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Abstract

In this work we use the Noor iteration process for total asymptotically nonexpansive mapping to
establish the strong and ∆-convergence theorems in the framework of CAT(0) spaces. By doing this,
some of the results existing in the current literature generalize, unify and extend.

Keywords: total asymptotically nonexpansive mapping; ∆-convergence; strong convergence; Noor
iteration process; CAT(0) space.
2010 MSC: Primary 54H25; Secondary 54E40.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle
in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is well known that
any complete, simply connected Riemannian manifold having non-positive sectional curvature is a
CAT(0) space.

Kirk [18, 19] was the first who studied fixed point theory in CAT(0) space and showed that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete
CAT(0) space always has a fixed point. It is worth mentioning that the results in CAT(0) spaces can
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be applied to any CAT(k) space with k ≤ 0 since any CAT(k) space is a CAT(m) space for every
m ≥ k (see [2]).

In [22], authors proved the demiclosedness principle for asymptotically nonexpansive mappings
and gave the ∆-convergence theorem of the modified Mann iteration process for above mentioned
mappings in a CAT(0) space. In 2010, Niwongsa and Panyanak [23] studied the Noor iteration scheme
in CAT(0) spaces and they proved some ∆ and strong convergence theorems for asymptotically
nonexpansive mappings which extend and improve some recent results from the literature. In 2012,
Saluja [27] studied Noor iteration scheme for generalized asymptotically quasi nonexpansive mappings
and established some strong convergence theorems in the framework of CAT(0) spaces. Recently, in
the paper [4], Chang et al. introducedthe concept of total asymptotically nonexpansive mappings and
proved the demiclosed principle for said mapping in a CAT(0) space. In addition, the ∆-convergence
theorem of the modified Mann iteration process for total asymptotically nonexpansive mappings in
a CAT(0) space has also been studied Chang et al. .

Very recently, Başarir and Şahin [26] studied the modified S-iteration process, modified two-
step iteration process and established strong and ∆-convergence theorems for total asymptotically
nonexpansive mappings in the framework of CAT(0) spaces (see, also [5], [9]).

Algorithm 1. The sequence {xn} defined by x1 ∈ K and

zn = γnT
nxn ⊕ (1− γn)xn,

yn = βnT
nzn ⊕ (1− βn)xn,

xn+1 = αnT
nyn ⊕ (1− αn)xn, n ≥ 1, (1.1)

where {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are appropriate sequences in [0,1] is called modified Noor iterative
sequence (see [30]).

If γn = 0 for all n ≥ 1, then Algorithm 1 reduces to the following.

Algorithm 2. The sequence {xn} defined by x1 ∈ K and

yn = βnT
nxn ⊕ (1− βn)xn,

xn+1 = αnT
nyn ⊕ (1− αn)xn, n ≥ 1, (1.2)

where {αn}∞n=1 and {βn}∞n=1 are appropriate sequences in [0,1] is called an Ishikawa iterative sequence
(see [16]).

If βn = 0 for all n ≥ 1, then Algorithm 2 reduces to the following.

Algorithm 3. The sequence {xn} defined by x1 ∈ K and

xn+1 = αnT
nxn ⊕ (1− αn)xn, n ≥ 1, (1.3)

where {αn}∞n=1 is a sequence in (0,1) is called a Mann iterative sequence (see [21]).
Iteration procedures in fixed point theory are lead by the considerations in summability theory.

For example, if a given sequence converges, then we don’t look for the convergence of the sequence
of its arithmetic means. Similarly, if the sequence of Picard iterates of any mapping T converges,
then we don’t look for the convergence of other iteration procedures.

The three-step iterative approximation problems were studied extensively by Noor [24, 25],
Glowinsky and Le Tallec [12], and Haubruge et al [14]. It has been shown [12] that three-step
iterative scheme gives better numerical results than the two step and one step approximate itera-
tions. Thus we conclude that three step scheme plays an important and significant role in solving
various problems, which arise in pure and applied sciences.
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Motivated by Chang et al. [4], Başarir and Şahin [26] and some others, in this paper, we establish
strong and ∆-convergence theorems of Noor iteration process for total asymptotically nonexpansive
mappings in the framework of CAT(0) spaces. Our results extend and improve many known results
from the current existing literature (see, e.g., [4, 22, 23, 26, 30] and many others).

2. Preliminaries and lemmas

Let (X, d) be a metric space and K be its nonempty subset. Let T : K → K be a mapping. A point
x ∈ K is called a fixed point of T if Tx = x and we denote by F (T ) the set of fixed points of T , that
is, F (T ) = {x ∈ K : Tx = x}.

Definition 2.1. Let (X, d) be a metric space and K be its nonempty subset. Then T : K → K
said to be

(1) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K;
(2) asymptotically nonexpansive [10] if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1

such that d(T nx, T ny) ≤ kn d(x, y) for all x, y ∈ K and n ≥ 1;
(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(T nx, T ny) ≤ Ld(x, y)

for all x, y ∈ K and n ≥ 1;
(4) semi-compact if for a sequence {xn} in K with limn→∞ d(xn, Txn) = 0, there exists a subse-

quence {xnk
} of {xn} such that xnk

→ p ∈ K;
(5) a sequence {xn} in K is called approximate fixed point sequence for T (AFPS in short) if

limn→∞ d(xn, Txn) = 0.

Chang et al. [4] defined the concept of total asymptotically nonexpansive mapping as follows.

Definition 2.2. ([4] Definition 2.1) Let (X, d) be a metric space, K be its nonempty subset and let
T : K → K be a mapping. T is said to be a total asymptotically nonexpansive mapping if there exist
non-negative real sequences {µn}, {νn} with µn → 0, νn → 0 and a strictly increasing continuous
function ζ : [0,∞)→ [0,∞) with ζ(0) = 0 such that

d(T nx, T ny) ≤ d(x, y) + νnζ(d(x, y)) + µn

for all x, y ∈ K and n ≥ 1.

Remark 2.3. From the above definitions, it is clear that each nonexpansive mapping is an asymp-
totically nonexpansive mapping with the constant sequence {kn} = {1}, ∀n ≥ 1, each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive mapping with µn = 0, νn = kn − 1
for all n ≥ 1, ζ(t) = t, t ≥ 0 and each asymptotically nonexpansive mapping is a uniformly L-
Lipschitzian mapping with L = supn≥1{kn}.

We now give the definition and some basic properties of CAT(0) space.
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic

from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and
d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry, and d(x, y) = l. The image α
of c is called a geodesic (or metric) segment joining x and y. We say that X is (i) a geodesic space if
any two points of X are joined by a geodesic and (ii) uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X, which we will denote by [x, y], called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X (the
vertices of 4) and a geodesic segment between each pair of vertices (the edges of 4). A comparison
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triangle for the geodesic triangle 4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in
R2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [2]).

CAT(0) space. A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of
appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle for 4. Then 4 is
said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (2.1)

Complete CAT (0) spaces are often called Hadamard spaces (see [17]). If x, y1, y2 are points of a
CAT (0) space and y0 is the midpoint of the segment [y1, y2] which we will denote by (y1 ⊕ y2)/2,
then the CAT (0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2). (2.2)

Inequality (2.2) is the (CN) inequality of Bruhat and Tits [3]. The above inequality was extended
in [8] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y), (2.3)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT (0) space if and only if it satisfies the (CN)

inequality (see [2, p.163]). Moreover, if X is a CAT (0) metric space and x, y ∈ X, then for any
α ∈ [0, 1], there exists a unique point αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (2.4)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.
A subset K of a CAT (0) space X is convex if for any x, y ∈ K, we have [x, y] ⊂ K.
In the sequel, we need the following definitions and useful lemmas to prove our main results.

Lemma 2.4. (See [23]) Let X be a CAT(0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = t d(x, y) and d(y, z) = (1− t) d(x, y). (A)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (A).
(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Let {xn} be a bounded sequence in a closed convex subset K of a CAT(0) space X. For x ∈ X,
set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

It is known that, in a CAT(0) space, A({xn}) consists of exactly one point [[6], Proposition 7].
We now recall the definition of ∆-convergence and weak convergence (⇀) in CAT(0) space.
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Definition 2.5. ([20]) A sequence {xn} in a CAT(0) space X is said to ∆-converge to x ∈ X if x
is the unique asymptotic center of {xn} for every subsequence {un} of {xn}.

In this case we write ∆− limn xn = x and call x is the ∆-limit of {xn}.

Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un}) for every
subsequence {un} of {xn}. In the Banach space it is known that, every bounded sequence has a
regular subsequence [[11], Lemma 15.2].

Since in a CAT(0) space every regular sequence ∆-converges, we see that every bounded sequence
in X has a ∆-convergent subsequence, also it is noticed that [[20], p.3690].

Lemma 2.6. (See [1]) Given {xn} ⊂ X such that {xn} ∆-converges to x and given y ∈ X with
y 6= x, then

lim sup
n

d(xn, x) < lim sup
n

d(xn, y).

In a Banach space the above condition is known as the Opial property.
Now, recall the definition of weak convergence in a CAT(0) space.

Definition 2.7. (See [15]) Let K be a closed convex subset of a CAT(0) space X. A bounded
sequence {xn} in K is said to converge weakly to q ∈ K if and only if Φ(q) = infx∈K Φ(x), where
Φ(x) = lim supn→∞ d(xn, x).

Note that {xn}⇀ q if and only if AK{xn} = {q}.
Nanjaras and Panyanak [22] established the following relation between ∆-convergence and weak

convergence in a CAT(0) space.

Lemma 2.8. (See [22], Proposition 3.12) Let {xn} be a bounded sequence in a CAT(0) space X
and let K be a closed convex subset of X which contains {xn}. Then

(i) ∆-limxn = x implies xn ⇀ x.
(ii) The converse of (i) is true if {xn} is regular.

Lemma 2.9. (See [8], Lemma 2.8) If {xn} is a bounded sequence in a CAT(0) space X with
A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)}
converges, then x = u.

Lemma 2.10. (See [7], Proposition 2.1) If K is a closed convex subset of a CAT(0) space X and if
{xn} is a bounded sequence in K, then the asymptotic center of {xn} is in K.

Lemma 2.11. (See [4], Theorem 3.8) Let K be closed convex subset of a complete CAT(0) space X
and let T : K → K be a total asymptotically nonexpansive and uniformly L-Lipschitzian mapping.
Let {xn} be a bounded sequence in K such that limn→∞ d(xn, Txn) = 0 and ∆ − limn→∞ xn = p.
Then Tp = p.

Lemma 2.12. (See [29]) Suppose that {an}, {bn} and {rn} are sequences of nonnegative numbers
such that an+1 ≤ (1 + bn)an + rn for all n ≥ 1. If

∑∞
n=1 bn <∞ and

∑∞
n=1 rn <∞, then limn→∞ an

exists.
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3. Main Results

Now, we prove the following lemma using modified Noor iteration scheme (1.1) needed in the sequel.

Lemma 3.1. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a total asymptotically nonexpansive and uniformly L-Lipschitzian mapping with
F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (1.1). If the following conditions are
satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then limn→∞ d(xn, p) and limn→∞ d(xn, F (T )) exist for all p ∈ F (T ).

Proof . Let p ∈ F (T ). From (1.1) and Lemma 2.4(ii), we have

d(zn, p) = d(γnT
nxn ⊕ (1− γn)xn, p)

≤ γn d(T nxn, p) + (1− γn)d(xn, p)

≤ γn[d(xn, p) + νn(d(xn, p)) + µn] + (1− γn)d(xn, p)

≤ γn[d(xn, p) + νnM1d(xn, p) + µn] + (1− γn)d(xn, p)

= γn(1 +M1νn)d(xn, p) + γnµn + (1− γn)d(xn, p)

≤ γn(1 +M1νn)d(xn, p) + γnµn

+(1− γn)(1 +M1νn)d(xn, p)

≤ (1 +M1νn)d(xn, p) + µn. (3.1)

Again using (1.1), (3.1) and Lemma 2.4(ii), we have

d(yn, p) = d(βnT
nzn ⊕ (1− βn)xn, p)

≤ βn d(T nzn, p) + (1− βn)d(xn, p)

≤ βn[d(zn, p) + νn(d(zn, p)) + µn] + (1− βn)d(xn, p)

≤ βn[d(zn, p) + νnM1d(zn, p) + µn] + (1− βn)d(xn, p)

= βn(1 +M1νn)d(zn, p) + βnµn + (1− βn)d(xn, p)

≤ βn(1 +M1νn)[(1 +M1νn)d(xn, p) + µn] + βnµn

+(1− βn)d(xn, p)

= βn(1 +M1νn)2d(xn, p) + βn(1 +M1νn)µn + βnµn

+(1− βn)d(xn, p)

≤ βn(1 +M1νn)2d(xn, p) + βn(1 +M1νn)µn + βnµn

+(1− βn)(1 +M1νn)2d(xn, p)

≤ (1 +M1νn)2d(xn, p) + (2 +M1νn)µn. (3.2)

Now using (1.1), (3.2) and Lemma 2.4(ii), we get

d(xn+1, p) = d(αnT
nyn ⊕ (1− αn)xn, p)

≤ αn d(T nyn, p) + (1− αn)d(xn, p)

≤ αn[d(yn, p) + νn(d(yn, p)) + µn] + (1− αn)d(xn, p)
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and so

d(xn+1, p) ≤ αn[d(yn, p) + νnM1d(yn, p) + µn] + (1− αn)d(xn, p)

= αn(1 +M1νn)d(yn, p) + αnµn + (1− αn)d(xn, p)

≤ αn(1 +M1νn)[(1 +M1νn)2d(xn, p) + (2 +M1νn)µn]

+αnµn + (1− αn)d(xn, p)

≤ αn(1 +M1νn)3d(xn, p) + αn(1 +M1νn)(2 +M1νn)µn + αnµn

+(1− αn)(1 +M1νn)3d(xn, p)

≤ (1 +M1νn)3d(xn, p) + (3 +M1νn)µn

= (1 + hn)d(xn, p) + tn, (3.3)

where
hn = 3M1νn + 3M2

1 ν
2
n +M3

1 ν
3
n

and tn = (3 + M1νn)µn. Since by assumption of the theorem
∑∞

n=1 µn < ∞ and
∑∞

n=1 νn < ∞, it
follows that

∑∞
n=1 hn <∞ and

∑∞
n=1 tn <∞. Equation (3.3) implies that

d(xn+1, F (T )) ≤ (1 + hn)d(xn, F (T )) + tn. (3.4)

Hence from Lemma 2.12, (3.3) and (3.4), we get limn→∞ d(xn, p) and limn→∞
d(xn, F (T )) exist. �

Following the paper [13] and cited therein, in the following example, the considered mappings are
total asymptotically nonexpansive and uniformly L-Lipschitzian which required for our Lemma 3.1.

Example 3.2. Let R be the real line with the usual norm ‖.‖ and K = [−1, 1]. Define two mappings
T, S : K → K by

T (x) =

{
−2 sinx

2
, if x ∈ [0, 1],

2 sinx
2
, if x ∈ [−1, 0)

and

S(x) =

{
x, if x ∈ [0, 1],
−x, if x ∈ [−1, 0).

In addition, F (T ) = {0} and F (S) = {x ∈ K : 0 ≤ x ≤ 1}.

Theorem 3.3. Let X, K, T , {xn} satisfy the hypothesis of Lemma 3.1. Then the sequence {xn}
converges strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0,

where
d(x, F (T )) = inf{d(x, p) : p ∈ F (T )}.

Proof . Necessity is obvious. Conversely, suppose that

lim inf
n→∞

d(xn, F (T )) = 0

As proved in Lemma 3.1, for all p ∈ F (T ),

lim
n→∞

d(xn, F (T ))
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exists. Thus by hypothesis,
lim
n→∞

d(xn, F (T )) = 0.

Next, we show that {xn} is a Cauchy sequence in K. With the help of inequality 1 + x ≤ ex,
x ≥ 0. For any integer m ≥ 1, therefore from (3.2), we have

d(xn+m, p) ≤ (1 + hn+m−1)d(xn+m−1, p) + tn+m−1

≤ ehn+m−1d(xn+m−1, p) + tn+m−1

≤ ehn+m−1 [ehn+m−2d(xn+m−2, p) + tn+m−2] + tn+m−1

≤ e(hn+m−1+hn+m−2)d(xn+m−2, p) + ehn+m−1 [tn+m−2 + tn+m−1]

≤ . . .

≤
(
e
∑n+m−1

k=n hk
)
d(xn, p) +

(
e
∑n+m−1

k=n hk
) n+m−1∑

k=n

tk

≤
(
e
∑∞

n=1 hn
)
d(xn, p) +

(
e
∑∞

n=1 hn
) n+m−1∑

k=n

tk

= Rd(xn, p) +R
n+m−1∑
k=n

tk, (3.5)

where R = e
∑∞

n=1 hn .
Since limn→∞ d(xn, F (T )) = 0, therefore for any ε > 0, there exists a natural number n0 such that

d(xn, F (T )) < ε/8R and
∑n+m−1

k=n tk < ε/2R So, we can find p∗ ∈ F (T ) such that d(xn0 , p
∗) < ε/4R.

Hence, for all n ≥ n0 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(xn, p

∗)

≤ Rd(xn0 , p
∗) +R

n+m−1∑
k=n

tk

+Rd(xn0 , p
∗)

= 2Rd(xn0 , p
∗) +R

n+m−1∑
k=n

tk

< 2R.
ε

4R
+R.

ε

2R
= ε. (3.6)

This proves that {xn} is a Cauchy sequence in K. Thus, the completeness of X implies that {xn}
must be convergent. Assume that limn→∞ xn = q. Since K is closed, therefore q ∈ K. Next, we
show that q ∈ F (T ). Since limn→∞ d(xn, F (T )) = 0 we get d(q, F (T )) = 0, closedness of F (T ) gives
that q ∈ F (T ). Thus {xn} converges strongly to a point in F (T ). This completes the proof. �

Lemma 3.4. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a total asymptotically nonexpansive mapping with F (T ) 6= ∅. Suppose that {xn} is de-
fined by the iteration process (1.1). Let {αn} and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1−
αn) > 0 and lim infn→∞ βn(1− βn) > 0. If the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then limn→∞ d(T nyn, xn) = 0 and limn→∞ d(T nzn, xn) = 0.
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Proof . Let p ∈ F (T ). Then by Lemma 3.1, we have limn→∞ d(xn, p) exists, so we can assume that
limn→∞ d(xn, p) = a, where a > 0. We claim that

lim
n→∞

d(T nyn, xn) = 0, lim
n→∞

d(T nzn, xn) = 0.

From (1.1) and (2.3), we have

d2(zn, p) = d2(γnT
nxn ⊕ (1− γn)xn, p)

≤ γnd
2(T nxn, p) + (1− γn)d2(xn, p)

−γn(1− γn)d(T nxn, xn)

≤ γn[d(xn, p) + νn(d(xn, p)) + µn]2 + (1− γn)d2(xn, p)

−γn(1− γn)d(T nxn, xn)

≤ γn[d(xn, p) + νnM1d(xn, p) + µn]2 + (1− γn)d2(xn, p)

−γn(1− γn)d(T nxn, xn)

= γn[(1 + νnM1)d(xn, p) + µn]2 + (1− γn)d2(xn, p)

−γn(1− γn)d(T nxn, xn)

≤ (1 + νnM1)
2γnd

2(xn, p) + (1 + νnM1)
2(1− γn)d2(xn, p)

+γn[2(1 + νnM1)µnd(xn, p) + µ2
n]− γn(1− γn)d(T nxn, xn)

≤ (1 + νnM1)
2d2(xn, p) + γn[2(1 + νnM1)µnd(xn, p) + µ2

n].

This implies that

d2(zn, p) ≤ d2(xn, p) + Pνn +Qµn, (3.7)

for some P, Q > 0.
Again from (1.1) and (2.3), we have

d2(yn, p) = d2(βnT
nzn ⊕ (1− βn)xn, p)

≤ βnd
2(T nzn, p) + (1− βn)d2(xn, p)

−βn(1− βn)d2(T nzn, xn)

≤ βn[d(zn, p) + νn(d(zn, p)) + µn]2 + (1− βn)d2(xn, p)

−βn(1− βn)d2(T nzn, xn)

≤ βn[d(zn, p) + νnM1d(zn, p) + µn]2 + (1− βn)d2(xn, p)

−βn(1− βn)d2(T nzn, xn)

= βn[(1 + νnM1)d(zn, p) + µn]2 + (1− βn)d2(xn, p)

−βn(1− βn)d2(T nzn, xn)

≤ βn(1 + νnM1)
2d2(zn, p) + (1− βn)(1 + νnM1)

2d2(xn, p)

+βn[2µn(1 + νnM1)d(zn, p) + µ2
n]− βn(1− βn)d2(T nzn, xn). (3.8)

Substituting (3.7) into (3.8), we have

d2(yn, p) ≤ βn(1 + νnM1)
2[d2(xn, p) + Pνn +Qµn] + (1− βn)(1 + νnM1)

2d2(xn, p)

+βn[2µn(1 + νnM1)d(zn, p) + µ2
n]− βn(1− βn)d2(T nzn, xn)

≤ d2(xn, p) + Lνn +Mµn − βn(1− βn)d2(T nzn, xn). (3.9)
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for some L, M > 0. This implies that

d2(yn, p) ≤ d2(xn, p) + Lνn +Mµn. (3.10)

Finally, from (1.1) and (2.3), we have

d2(xn+1, p) = d2(αnT
nyn ⊕ (1− αn)xn, p)

≤ αnd
2(T nyn, p) + (1− αn)d2(xn, p)

−αn(1− αn)d2(T nyn, xn)

≤ αn[d(yn, p) + νn(d(yn, p)) + µn]2 + (1− αn)d2(xn, p)

−αn(1− αn)d2(T nyn, xn)

≤ αn[d(yn, p) + νnM1d(yn, p) + µn]2 + (1− αn)d2(xn, p)

−αn(1− αn)d2(T nyn, xn)

= αn[(1 + νnM1)d(yn, p) + µn]2 + (1− αn)d2(xn, p)

−αn(1− αn)d2(T nyn, xn)

≤ αn(1 + νnM1)
2d2(yn, p) + (1 + νnM1)

2(1− αn)d2(xn, p)

+αn[2µn(1 + νnM1)d(yn, p) + µ2
n]

−αn(1− αn)d2(T nyn, xn). (3.11)

Substituting (3.10) into (3.11), we have

d2(xn+1, p) ≤ αn(1 + νnM1)
2[d2(xn, p) + Lνn +Mµn]

+(1 + νnM1)
2(1− αn)d2(xn, p)

+αn[2µn(1 + νnM1)d(yn, p) + µ2
n]

−αn(1− αn)d2(T nyn, xn)

≤ d2(xn, p) +Rνn + Tµn

−αn(1− αn)d2(T nyn, xn), (3.12)

for some R, T > 0.
Equation (3.12) yielding

αn(1− αn)d2(T nyn, xn) ≤ d2(xn, p)− d2(xn+1, p) +Rνn + Tµn.

Since
∑∞

n=1 νn <∞,
∑∞

n=1 µn <∞, we have

αn(1− αn)d2(T nyn, xn) <∞.

This implies by lim infn→∞ αn(1− αn) > 0 that

lim
n→∞

d(T nyn, xn) = 0.

Now, we have

d(xn, p) ≤ d(xn, T
nyn) + d(T nyn, p)

≤ d(xn, T
nyn) + d(yn, p) + νn(d(yn, p)) + µn

≤ d(xn, T
nyn) + d(yn, p) + νnM1d(yn, p) + µn

= d(xn, T
nyn) + (1 + νnM1)d(yn, p) + µn
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from which we deduce that
a ≤ lim inf

n→∞
d(yn, p).

On the other hand, from (3.2), we have

lim sup
n→∞

d(yn, p) ≤ a.

Therefore limn→∞ d(yn, p) = a.
Now, consider (3.9), we have

d2(yn, p) ≤ d2(xn, p) + Lνn +Mµn − βn(1− βn)d2(T nzn, xn). (3.13)

Equation (3.13) yielding

βn(1− βn)d2(T nzn, xn) ≤ d2(xn, p)− d2(yn, p) + Lνn +Mµn.

Since
∑∞

n=1 νn <∞,
∑∞

n=1 µn <∞, we have

βn(1− βn)d2(T nzn, xn) <∞.

This implies by lim infn→∞ βn(1− βn) > 0 that

lim
n→∞

d(T nzn, xn) = 0.

This completes the proof. �

Lemma 3.5. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a uniformly continuous and total asymptotically nonexpansive mapping with F (T ) 6= ∅.
Suppose that {xn} is defined by the iteration process (1.1). Let {αn} and {βn} be sequences in (0, 1)
such that lim infn→∞ αn(1 − αn) > 0 and lim infn→∞ βn(1 − βn) > 0. If the following conditions are
satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then limn→∞ d(xn, Txn) = 0.

Proof . From Lemma 3.4, we have limn→∞ d(T nyn, xn) = 0 and limn→∞
d(T nzn, xn) = 0.

Now, note that

d(xn, yn) ≤ βnd(xn, T
nzn)→ 0 as n→∞. (3.14)

By the uniform continuity of T , we have

lim
n→∞

d(T nxn, T
nyn) = 0. (3.15)

Thus

d(T nxn, xn) ≤ d(T nxn, T
nyn) + d(T nyn, xn). (3.16)

Using (3.15) and limn→∞ d(T nyn, xn) = 0 in (3.16), we obtain

lim
n→∞

d(T nxn, xn) = 0. (3.17)
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Now by the definitions of xn+1 and yn, we have

d(xn, xn+1) ≤ d(xn, T
nyn)

≤ d(xn, T
nxn) + d(T nxn, T

nyn)

≤ d(xn, T
nxn) + d(xn, yn) + νn(d(xn, yn)) + µn

≤ d(xn, T
nxn) + d(xn, yn) + νnM1d(xn, yn) + µn

≤ d(xn, T
nxn) + (1 + νnM1)d(xn, yn) + µn

→ 0 as n→∞. (3.18)

By (3.17), (3.18) and uniform continuity of T , we have

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(T n+1xn+1, T
n+1xn) + d(T n+1xn, Txn)

≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(xn+1, xn) + +νn+1(d(xn+1, xn)) + µn+1

+d(T n+1xn, Txn)

≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(xn+1, xn) + νn+1M1d(xn+1, xn) + µn+1

+d(T n+1xn, Txn)

= (2 + νn+1M1)d(xn+1, xn) + d(xn+1, T
n+1xn+1)

+d(T n+1xn, Txn)→ 0 as n→∞. (3.19)

This completes the proof. �

Now, we are in a position to prove the ∆-convergence and strong convergence results.

Theorem 3.6. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a uniformly continuous and total asymptotically nonexpansive mapping with F (T ) 6= ∅.
Suppose that {xn} is defined by the iteration process (1.1). Let {αn} and {βn} be sequences in (0, 1)
such that lim infn→∞ αn(1 − αn) > 0 and lim infn→∞ βn(1 − βn) > 0. If the following conditions are
satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then the sequence {xn} ∆-converges to a fixed point of T .

Proof . Let ωw(xn) :=
⋃
A({un}) where the union is taken over all subsequences {un} of {xn}. We

can complete the proof by showing that ωw(xn) ⊆ F (T ) and ωw(xn) consists of exactly one point. Let
u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma 2.10,
there exists a subsequence {vn} of {un} such that ∆− limn vn = v ∈ K. Hence v ∈ F (T ) by Lemma
2.11. Since by Lemma 3.1, limn→∞ d(xn, v) exists, so by Lemma 2.9, v = u, i.e., ωw(xn) ⊆ F (T ).

To show that {xn} ∆-converges to a fixed point of T , it is sufficient to show that ωw(xn) consists
of exactly one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) = {x}. Since w ∈
ωw(xn) ⊆ F (T ) and by Lemma 3.1, limn→∞ d(xn, w) exists. Again by Lemma 2.9, we have x = w ∈
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F (T ). Thus ωw(xn) = {x}. This shows that {xn} ∆-converges to a fixed point of T . This completes
the proof. �

As a consequence of Theorem 3.6, we obtain the following.

Corollary 3.7. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a uniformly continuous and total asymptotically nonexpansive mapping with F (T ) 6= ∅.
Suppose that {xn} is defined by the iteration process (1.2). Let {αn} and {βn} be sequences in (0, 1)
such that lim infn→∞ αnβn(1− βn) > 0. If the following conditions are satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then the sequence {xn} ∆-converges to a fixed point of T .

Proof . The proof of corollary 3.7 immediately follows from Theorem 3.6 by taking γn = 0 for all
n ≥ 1. This completes the proof. �

Theorem 3.8. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a uniformly continuous and total asymptotically nonexpansive mapping with F (T ) 6= ∅.
Suppose that {xn} is defined by the iteration process (1.1). Let {αn} and {βn} be sequences in (0, 1)
such that lim infn→∞ αn(1 − αn) > 0 and lim infn→∞ βn(1 − βn) > 0. If the following conditions are
satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Suppose that Tm is semi-compact for some m ∈ N. Then the sequence {xn} converges strongly to

a fixed point of T .

Proof . By Lemma 3.5, limn→∞ d(xn, Txn) = 0. Since T is uniformly continuous, we have

d(xn, T
mxn) ≤ d(xn, Txn) + d(Txn, T

2xn) + · · ·+ d(Tm−1xn, T
mxn)→ 0

as n → ∞. That is, {xn} is an AFPS for Tm. By the semi-compactness of Tm, there exists a
subsequence {xnj

} of {xn} and p ∈ K such that limj→∞ xnj
= p. Again, by the uniform continuity

of T , we have

d(Tp, p) ≤ d(Tp, Txnj
) + d(Txnj

, xnj
) + d(xnj

, p)→ 0 as j →∞.

That is p ∈ F (T ). By Lemma 3.1, d(xn, p) exists, thus p is the strong limit of the sequence {xn}
itself. This shows that the sequence {xn} converges strongly to a fixed point of T . This completes
the proof. �

Senter and Dotson [28] introduced the concept of Condition (A) as follows.

Definition 3.9. (See [28]) A mapping T : K → K is said to satisfy Condition (A) if there exists
a non-decreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r > 0 such that
d(x, Tx) ≥ f(d(x, F (T ))), for all x ∈ K.

As an application of Theorem 3.3, we establish another strong convergence result employing
Condition (A).
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Theorem 3.10. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → K be a uniformly continuous and total asymptotically nonexpansive mapping with F (T ) 6= ∅.
Suppose that {xn} is defined by the iteration process (1.1). Let {αn} and {βn} be sequences in (0, 1)
such that lim infn→∞ αn(1 − αn) > 0 and lim infn→∞ βn(1 − βn) > 0. If the following conditions are
satisfied:

(i)
∑∞

n=1 µn <∞,
∑∞

n=1 νn <∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
If T satisfies Condition (A), then the sequence {xn} converges strongly to a fixed point of T .

Proof . As in the proof of Lemma 3.1, we have that limn→∞ d(xn, F (T )) exists. Again by Lemma 3.5,
we know that limn→∞ d(xn, Txn) = 0. So Condition (A) guarantees that limn→∞ f(d(xn, F (T ))) = 0.
Since f is a non-decreasing function and f(0) = 0, it follows that limn→∞ d(xn, F (T )) = 0. Therefore,
Theorem 3.3 implies that {xn} converges strongly to a fixed point of T . This completes the proof.
�

Remark 3.11. Theorem 3.6 contains Theorem 5.7 of Nanjaras and Panyanak [22] and Theorem 3.5
of Niwongsa and Panyanak [23] since each asymptotically nonexpansive mapping is a total asymp-
totically nonexpansive mapping. Also, Theorem 3.6 contains Theorem 3.5 of Chang et al. [4] since
the modified Noor iteration reduces to the modified Mann iteration.

Remark 3.12. Theorem 3.6 also extends Theorem 4 of Başarir and Şahin [26] to the case of modified
Noor iteration scheme considered in this paper.

Example 3.13. Let R be the real line with the usual norm |.| and C = [0,∞). Define a mapping
T : C → C by T (x) = sin x for all x ∈ C. Let ψ be the strictly increasing continuous function
such that ψ : R+ → R+ with ψ(0) = 0. Let {µn}n≥1 and {νn}n≥1 be two nonnegative real sequences
defined by µn = 1

n2 and νn = 1
n3 for all n ≥ 1 with µn → 0 and νn → 0 as n→∞. Since T (x) = sin x

for x ∈ C, we have

|T nx− T ny| ≤ |x− y|.

For all x, y ∈ C, we obtain

|T nx− T ny| − |x− y| − νnψ(|x− y|)− µn

≤ |x− y| − |x− y| − νnψ(|x− y|)− µn ≤ 0.

for all n = 1, 2, . . . , {νn}n≥1 and {µn}n≥1 with νn, µn → 0 as n→∞ and so T is a total asymptotically
nonexpansive mapping. Also, T is uniformly L-Lipschitzian with L = 1. Clearly F (T ) = {0}. Let
αn = n

2n+1
, βn = n

3n+1
and γn = n

4n+1
for all n ≥ 1. Therefore, the conditions of Theorem 3.1 and 3.2

are fulfilled.

4. Conclusion

In this work we extensively used the notion of Noor iteration process for total asymptotically nonex-
pansive mapping to establish the strong and ∆-convergence theorems in the framework of CAT(0)
spaces that differ from the iteration scheme of modified two-step used by Başarir and Şahin [26]. In
this way our work not only extend and generalize the work of Başarir and Şahin [26] but also work
done in the papers [22, 23, 26, 30] and many others related works.
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