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Abstract

The purpose of this paper is to investigate the real quadratic number fields Q(
√
d) which contain the

specific form of the continued fractions expansions of integral basis element where d ≡ 2, 3(mod4)
is a square free positive integer. Besides, the present paper deals with determining the fundamental
unit

εd =
(
td + ud

√
d
)
/2 〉 1

and nd and md Yokoi’s d-invariants by reference to continued fraction expansion of integral basis
element where ` (d) is a period length. Moreover, we mention class number for such fields. Also, we
give some numerical results concluded in the tables.
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1. Introduction and preliminaries

A quadratic field is defined as an algebraic number field Q(
√
d) of degree two over Q the rational

numbers. Q(
√
d) is called real quadratic field if d > 0. The class number of a number field is defined

by the order of the ideal class group of its ring of integers. There are infinitely many quadratic fields
and all of them have class numbers such as one, two or more but it is not even known whether there
are infinitely many real quadratic fields with class number one or two. So, class number problem is
particularly important. There are different various methods to determine class number. One of them

is Classical Dirichlet Class Number formula hd =
√
D.L(1,χd)
2logεd

defined by discriminat, regulator and
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Dirichlet L−function. Dirichlet L−function is determined by Dirichlet character and zeta function.
Also, discriminat D of the quadratic field Q(

√
d) is equal to d if d is congruent to 1 modulo 4 and

is equal to 4 if d is congruent to 2,3 modulo 4. Besides, regulator is depend on fundamental unit
εd.Moreover, in real quadratic fields, the ring of integers of Q(

√
d) has infinitely many units that

are equal to εid or −εid, where i is an arbitrary integer and εd is fundamental unit. So,it is also very
significant to determine fundamental unit for studying on the class number problems, unit group and
the determination of the structures of real quadratic number fields.

In [6], Kim and Ryu worked on the special circular unit εk of k = Q(
√
pq) and investigated unit

group of such real quadratic field. Also, they proved class number of quartic field using Sinnott’s
index formula. Mollin and Williams determined positive square free integers d with class number
h(d) = 1 in [9] and class number h(d) = 2 in [10] when ` period length of the continued fraction
of wd is equal or less than 25. The theorems of Friesen in [3] and Halter-Koch in [4] investigated
real quadratic fields with large fundamental units by constructing a infinite family. In [19], Tomita
with Yamamuro gave some results for fundamental unit by using Fibonacci sequence and continued
fraction.Tomita and Kawamato obtained significant results on special real quadratic fields of minimal
type in [5]. Moreover, Tomita determined the continued fraction expansion of integral basis element
for period length is 3 in [18]. Sasaki in [16] and Mollin in [8] studied on lower bound of fundamental
unit for real quadratic number fields and get certain important results. In [2], Benamar, Chandoul
and Mkaouar gave the lower bound of the number of non-squares monic polynomials with the fixed
period continued fraction expansions. Badziahin and Shallit [1], worked on special continued fraction
expansions of the real numbers which are transcendental numbers. Yokoi defined several invariants
but especially two of them are important for class number problem and the solutions of Pell equation
([21]-[24]).Zhang and Yue in [25] gave some congruence relations about x and y while εd = x+ y

√
d

and N(εd) = +1 in a real quadratic field Q(
√
d) with odd class number. The first author obtained

some results on different types of continued fraction expansion of wd in [12],[13] and [14]. Also, we
can refer to the references [7], [11],[15],[17] and [20] for readers.

Let k = Q(
√
d) be a real quadratic number field where d > 0 is a positive square-free integer.

Integral basis element is denoted by wd =
√
d for d ≡ 2, 3(mod4) where `(d) is the period length in

the simple continued fraction expansion of wd. The fundamental unit εd of real quadratic number

field is denoted by εd =
(
td + ud

√
d
)
/2 〉 1 where N (εd) =(−1)`(d). For the set I(d) of all quadratic

irrational numbers in Q(
√
d), we say that α in I(d) is reduced if α > 1, −1 < α′ < 0 (α′ is the

conjugate of α with respect to Q), and denote by R(d) the set of all reduced quadratic irrational
numbers in I(d). Then, it is well known that any number α in R(d) is purely periodic in the continued
fraction expansion and the denominator of its modular automorphism is equal to fundamental unit
εd of Q(

√
d)).

Besides, Yokoi’s invariants are expressed by nd =
[[

td
u2d

]]
and md =

[[
u2d
td

]]
where [[x]] represents

the greatest integer not greater than x.
In this paper, we interest in the problem determining the real quadratic number fields include

continued fraction expansions which have got partial quotient elements written as 6s (except the last
digit of the period) for the period length.Then, we categorize them with regard to arbitrary period
length.

Also, we determine the general forms of fundamental unit εd and the coefficents of fundamental
units td , ud by using this new formulization which have not been known yet. Lastly,we calculate
class numbers for some of such fields and give results on the Yokoi’s invariants with tables.
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Definition 1.1. {Zi} sequence is defined by the recurrence relation

Zi = 6Zi−1 + Zi−2

for i ≥ 2 where Z0 = 0 and Z1 = 1. Main results depend on the terms of this sequence.

Definition 1.2. Let cn = acn−1 + bcn−2 be a sequence with recurrence relation of {cn} sequence
where a, b are real numbers. The polynomial is called as a characteristic equation if it is written in
the following form:

x2 − ax− b = 0

By using the definition, we determine the characteristic equation as follows:

r2 − 6r − 1 = 0

for {Zk} sequence. So, each element of sequence can be written as follows:

Zk =
1

2
√

10

[(
3 +
√

10
)k
−
(

3−
√

10
)k ]

for k ≥ 0.

Remark 1.3. If {Zn} is defined as in Definition 1.1 then, we specify the following equivalent.

Zn ≡


1 (mod4) , n ≡ 1, 3 (mod4);
2 (mod4) , n ≡ 2 (mod4);
0 (mod4) , n ≡ 0 (mod4).

for n ≥ 0.

Lemma 1.4. Let d be a square-free positive integer satisfying d congruent to 2, 3 modulo 4. If we
put ωd =

√
d, a0 = [[ωd]] into the ωR = a0 +ωd where [[ωd]] represents the greatest integer not greater

than ωd, then we get ωd /∈ R(d), but ωR ∈ R(d) holds. Moreover, for the period l = `(d) of ωR,

we get ωR = [2a0, a1, . . . , al−1] and ωd = [a0, a1, . . . , al−1, 2a0]. Furthermore, let ωR = (PlωR+Pl−1)

(QlωR+Ql−1)
=

[2a0, a1, . . . , al−1, ωR] be a modular automorphism of ωR, Then the fundamental unit εd of Q
(√

d
)

is

given by the following formulas:

εd =
td + ud

√
d

2
= (a0 +

√
d)Q`(d) +Q`(d)−1〉1

and
td = 2a0.Q`(d) + 2Q`(d)−1, ud = 2Q`(d).

where Qi is determined by Q0 = 0, Q1 = 1 and Qi+1 = aiQi +Qi−1, (i ≥ 1).

Proof . Proof is omitted in the reference [18]. �
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Lemma 1.5. Let d be the square free positive integer congruent to 2, 3 modulo 4 and a0 =
[[√

d
]]

denote the the integer part of integral basis element for d congruent to 2, 3(mod4) .If we consider
wd which has got partial quotient elements repeated 6s in the period length l = `(d), then we obtain
continued fraction expansions as follows

wd =
√
d=
[
a0; a1, a2, . . . , a`(d)−1, a`(d)

]
=
[
a0; 6, 6, . . . , 6, 2a0

]
for quadratic irrational numbers and wR = a0+

√
d =

[
2a0, 6, . . . , 6

]
for reduced quadratic irrational

numbers.
Moreover, Ak = a0Zk+1 +Zk and Bk = Zk+1 are determined in the continued fraction expansions

where {Ak} and {Bk} are two sequences defined by:

A−2 = 0, A−1 = 1, Ak = akAk−1 + Ak−2,

B−2 = 1, B−1 = 0, Bk = akBk−1 +Bk−2,

for k ≥ 0 and k < `(d) where `(d) is period length of wd. We obtain Al = 2a20Zl + 3a0Zl−1 + Zl−2
and Bl = 2a0Zl + Zl−1 for k = `(d) too.

Also, in the continued fraction wR = a0 +
√
d = [b1, b2, . . . , bn, . . . ] = [2a0, 6, . . . , 6, . . . ], Pk =

2a0Zk + Zk−1 and Qk = Zk are determined where {Pk} and {Qk} are two sequences defined by:

P−1 = 0, P0 = 1, Pk+1 = bk+1.Pk + Pk−1,

Q−1 = 1, Q0 = 0, Qk+1 = bk+1.Qk +Qk−1,

for k ≥ 0.

Proof .We can prove using induction.It is clear that assertion is true for k = 0.Assume that the
result is true for k < i and 0 < i ≤ l − 1 .Using the definition of {Zi} sequence, we obtain

Ak+1 = ak+1.Ak + Ak−1 = 6 (a0Zk+1 + Zk) + (a0Zk + Zk−1)

= a0 (6Zk+1 + Zk) + (6Zk + Zk−1)

= a0Zk+2 + Zk+1

Also, we get the following result:

Bk+1 = ak+1.Bk +Bk−1 = 6Zk+1 + Zk = Zk+2

Moreover,( since al = 2.a0), we obtain Al = 2a20Zl + 3a0Zl−1 + Zl−2 and Bl = 2a0.Zl + Zl−1 for
k = `(d).

In the same vein, for the continued fraction of a0 +
√
d = [b1, b2, . . . , bn, . . . ] = [2a0, 6, . . . , 6, . . . ], we

obtain that Pk = 2a0Zk +Zk−1 and Qk = Zk are determined where {Pk} and {Qk} are two sequences
defined by:

P−1 = 0, P0 = 1, Pk+1 = bk+1.Pk + Pk−1,

Q−1 = 1, Q0 = 0, Qk+1 = bk+1.Qk +Qk−1,

for k ≥ 0.This completes the proof. �

Theorem 1.6. If k ≤ 24 then with possibly only one more value remaining h(d) = 1 if and only if
d is entry in Table 1.
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Proof . Proof is in the reference [9].�

Lemma 1.7. f k ≤ 24 and D < 6.109 then with at most one possible exception we must have
h(d) = 2.

Proof . Proof is in the reference [10].�

Lemma 1.8. For any s ≥ 11.2 and d ≥ es in d,

(1) if md is different from 0 then hd >
0.3275.s−14

σ

(s−2)
2s

d .d
(s−2)
2s

log(md+1)d
holds with one possible exception of d.

(2) if md = 0 (i.e. nd is different from 0) then hd >
0.3275.s−14

σ

(s−2)
2s

d .d
(s−2)
2s

log( d
nd

+1)
holds with one possible

exception of d.

(3) if Q(
√
d) is a real quadratic field of R.D.type, then hd >

0.3275.s−14
σ

(s−2)
2s

d .d
(s−2)
2s

log3d
holds with one

possible exception of d.

Proof . Proof is in the reference [24].�

Remark 1.9. In the reference [24], Yokoi gave a table for square free integers d between d = 2 and
d = 499 include Yokoi’s invariants and class numbers.

Definition 1.10. Let d = n2 + r, d > 5 be a positive square free integer satisfying the conditions
4n ≡ 0(modr) and −n < r ≤ n . In this case, the real quadratic field Q(

√
d) is called a Richaud-

Degert (R-D) type real quadratic field.

2. The main results

Theorem 2.1. Let d be the square free positive integer and ` be a positive integer holding that
` ≡ 0(mod2) and ` > 1. We assume that parametrization of d is

d =
r2Z2

`

4
+ (3Z` + Z`−1) r + 10.

for r > 0 positive integer. Then the following conditions hold:

(1) If ` ≡ 0(mod4) and r ≡ 1(mod4) positive integer then d ≡ 3(mod4) satisfies.

(2) If ` ≡ 2(mod4) and r ≡ 1(mod4) positive integer then d ≡ 2(mod4) satisfies.
Also, we get

wd =

rZ`
2

+ 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, rZ` + 6


and ` = `(d). Besides, we obtain the following equalities:

εd =

(
rZ2

`

2
+ 3Z` + Z`−1

)
+ Z`

√
d

td = rZ2
` + 6Z` + 2Z`−1 and ud = 2Z`

for εd, td and ud.
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Proof . We assume that ` ≡ 0(mod2) and ` > 1. Then, we have to investigate two cases as follows:
If ` ≡ 0(mod4), then we get Z` ≡ 0(mod4) , Z`−1 ≡ 1(mod4). By considering r ≡ 1(mod4) positive
integer and substituting these equivalent and equations into the parametrization of d, then we obtain
d ≡ 3(mod4).
If ` ≡ 2(mod4), then we get Z` ≡ 2 (mod4), Z`−1 ≡ 1 (mod4) . So, we have d ≡ 2(mod4) by using
r ≡ 1(mod4) positive integer.

We put,

wR =
rZ`
2

+ 3 +

rZ`
2

+ 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, rZ` + 2

 ,
then we get

wR = (rZ` + 6) +
1

6 + 1
6+ 1

. . .

+ 1
6+ 1

wR

= (rZ` + 6) +
1

6 + . . .+

1

wR
.

By using Lemma 1.5 and the induction with the properties of continued fraction expansion, we obtain

wR = (rZ` + 6) +
Z`−1wR + Z`−2
Z`wR + Z`−1

,

Considering Definition 1.1 with the above equality, we have

w2
R − (rZ` + 6)wR − (1 + rZ`−1) = 0.

This requires that wR = rZ`
2

+ 3 +
√
d since wR > 0. If we consider Lemma 1.4., we get

wd =

rZ`
2

+ 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, rZ` + 6


and ` = ` (d). This shows that first the part of the proof is completed.

Now, we have to determine εd, td and ud using Lemma 1.4, we obtain values of Qk as follows:

Q1 = 1 = Z1, Q2 = a1.Q1 +Q0 ⇒ Q2 = 6 = Z2,

Q3 = a2Q2 +Q1= 2Z2 + Z1 = 37 = Z3, Q4 = 228 = Z4, . . .

So, this implies that Qi = Zi by using mathematical induction for ∀i ≥ 1. If we substitute these

values of sequence into the εd = td+ud
√
d

2
= (a0 +

√
d)Ql(d) +Ql(d)−1〉1 and rearranged, we have

εd =

(
rZ2

`

2
+ 3Z` + Z`−1

)
+ Z`

√
d

td = rZ2
` + 6Z` + 2Z`−1 and ud = 2Z`

for εd, td and ud. It completes the proof of Theorem 2.1. �
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Corollary 2.2. Let d be a square free positive integer and ` be a positive integer holding that ` ≡
0(mod2) and ` > 1. We assume that the parametrization of d is

d =
Z2
`

4
+

(
Z`+1 + Z`−1

2

)
+ 10.

Then, we get d ≡ 2, 3(mod4) and

wd =

Z`
2

+ 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, Z` + 6


and ` = `(d). Furthermore, we obtain the following equalities:

εd =

(
Z2
`

2
+ 3Z` + Z`−1

)
+ Z`

√
d

td = Z2
` + 6Z` + 2Z`−1 and ud = 2Z`

md =

{
1, if ` = 2;
3, if ` ≥ 4;

for εd, td, ud and md.
Besides, we indicate the following Table 1 where fundamental unit is εd, integral basis element is

wd and Yokoi’s invariant is md for 2 < `(d) ≤ 10.

Table 1: Square -free positive integers d where `(d) is even and 2 ≤ `(d) ≤ 10.
d `(d) md wd εd
38 2 1 [6; 6, 12] 37+6

√
38

13727 4 3 [117; 6, 6, 6, 234] 26713+228
√

13727

18767630 6 3 [4332; 6, 6, 6, 6, 6, 8664] 37507861+8658
√

18767630

27024454235 8 3 [164391; 6, 6, 6, 6, 6, 6, 6, 328782] 54047868769+328776
√

27024454235

38967784512734 10 3 [6242418; 6, 6, 6, 6, 6, 6, 6, 6, 6, 12484836] 77935529544949+12484830
√

38967784512734

Proof . This result is obtained by substituting r = 1 into the Theorem 2.1 We have to prove that
values of md are determined as follows:

md =

{
1, if ` = 2;
3, if ` ≥ 4.

If we put td and ud into the md and rearrange, then we obtain

md =

[[
u2d
td

]]
=

[[
4Z2

`

Z2
` + 6Z` + 2Z`−1

]]
By considering above equalization, we obtain md = 1 for ` = 2. From the assumption (since Z` is

increasing sequence) we get,

4 > 4.

(
1 +

6

Z`
+

2.Z`−1

Z2
`

)−1
> 3, 892
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for ` ≥ 4. Therefore, we obtain md =
[[

4Z2
`

Z2
`+6Z`+2Z`−1

]]
= 3 for ` ≥ 4 due to definition of md and

we describe md as follows:

md =

{
1, if ` = 2;
3, if ` ≥ 4;

which completes the proof of Corollary 2.2.
Also, Table 1 can be obtained as a illustrate of this corollary. �

Remark 2.3. In the Table 1, Q(
√
d) is a R-D type real quadratic field for d = 38 = 62 + 2 but

others aren’t R-D type. By using the classical Dirichlet class number formula, we calculate class
number hd = 1 for Q(

√
38). Also, the field is obtained in the table of [24] and the Table 3.1 of [9].

Besides, in the same table, we can see that other class numbers such as Q(
√

13727) with hd = 8 and
Q(
√

18767630) with hd = 144 are too bigger than class number two by using Proposition 4.1 of [24].

Corollary 2.4. Let d be a square free positive integer and ` be a positive integer satisfying ` ≡
0(mod2) and ` > 1. Suppose that the parametrization of d is

d =
25Z2

`

4
+ (15Z` + 5Z`−1) + 10.

Then, we have d ≡ 2, 3(mod4) and

wd =

5Z`
2

+ 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, 5Z` + 6


and ` = `(d). Moreover, we obtain the following equalities:

εd =
(
5Z2

` 2 + 3Z` + Z`−1
)

+ Z`

√
d

td = 5Z2
` + 6Z` + 2Z`−1 and ud = 2Z`

nd = 1

for εd, td, ud and Yokoi’s invariant nd.
Besides, we get the following Table 2 where fundamental unit is εd, integral basis element is wd and
Yokoi’s invariant is nd for 2 < `(d) ≤ 10.(In this table, we rule out `(d)=4 since d is not a square
free positive integer).

Table 2: Square -free positive integers d where `(d) is even and 2 ≤ `(d) ≤ 10 except `(d) = 4.
d `(d) nd wd εd

330 2 1 [18; 6, 36] 109+6
√

330

468642930 6 1 [21648; 6, 6, 6, 6, 6, 43296] 187429789+8658
√

468642930

675590562015 8 1 [821943; 6, 6, 6, 6, 6, 6, 6, 1643886] 270235185121+328776
√

675590562015

974193823208130 10 1 [31212078; 6, 6, 6, 6, 6, 6, 6, 6, 6, 62424156] 389677489802749+12484830
√

974193823208130

Proof . In a similar way of mentioned above corollary, this corollary is obtained by substituting
r = 5 in Theorem 2.1. �
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Remark 2.5. In the Table 2, there is no real quadratic field of R-D type except Q(
√

330). Also,we
can give an example on class number as hd = 4 for Q(

√
330).

Theorem 2.6. Let d be a square free positive integer and ` be a positive integer holding that ` ≥ 2.
Suppose that the parametrization of d is

d = r2Z2
` + 2r(3Z` + Z`−1) + 10.

for r > 1 integer. If r ≡ 0(mod2) is a positive integer then d ≡ 2(mod4) holds.
So, we have

wd =

rZ` + 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, 6 + 2rZ`


with ` = `(d). Besides, we get fundamental unit εd, coefficients of fundamental unit td, ud as follows:

εd = (rZ` + 3)Z` + Z`−1 + Z`
√
d,

td = 2 (rZ` + 3)Z` + 2Z`−1 and ud = 2Z`.

Proof . If ` > 1 arbitrary positive integer and r is even positive integer then we obtain d ≡ 2(mod4)
since d = r2Z2

` + 2r(3Z` + Z`−1) + 10.
If we put

wR = (rZ` + 3) +

rZ` + 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, 6 + 2rZ`


then we have

wR = (2rZ` + 6) +
1

6 + 1
6+ 1

. . .

+ 1
6+ 1

wR

= (2rZ` + 6) +
1

6 + . . .+

1

wR
.

By a straight forward induction argument, we get

wR = (2rZ` + 6) +
Z`−1wR + Z`−2
Z`wR + Z`−1

.

Moreover, by using Definition 1.1 with the above equality, we obtain

w2
R − (2rZ` + 6)wR − (1 + 2rZ`−1) = 0.

This requires that wR = (rZ` + 3) +
√
d since wR > 0. If we consider Lemma 1.5, we get

wd =

rZ` + 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, 6 + 2rZ`


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and ` = ` (d).
Now, we have to determine εd, td and ud using Lemma 1.4, we get

Q1 = 1 = Z1, Q2 = a1.Q1 +Q0 ⇒ Q2 = 6 = Z2

Q3 = a6Q2 +Q1= 6Z2 + Z1 = 37 = Z3, Q4 = 228 = Z4.

So, this implies that Qi = Zi by using mathematical induction for ∀i ≥ 0. If we substitute these

values of the sequence into the εd = td+ud
√
d

2
= (a0 +

√
d)Ql(d) +Ql(d)−1〉1 and rearrange, we have

εd = (rZ` + 3)Z` + Z`−1 + Z`
√
d,

td = 2 (rZ` + 3)Z` + 2Z`−1 and ud = 2Z`.

�

Corollary 2.7. Suppose that the parametrization of d is

d = 4Z2
` + 2(Z`+1 + Z`−1) + 10.

where d is a square free positive integer and ` ≥ 2 is a positive integer. Then, we have d ≡ 2(mod4)
and

wd =

2Z` + 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, 6 + 4Z`


with ` = `(d). Moreover, we can get fundamental unit εd, coefficients of fundamental unit td, ud as
follows:

εd = (2Z` + 3)Z` + Z`−1 + Z`
√
d,

td = 2 (2Z` + 3)Z` + 2Z`−1 and ud = 2Z`.

Also, we have Yokoi’s d- invariant value nd = 1 for ` ≥ 2.
Furthermore, we have the following Table 3 where fundamental unit is εd, integral basis element is
wd and and Yokoi’s invariant is nd for 2 ≤ `(d) ≤ 8 .

Table 3: Square -free positive integers d with 2 ≤ `(d) ≤ 8.
d `(d) nd wd εd

230 2 1 [15; 6, 30] 91+6
√

230

5954 3 1 [77; 6, 6, 154] 2855+37
√

5954

210830 4 1 [459; 6, 6, 6, 918] 104689+228
√

210830

7913882 5 1 [2813; 6, 6, 6, 6, 5626] 3952493+1405
√

7913882

299953382 6 1 [17319; 6, 6, 6, 6, 6, 34638] 149949307+8658
√

299953382

11386845314 7 1 [106709; 6, 6, 6, 6, 6, 6, 6, 213418] 5693253935+53353
√

11386845314

432378791438 8 1 [657555; 6, 6, 6, 6, 6, 6, 6, 1315110] 216188356033+328776
√

432378791438

Proof . If we substitute r = 2 in Theorem 2.6, this corollary is got .We demonstrate that the value
of Yokoi’s d-invariant is nd = 1 for ` ≥ 2.

We know that nd =
[[

td
u2d

]]
considering Yokoi’s references. If we substitute td and ud into the

nd, then we get

nd =

[[
td
u2d

]]
=

[[
4Z2

` + 6Z` + 2Z`−1

4Z2
`

]]
= 1 +

[[
3

2Z`

+
Z`−1

2Z2
`

]]
= 1,
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since Z` is increasing and 0 < 3
2Z`

+ Z`−1

2Z2
`
< 0, 264 for ` ≥ 2. Therefore, we obtain nd = 1 for ` ≥ 2.

This completes the proof of Corollary 2.7. Besides, Table 3 is created as numerical example. �

Remark 2.8. In the Table 3, there isn’t any R-D type of real quadratic field excluding Q(
√

230)
with hd = 2 which is also obtained in the Table 2.1 of [10] and the table of [24]. Additionally, we can
calculate values of class numbers for some real quadratic fields as follows:
Q(
√

5954) with class number hd=12, Q(
√

210830), with class number hd=48, Q(
√

7913882) with
class number hd=138.

Corollary 2.9. Let d be a square free positive integer and ` be a positive integer satisfying ` ≥ 2.
Suppose that parametrization of d is

d = 16Z2
` + 4(Z`+1 + Z`−1) + 10.

Then, we have d ≡ 2(mod4) and

wd =

4Z` + 3; 6, 6, . . . , 6︸ ︷︷ ︸
`−1

, 6 + 8Z`


with ` = `(d). Additionally, we get fundamental unit εd, coefficients of fundamental unit td, ud as
follows:

εd = (4Z` + 3)Z` + Z`−1 + Z`
√
d,

td = 2 (4Z` + 3)Z` + 2Z`−1 and ud = 2Z`.

and Yokoi’s d- invariant value nd = 2 for ` ≥ 2.
Besides, we indicate the Table 4 where fundamental unit is εd, integral basis element is wd and

Yokoi’s invariant is nd for 2 ≤ l(d) ≤ 8 (In this table, we rule out `(d)=2,3,4,6,8 since d is not a
square free positive integer).

Table 4: Square -free positive integers d with `(d) = 5 or `(d) = 7.

d `(d) nd wd εd
31619954 5 2 [5623; 6, 6, 6, 6, 11246] 7900543+1405

√
31619954

45546031490 7 2 [213415; 6, 6, 6, 6, 6, 6, 426830] 11386339153+53353
√

45546031490

Proof . The result is got if we substitute r = 4 in Theorem 2.6 The value of Yokoi’s d-invariant is
obtained as nd = 2 for ` ≥ 2.

We know that nd =
[[

td
u2d

]]
from H. Yokoi’s references. If we substitute td and ud into the nd,

then we get

nd =

[[
td
u2d

]]
=

[[
8Z2

` + 6Z` + 2Z`−1

4Z2
`

]]
= 2 +

[[
3

2Z`

+
Z`−1

2Z2
`

]]
= 2,

since (Z`) is increasing and 0 < 3
2Z`

+ Z`−1

2Z2
`

< 0, 0012 for ` ≥ 2. Therefore, we obtain nd = 2 for

` ≥ 2. This completes the proof of Corollary 2.9. For numerical examples, we tabulate the Table 4.
�

Remark 2.10. There isn’t any R-D type of real quadratic field in the Table 4. As an illustration,
we can say that the class number is hd = 324 for Q(

√
31619954).
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