] For $U \subset \mathbb{R}^n_*$, a function $f : U \to \mathbb{R}_*$ is called a \mathbb{B}^{-1} -convex function if $epi^*(f) = \{(x, \mu) | x \in U, \mu \in \mathbb{R}_*, \mu \ge f(x)\}$ is a \mathbb{B}^{-1} -convex set.

In \mathbb{R}^{n}_{++} , we can give the following fundamental theorem which provides a sufficient and necessary condition for \mathbb{B}^{-1} -convex functions [13].

Theorem 2.12. Let $U \subset \mathbb{R}^n_{++}$ and $f: U \to \mathbb{R}_{++}$. The function f is \mathbb{B}^{-1} -convex if and only if the set U is \mathbb{B}^{-1} -convex and one has the inequality

$$f(\lambda x \wedge y) \le \lambda f(x) \wedge f(y) \tag{2.2}$$

for all $x, y \in U$ and all $\lambda \in [1, +\infty)$.

2.3. Abstract Convexity Classes and Hermite-Hadamard inequalities.

Recall that for a function $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$, which is convex on [a,b], we have the following

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \le \frac{1}{2} \left(f\left(a\right) + f\left(b\right)\right)$$

This inequality is well known as the Hermite-Hadamard inequality. Moreover, for different classes of abstract convex functions, Hermite-Hadamard inequalities which are suitable for these function classes are obtained. For example:

1) A function $f : [a, b] \to (0, +\infty)$ is said to be log-convex or multiplicatively convex if for all $x, y \in [a, b]$ and $\lambda \in [0, 1]$ we have ([17])

$$f(\lambda x + (1 - \lambda) y) \le [f(x)]^{\lambda} [f(y)]^{1-\lambda}$$

and for f, we have that

$$f\left(\frac{a+b}{2}\right) \le \exp\left[\frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt\right] \le \sqrt{\left(f\left(a\right)+f\left(b\right)\right)}$$

which is an Inequality of Hermite-Hadamard for log-convex functions.

2) A function $p:[a,b] \to (0,+\infty)$ is said to be *p*-function if for all $x, y \in [a,b]$ and $\lambda \in [0,1]$ one has the inequality ([19])

$$p(\lambda x + (1 - \lambda)y) \le p(x) + p(y)$$

and Hermite-Hadamard inequality for the function p is

$$p\left(\frac{a+b}{2}\right) \le \frac{2}{b-a} \int_{a}^{b} p\left(t\right) dt \le 2\left(p\left(a\right)+p\left(b\right)\right) \;.$$

3) A positive function f is quasi-convex on a real interval [a, b] if for all $x, y \in [a, b]$ and $\lambda \in [0, 1]$ we have ([7])

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}.$$

We know that the class of *p*-functions consists of the class of nonnegative quasi-convex functions. Hence, the Hermite-Hadamard inequality for *p*-functions is also valid for nonnegative quasi-convex functions. Additionally, different inequalities for Jensen-quasi-convex functions which is a special form of quasi-convex functions were studied:

A function $f : [a, b] \to (0, +\infty)$ is Jensen or J-quasi-convex if for all $x, y \in [a, b]$ one has the inequality ([7])

$$f\left(\frac{x+y}{2}\right) \le \max\left\{f\left(x\right), f\left(y\right)\right\}$$

and Hermite-Hadamard inequality for J-quasi-convex functions is

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(t) dt + \frac{1}{2(b-a)} \int_{a}^{b} |f(t) - f(a+b-t)| dt .$$

4) A function $f : [a, b] \to (0, +\infty)$ is said to belong to the class Q(I) if it is nonnegative and for all $x, y \in [a, b]$ and $\lambda \in (0, 1)$, satisfies the inequality ([9])

$$f(\lambda x + (1 - \lambda)y) \le \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda}$$

and for the Q(I) class of functions, one has the inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{4}{b-a} \int_{a}^{b} f\left(t\right) dt$$

that is Hermite-Hadamard inequality for the Q(I) class of functions.

Accordingly, as we take importance of Hermite-Hadamard inequality and its applications into consideration, we prove the Hermite-Hadamard inequalities for \mathbb{B} -convex and \mathbb{B}^{-1} -convex functions which are new abstract convex function classes in this paper.

3. Hermite-Hadamard inequality for \mathbb{B} -convex Functions.

Theorem 3.1. Let $f : [a, b] \subset \mathbb{R}_+ \to \mathbb{R}_+$ be a \mathbb{B} -convex function. Then one has the inequalities

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \leq \begin{cases} f(a), & f(a) \ge f(b) \\ \frac{b([f(a)]^{2} + [f(b)]^{2}) - 2af(a)f(b)}{2(b-a)f(b)}, & f(a) < f(b) \end{cases}$$
(3.1)

Proof. Since $a \leq b$, for all $\lambda \in [0, 1]$ we have max $\{\lambda a, b\} = b$. Then, from the inequality (2.1) in Theorem 2.5

$$f(b) = f(\max\{\lambda a, b\}) \le \max\{\lambda f(a), f(b)\}\$$

is obtained. Since it is valid for all functions, there is no point in examining this case.

Thus, let us examine the case of max $\{a, \lambda b\}$. If we make the substitution $t = \lambda b$, we obtain that

$$\int_0^1 f\left(\max\left\{a,\lambda b\right\}\right) d\lambda = \int_0^{a/b} f\left(\max\left\{a,\lambda b\right\}\right) d\lambda + \int_{a/b}^1 f\left(\max\left\{a,\lambda b\right\}\right) d\lambda$$
$$= \int_0^{a/b} f\left(a\right) d\lambda + \int_{a/b}^1 f\left(\lambda b\right) d\lambda$$
$$= f\left(a\right) \frac{a}{b} + \frac{1}{b} \int_a^b f\left(t\right) dt .$$

From \mathbb{B} -convexity of the function f, following inequality holds

$$\int_{0}^{1} f\left(\max\left\{a, \lambda b\right\}\right) d\lambda \leq \int_{0}^{1} \max\left\{f\left(a\right), \lambda f\left(b\right)\right\} d\lambda \ .$$

For the right-hand side of the inequality, there are the following two possible cases: 1) It can be $f(a) \ge f(b)$. In this case, we have

$$\int_0^1 \max\left\{f\left(a\right), \lambda f\left(b\right)\right\} d\lambda = \int_0^1 f\left(a\right) d\lambda = f\left(a\right) \ .$$

Hence, we obtain that

$$f(a)\frac{a}{b} + \frac{1}{b}\int_{a}^{b} f(t) dt \le f(a) \implies \frac{1}{b-a}\int_{a}^{b} f(t) dt \le f(a)$$
.

2) If f(a) < f(b), we deduce that

$$\int_{0}^{1} \max\{f(a), \lambda f(b)\} d\lambda = \int_{0}^{f(a)/f(b)} \max\{f(a), \lambda f(b)\} d\lambda$$
$$+ \int_{f(a)/f(b)}^{1} \max\{f(a), \lambda f(b)\} d\lambda$$
$$= \int_{0}^{f(a)/f(b)} f(a) d\lambda + \int_{f(a)/f(b)}^{1} \lambda f(b) d\lambda$$
$$= \frac{(f(a))^{2} + (f(b))^{2}}{2f(b)}.$$

Thus,

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \le \frac{b\left([f(a)]^{2} + [f(b)]^{2}\right) - 2af(a)f(b)}{2(b-a)f(b)}$$

is obtained. Thence, Hermite-Hadamard inequality for B-convex functions is

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \leq \begin{cases} f(a), & f(a) \ge f(b) \\ \frac{b([f(a)]^{2} + [f(b)]^{2}) - 2af(a)f(b)}{2(b-a)f(b)}, & f(a) < f(b) \end{cases}$$

4. Hermite-Hadamard inequality for \mathbb{B}^{-1} -convex Functions

Theorem 4.1. Suppose $f : [a,b] \subset \mathbb{R}_{++} \longrightarrow \mathbb{R}_{++}$ is a \mathbb{B}^{-1} -convex function. Then the following inequalities hold

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \leq \begin{cases} \frac{2bf(a)f(b)-a\left[(f(a))^{2}+(f(b))^{2}\right]}{2(b-a)f(a)}, & 1 \leq \frac{f(b)}{f(a)} < \frac{b}{a} \\ \frac{f(a)(a+b)}{2a}, & \frac{b}{a} \leq \frac{f(b)}{f(a)} \end{cases}$$
(4.1)

Proof. Because of $a \leq b$, for all $\lambda \in [1, +\infty)$ we have min $\{a, \lambda b\} = a$. Hence, using the inequality (2.2) in Theorem 2.12, for all \mathbb{B}^{-1} -convex functions f it can be seen that

$$f(a) = f(\min\{a, \lambda b\}) \le \min\{f(a), \lambda f(b)\}$$

Namely, for all $\lambda \in [1, +\infty)$ we get $f(a) \leq \lambda f(b)$. Since it is valid for all λ , also it holds for $\lambda = 1$. Because this investigation is provided for every $x, y \in [a, b], x \leq y$; we obtain that a \mathbb{B}^{-1} -convex function is monotone nondecreasing function.

Now, let us examine the case of min $\{\lambda a, b\}$. Then, we have

$$\int_{1}^{+\infty} f\left(\min\left\{\lambda a,b\right\}\right) d\lambda = \int_{1}^{b/a} f\left(\min\left\{\lambda a,b\right\}\right) d\lambda + \int_{b/a}^{+\infty} f\left(\min\left\{\lambda a,b\right\}\right) d\lambda$$
$$= \int_{1}^{b/a} f\left(\lambda a\right) d\lambda + \int_{b/a}^{+\infty} f\left(b\right) d\lambda .$$

Here, $\int_{b/a}^{+\infty} f(b) d\lambda = +\infty$ and a similar case occurs in the right side of the inequality. Therefore, since $\int_{1}^{+\infty} f(\min\{\lambda a, b\}) d\lambda = \int_{1}^{+\infty} \min\{\lambda f(a), f(b)\} d\lambda = +\infty$, the inequality holds when we take the region of integration as $[1, +\infty)$. Let's get the region of integration as $[1, \frac{b}{a}]$. Thus, from the \mathbb{B}^{-1} -convexity of f, we deduce that

$$\int_{1}^{b/a} f\left(\min\left\{\lambda a, b\right\}\right) d\lambda \leq \int_{1}^{b/a} \min\left\{\lambda f\left(a\right), f\left(b\right)\right\} d\lambda$$

If we make the substitution $t = \lambda a$, we obtain that

$$\int_{1}^{b/a} f\left(\min\left\{\lambda a,b\right\}\right) d\lambda = \int_{1}^{b/a} f\left(\lambda a\right) d\lambda$$
$$= \frac{1}{a} \int_{a}^{b} f\left(t\right) dt \leq \int_{1}^{b/a} \min\left\{\lambda f\left(a\right), f\left(b\right)\right\} d\lambda .$$

To this inequality, there are two possibilities: 1) It can be $1 \leq \frac{f(b)}{f(a)} < \frac{b}{a}$. Then, we have that

$$\begin{split} \int_{1}^{b/a} \min\left\{\lambda f\left(a\right), f\left(b\right)\right\} d\lambda &= \int_{1}^{\frac{f(b)}{f(a)}} \min\left\{\lambda f\left(a\right), f\left(b\right)\right\} d\lambda \\ &+ \int_{\frac{f(b)}{f(a)}}^{\frac{b/a}{f(a)}} \min\left\{\lambda f\left(a\right), f\left(b\right)\right\} d\lambda \\ &= \int_{1}^{\frac{f(b)}{f(a)}} \lambda f\left(a\right) d\lambda + \int_{\frac{f(b)}{f(a)}}^{b/a} f\left(b\right) d\lambda \\ &= \frac{f\left(a\right)}{2} \frac{\left(f\left(b\right)\right)^{2} - \left(f\left(a\right)\right)^{2}}{\left(f\left(a\right)\right)^{2}} + f\left(b\right) \frac{bf\left(a\right) - af\left(b\right)}{af\left(a\right)} \\ &= \frac{2bf\left(a\right) f\left(b\right) - a\left(f\left(a\right)\right)^{2} - a\left(f\left(b\right)\right)^{2}}{2af\left(a\right)} \,. \end{split}$$

Thereby, we get

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \le \frac{2bf(a) f(b) - a \left[(f(a))^{2} + (f(b))^{2} \right]}{2(b-a) f(a)}$$

2) If $\frac{f(b)}{f(a)} \geq \frac{b}{a}$, then we deduce that

$$\int_{1}^{b/a} \min \left\{ \lambda f\left(a\right), f\left(b\right) \right\} d\lambda = \int_{1}^{b/a} \lambda f\left(a\right) d\lambda$$
$$= f\left(a\right) \frac{b^2 - a^2}{2a^2} .$$

Thus, we have the following inequalities:

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \le \frac{f(a)(a+b)}{2a}$$

Consequently, as we take all of the foregoing inequalities into consideration, Hermite-Hadamard inequality for \mathbb{B}^{-1} -convex functions is obtained as in the inequality (4.1). \Box

Acknowledgements

This work was supported by Akdeniz University, Mersin University and TUBITAK (The Scientific and Technological Research Council of Turkey).

References

- G. Adilov, Increasing Co-radiant Functions and Hermite-Hadamard Type Inequalities, Mathematical Inequalities and Applications. 14 (2011) 45-60.
- [2] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard Type Inequalities, Journal of Inequalities and Applications, 2009 (2009) 13 pages.
- G. Adilov and S. Kemali, Hermite-Hadamard-Type Inequalities for Increasing Positively Homogeneous Functions, J. Ineq. Appl. 2007 (2007) 1–11.
- [4] G. Adilov and I. Yesilce, B⁻¹−convex Sets and B⁻¹−measurable Maps, Numer. Funct. Anal. Optim. 33 (2012) 131–141.
- [5] W. Briec and C.D. Horvath, B-convexity, Optim. 53 (2004) 107–127.
- S.S. Dragomir, J. Dutta and A.M. Rubinov, Hermite-Hadamard Type Inequalities for Increasing Convex Alongrays Functions, Analysis (placeCityMunich) 24 (2004) 171–181.
- [7] S.S. Dragomir and C.E.M. Pearce, Quasi-convex Functions and Hadamards Inequality, Bull. Australian Math. Soc. 57 (1998) 377–385.
- [8] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [9] E.K. Godunova and V.I. Levin, Inequalities For Functions of a Broad Class That Contains Convex, Monotone and Some Other Forms of Functions, Numer. Math. Math. Phys. (Moskov. Gos. Ped. Inst, Moscow) 166 (1985) 138-142.
- [10] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. des Math. Pures et Appl. 58 (1893) 171–215.
- [11] C. Hermite, Sur deux limites d'une integrale define, Mathesis 3 (1883) 82.
- [12] H. Kavurmaci, M. Avci and M.E. Ozdemir, New Inequalities of Hermite-Hadamard Type for Convex Functions with Applications, J. Ineq. Appl. 2011 (2011): 86, doi: 10.1186/1029-2011-86.
- [13] S. Kemali, I. Yesilce and G. Adilov, B-convexity, B⁻¹-convexity, and Their Comparison, Numer. Funct. Anal. Optim. 36 (2015) 133−146.
- [14] C.P. Niculescu and L.-E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange 29 (2003) 663–685.
- [15] M.E. Ozdemir, E. Set and M.Z. Sarikaya, Some New Hadamard Type Inequalities for Co-Ordinated m-Convex and (α, m)-Convex Functions, Hacettepe J. Math. Stat. 40 (2011) 219–229.
- [16] C.E.M. Pearce and A.M. Rubinov, P-functions, Quasi-convex Functions and Hadamard-Type Inequalities, J. Math. Anal. Appl. 240 (1999) 92–104.

- [17] J. Pecaric, F. Proschan and YL. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press Inc., Boston, 1992.
- [18] A. Rubinov, *Abstract Convexity and Global Optimization*, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.
- [19] I. Singer, Abstract Convex Analysis, Wiley-Interscience Publication, New York, 1997.
- [20] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for L(j)-convex functions and S(j)-convex Functions, Malaya J. Matematik 3 (2015) 346–359.