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Abstract

In this paper, a new set of spline functions called “Flat End Fuzzy Spline” is defined to interpolate
given fuzzy data. Some important theorems on these splines together with their existence and unique-
ness properties are discussed. Then numerical examples are presented to illustrate the differences
between of using our spline and other interpolations that have been studied before.
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1. Introduction

The following problem was first posed by L. A. Zadeh, see for example [11]. Suppose that we have
n + 1 distinct real numbers x0, x1, . . . , xn and for each of these numbers a fuzzy value in R, rather
than a crisp value, is given. Zadeh asked the question whether it is possible to construct some kind
of smooth function on R to fit with the collection of fuzzy data at these n+ 1 points.

Lagrange interpolation for fuzzy data was first investigated by Lowen [11]. Later, Kaleva [8],
avoided the well-known computational troubles associated with crisp Lagrange interpolation by using
linear spline and not-a-knot cubic spline approximations. If the fuzzy data are not convex, then a
technical difficulty arises and in this case the Bernestein approximation can be constructed, see for
example Diamond and Ramor [5]. The interpolation of fuzzy data by using spline functions of odd
degree was considered in [1] with complete splines, in [2] with natural splines, and in [4] with fuzzy
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splines and finally in [3] with E(3) cubic splines. Constructing consistent fuzzy surfaces from fuzzy
data in sense of Lagrange polynomials, linear splines and not-a-knot cubic splines were described in
[10]. To see the other works on the interpolation of fuzzy data, one can refer to [14, 15, 16, 17, 18,
19, 20].

In this paper, in Section 3, we will introduce a new set of fuzzy splines interpolate the fuzzy
data. Then some important theorems on these splines together with their existence and uniqueness
properties will be discussed. Finally, in Section 4, to illustrate the differences between of using
our spline and other interpolations that have been studied before, some numerical examples will be
presented.

2. Preliminaries

In this section, we recall some fundamental results of fuzzy numbers and fuzzy interpolations.

Definition 2.1. A fuzzy number is a mapping u : R→ I = [0, 1] with the following properties, see
[9]:

(i) u is an upper semi-continuous function on R,
(ii) u(x) = 0 outside of some interval [c, d] ⊂ R,
(iii) there exist real numbers a, b, such that c ≤ a ≤ b ≤ d, and

1. u(x) is a monotonic increasing function on [c, a]
2. u(x) is a monotonic decreasing function on [b, d]
3. u(x) = 1, for all x in [a, b].

The set of all fuzzy numbers is denoted by F . A popular type of fuzzy number is the set of
triangular fuzzy number u = (c, α, β) defined by

u(x) =



x− c+ α

α
, c− α ≤ x ≤ c,

c+ β − x
β

, c ≤ x ≤ c+ β,

0, otherwise,

where α > 0 and β > 0. Note that the triangular fuzzy numbers are special cases of L − L fuzzy
numbers, see [6].

Definition 2.2. If u ∈ F then the α−level set of u is denoted by [u]α and defined by [u]α =
{x ∈ R|u(x) ≥ α}, where 0 < α ≤ 1. Also, [u]0 is called the support of u and it is given by
[u]0 = ∪α∈(0,1][u]α. It follows that the level sets of u are closed and bounded intervals in R.

It is well-known that the addition and multiplication operations of real numbers can be extended
to F . In other words, for any 0 < α ≤ 1, λ ∈ R and u, v ∈ F , we have:

[u+ v]α = [u]α + [v]α and [λu]α = λ[u]α.

Consider n + 1 distinct real numbers x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn. For each xi we associate a fuzzy
number ui ∈ F . To solve Zadeh’s problem, we must find a continuous function F :R→ F such that
F (xi) = ui; for i = 0, 1, . . . , n.
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Let Py0,y1...,yn(x) be the Lagrange interpolation polynomial of degree n which interpolates the
data (xi, yi) ; i = 0, 1, . . . , n. According to the extension principle [6], we can write the membership
function F (x) for each x ∈ R as follows:

µF (x)(t) = sup
y0,y1,...,yn

t=Py0...yn (x)

min
i=0,1,...,n

µui(yi); if P−1y0...yn
(t) 6= ∅,

= 0, otherwise,

where µui is the membership function of ui.
For each α ∈(0,1] and i = 0, 1, . . . , n, let Jαi = [ui]

α = µ−1ui [α, 1], and Fα(x) be the α−level sets
of ui and F (x), respectively. Hence,

Fα(x) = {t ∈ R|µF (x)(t) ≥ α}
= {t ∈ R|∃ y0, y1, . . . , yn : µui(yi) ≥ α, i = 0, 1, . . . , n and Py0,y1...,yn(x) = t}

= {t ∈ R |∃ y ∈
n∏

i=0

Jαi : Py0, y1..., yn(x) = t}

where y = (y0, y1, . . . , yn) ∈Rn+1. Now we have

µF (x)(t) = sup

{
α ∈ (0, 1] | ∃ y ∈

n∏
i=0

Jαi : Py0,y1...,yn(x) = t

}
,

where, as mentioned by Lowen in [11], the supremum is attained and hence from Nguyen [12], we
have

F α(x) = {y ∈ R|y = Py0,y1...,yn(x), yi ∈ Jαi }.
But, from Lagrange interpolation formula, we have

F α(x) =
n∑
i=0

Li(x)Jαi ,

where Li(x) represents the Lagrange polynomials.

3. Fuzzy splines

In this section, we introduce a set of special spline functions of odd degree, called “Flat End Fuzzy
Spline” for interpolation of given fuzzy data.

Definition 3.1. A spline function with zero derivatives at endpoints with knots x0 ≤ x1 ≤ . . . ≤ xn,
is a piecewise polynomial function s : [x0, xn]→ R of degree l = 2m− 1 with m = 2k, k ≥ 1, that
possesses the following conditions:

(i) s ∈ C l−1[x0, xn],

(ii) in each subinterval [xi−1, xi], s(x) is a polynomial of degree l,

(iii) s(ν)(x0) = 0, for ν = 1, 2, . . . , m
2

,

(iv) s(ν)(xn) = 0, for ν = m
2
, m

2
+ 1, . . . , 2m− 3.
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We denote the family of these splines with Sl(x0, xn). If the base splines si ∈ Sl(x0, xn) are such
that si(xj) = 1 for i = j and si(xj) = 0 for i 6= j, then similar to Lagrange interpolation polynomial,
the fuzzy spline

Sy0,y1...,yn(x) =
n∑

i=0

si(x) yi

interpolates (xi, yi); i = 0, 1, . . . , n. Hence from Section 2, we have

F α(x) = {t ∈ R|∃y ∈
n∏
i=0

Jαi : Sy0,y1...,yn(x) = t} =
n∑
i=1

si(x) Jαi ,

and

F (x) =
n∑

i=0

si(x)ui.

Hence if all ui are L− L fuzzy numbers, then F (x) is an L− L fuzzy number for all x ∈ [x0, xn].
The rest of Section 3 is devoted to prove some properties of the spline function defined at Definition

3.1.

Definition 3.2. A point α ∈ [xν , xν+1) ⊂ [x0, xn], 0 ≤ ν ≤ n − 1 is called an essential zero of a
spline s ∈ Sl(x0, xn), provided that s(α) = 0, but s(x) 6= 0 on [xν , xν+1), see [7].

Definition 3.3. The number of all essential zeros of s in [x0, xn] is denoted by Z(s), where each
zero is counted according to its multiplicity.

Theorem 3.4. Theorem 1. If s ∈ Sl(x0, xn) then Z(s) ≤ n + l − 1 and if [xν , xν+ η] is the
maximal subinterval that s vanishes, then xν+ η is an l−fold essential zero of s.

Proof . For proof, see [7]. �

Theorem 3.5. If [x0, xσ] is the maximal interval where si ∈ Sl(x0, xn) vanishes identically and si
doesn’t vanish identically on any subinterval [xν , xν+1] for ν > σ then s

(2m−2)
i has at least n−σ+3

2
m−2

essential zeros on [xσ, xn].

Proof . Since si(xi) = 1, we have σ < i and hence si(x) = 0 for x = xj; j = σ, . . . , i − 1, i +
1, . . . , n. But we know that xσ is an l−fold zero of si and by using Rolle’s Theorem , si

′ has at
least n − σ essential zeros on [xσ, xn]. By repeating this argument, we can see that the functions

s
(2)
i , s

(3)
i , . . . , s

(m
2
−1)

i have at least n−σ essential zeros on [xσ, xn]. But by Definition 3, s
(ν)
i (xn) = 0,

for ν = m
2
, m

2
+ 1, . . . , 2m − 3. Hence, by virtue of Rolle’s Theorem, s

(m
2
)

i has at least n − σ + 1

essential zeros and consequently s
(2m−3 )
i and s

(2m−2)
i have at least n− σ + 3

2
m− 2 essential zeros on

[xσ, xn]. �

Theorem 3.6. Suppose that l ≥ 3. For all si ∈ Sl(x0, xn); i = 1, . . . , n :

(i) si is not identically zero on any subinterval [xj, xj +1],

(ii) the sign of si does not change on [xj, xj +1],

(iii) the sign of si, changes at xj for all j 6= i.
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Proof . Suppose si(x) = 0 for each x ∈ [xj, xj +1]. To prove theorem, we assume that j + 1 < i, ( a
similar argument holds for j > i). Let

s(x) =

{
0, x0 ≤ x ≤ xj+1,
si(x), xj+1 < x ≤ xn.

Obviously s ∈ Sl(x0, xn) and by the uniqueness of spline, si(x) = 0 for all x ∈ [x0, xj +1]. Let
[x0, xσ] be the maximal interval where si(x) vanishes. Since si(x) = 1,we have σ < i.

Similarly, let for τ > i, [xτ , xn] be the maximal interval such that si(x) = 0, for all x ∈ [xτ , xn]. We
apply Theorem 1 to si restricted to [xτ , xn]. We now consider two cases: τ < n or τ = n.

If τ < n, then xσ and xτ are l− fold zeros of si and since xi is not a zero, then by Theorem 1
we have,

2l + (τ − σ − 1)− 1 ≤ Z(si) ≤ (τ − σ) + l − 1,

which implies l ≤ 1 and this contradicts l ≥ 3.
If τ = n, then by Theorem 3.5, s

(2m−2)
i has at least n − σ + 3

2
m − 2 essential zeros on [xσ, xn].

Now, by this fact that s
(2m−2)
i ∈S1(xσ, xn) and hence by Theorem 1,

n− σ +
3

2
m− 2 ≤ Z(s

(2m−2)
i ) ≤ n− σ,

which implies another contradiction m ≤ 1. Hence (i) is provided.

Let r be the number of essential zeros of si on [x0, xn], r ≥ n. By Rolle’s Theorem, s
(κ)
i , κ =

1, 2, . . . , m
2
− 1, has at least r essential zeros and by Definition 3.1, s

(m
2
)

i has at least r + 1 essential

zeros. Hence s
(2m−3)
i and s

(2m−2)
i have r + 1 and r essential zeros, respectively. Now s

(2m−2)
i has at

least r essential zeros. But s
(2m−2)
i ∈ S1(x0, xn) and hence by Theorem 3.4,

n ≤ r ≤ Z(s
(2m−2)
i ) ≤ n.

It follows that the essential zeros of si are xj for j 6= i, with multiplicity one. This proves parts (ii)
and (iii). �

Theorem 3.7. If F (x) =
∑n

i =0 si(x)ui be the interpolating fuzzy spline, then for all x ∈ (xi, xi+1)
and for all α ∈ (0, 1],

lenF α(x) ≥ min{lenF α(xi), lenF
α(xi+1)},

where len denotes the length of an interval.

Proof . Since the addition does not decreases the length of an interval we have

lenFα(x) ≥ len(
i+1∑
j=i

s
j
(x)Jαj ) ≥ min{lenJαi , lenJαj+1}

i+1∑
j=i

|s
j
(x)|.

Now, to complete our proof, we will show that s(x) = si(x) + si+1(x) ≥ 1 for all x ∈ (xi, xi+1). The
polynomial s(x) = si(x) + si+1(x)∈ Sl(x0, xn) interpolates the data (xj, fj), where fj = 1 for j = i
and i+ 1 and zero otherwise. Suppose that 0 < i < n− 1 and s(x) < 1 for some x ∈ (xi, xi+1). Then
s′(x) has at least three zero in (xi−1, xi+2) and by using Rolle’s Theorem s′(x) has at least n+1 zeros
on [x0, xn]. Hence s(κ), κ = 1, 2, . . . , (m

2
−1), has at least n+1 zeros and since s(

m
2
)(x0) = s(

m
2
)(xn) = 0,

then s(
m
2
)(x) has at least n+ 2 zeros on [x0, xn]. By repeating this argument s(2m−3)(x) has at least

n+ 2 zeros on [x0, xn] and hence s(2m−2) has at least n+ 1 zeros on [x0, xn], which is a contradiction,
since s(2m−2)(x) ∈ S1(x0, xn). �
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Theorem 3.8. For any given function y = f(x) defined at xi; i = 0, 1, . . . , n, there exists a unique
spline function s(x) ∈ Sl(x0, xn) which interpolates the function values yi = f(xi).

Proof . The proof is similar to the proof of Theorem 5 in [4]. �

4. Numerical examples

Let Jαi = [aαi , b
α
i ]. Then the upper end point of F α(x) is the solution of the following problem:

Maximize Sy0y1...yn

subject to aαi ≤ yi ≤ bαi ; i = 0, 1, . . . , n,

where the optimal solution is

yi =

{
bαi , if si(x) ≥ 0,
aαi , if si(x) < 0.

Similarly the lower end point of F α(x) can be obtained. Hence if ui = (mi, li, ri) and F (x) =
(m(x), l(x), r(x)), then we will have,

m(x) =
∑n

i=0 si(x)mi,

l(x) =
∑

si(x)≥0

si(x)li −
∑

si(x)<0

si(x)ri;

r(x) =
∑

si(x)≥0

si(x)ri −
∑

si(x)<0

si(x)li,

which are the same results in Kaleva [8].

Example 4.1. Suppose we have the data (xi, ui)

xi 1 1.1 1.2 3 3.5 4
mi 0 5 1 4 0 1
li 2 1 0 4 3 1
ri 1 2 3 3 2 1

and l = 3, i.e. using cubic spline, similar to Example 2.1 of Kaleva [8]. For example,

F (2.2) = (−10.8504, 14.8322, 19.5005), F (3.1) = (3.6820, 4.6174, 1.6812).

Figure 1 shows the zero, 0.5 and one level sets.

1.5 2 2.5 3 3.5 4

-30

-20

-10

10

Fig. 1. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of F (x).
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Example 2. Here we have ui = yi + A; i = 0, 1, . . . , n and A = (0, 1, 1) and l = 3, where

xi 1 2 3 4 5 6
yi 0 4 -1 1 5 0

Figure 2 shows the zero, 0.5 and one level sets.

2 3 4 5 6

-2

2

4

6

Fig. 2. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of F (x).

Example 3. Suppose we have the data (xi, ui) and l = 3, where

xi 1 1.1 1.2 1.3 1.4 1.5
mi 0 5 1 4 0 1
li 2 1 0 4 3 1
ri 1 2 3 3 2 1

Figure 3 shows the zero, 0.5 and one level sets of F (x). To compare the results of F (x) and other
studied in [1, 2, 3, 4], see Figs. 3-7.

1 1.1 1.2 1.3 1.4 1.5

-2

0

2

4

6

8

Fig. 3. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of F (x).

1 1.1 1.2 1.3 1.4 1.5

-2

0

2

4

6

Fig. 4. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of cubic natural spline.
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1 1.1 1.2 1.3 1.4 1.5

-2

0

2

4

6

8

Fig. 5. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of complete cubic fuzzy spline.

1 1.1 1.2 1.3 1.4 1.5

-6

-4

-2

0

2

4

6

8

Fig. 6. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of not− a− knot cubic fuzzy spline.

1 1.1 1.2 1.3 1.4 1.5

-2

0

2

4

6

8

Fig. 7. The solid line represent the support and the dashed line represent 0.5-level set and the thick line

represent 1-level set of E(3) cubic fuzzy spline.

5. Conclusions

In this paper, we defined a new set of spline functions called “Flat End Fuzzy Spline” to interpolate
given fuzzy data. To avoid complexity of fuzzy multiplication or fuzzy division in construction of full
fuzzy interpolation, we proved that the sign of defined splines, si, dose not change on subintervals.
Also, we presented numerical examples to illustrate the differences between of using our spline and
other interpolations that have been studied before.
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