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Abstract

In the present paper, the notion of generalized (r; g, s, m, ¢)-preinvex function is applied to establish
some new generalizations of Ostrowski type integral inequalities via Caputo k-fractional derivatives.
At the end, some applications to special means are given.
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1. Introduction and preliminaries

The following notations are used throughout this paper. We use I to denote an interval on the
real line R = (—o00, +00) and I° to denote the interior of I. For any subset K C R"™, K° is used to
denote the interior of K. R" is used to denote a n-dimensional vector space. The set of continuous
differentiable functions of order n on the interval [a, b] is denoted by C"[a, b].

The following result is known in the literature as the Ostrowski inequality (see [30]), which gives

b
! / f(t)dt by the value f(z) at

an upper bound for the approximation of the integral average 2
—a

point = € [a, b].

*Corresponding author
Email addresses: artionkashuri@gmail.com (Artion Kashuri), rozanaliko86@gmail.com (Rozana Liko)

Received: June 2017  Revised: August 2017


http://dx.doi.org/10.22075/ijnaa.2017.11722.1585

110 Kashuri, Liko

Theorem 1.1. Let f : I — R be a mapping differentiable on I° and let a,b € I° with a < b. If
|f'(x)| < M for all x € [a,b], then

b
R

For other recent results concerning Ostrowski type inequalities (please see [2]-[4], [12]-[16], [18],
(210, [23], [28)-[31], [33]-[35], [38], [40], [42], [43], [45], [46]). Ostrowski inequality is playing a very
important role in all the fields of mathematics, especially in the theory of approximations. Thus such
inequalities were studied extensively by many researches and numerous generalizations, extensions
and variants of them for various kind of functions like bounded variation, synchronous, Lipschitzian,
monotonic, absolutely, continuous and n-times differentiable mappings etc. appeared in a number
of papers (please see [12]-[16],[19]). In recent years, one more dimension has been added to this
studies, by introducing a number of integral inequalities involving various fractional operators like
Riemann-Liouville, Erdelyi-Kober, Katugampola, conformable fractional integral operators etc. by
many authors (please see [1],[7],[25],[26],[37],]41]). Riemann-Liouville fractional integral operators
are the most central between these fractional operators.

In numerical analysis many quadrature rules have been established to approximate the definite
integrals. Ostrowski inequality provides the bounds of many numerical quadrature rules. In recent
decades Ostrowski and Hermite-Hadamard inequality is studied in fractional calculus point of view
by many mathematicians (please see [8]-[11],[17],[19],[20],[22],[24], [27],[32],[39]).

Now, let us evoke some definitions.

1 (o)’
FR

‘f(a:) - < M(b—a)

Definition 1.2. (see [20]) A function f : [0,4+00) — R is said to be s-convex in the second sense,
if

Oz + 1 =Ny) <Af(2)+ (1= A1) f(y) (1.2)
for all z,y >0, A € [0,1] and s € (0, 1].

It is clear that a 1-convex function must be convex on [0, +00) as usual. The s-convex functions

in the second sense have been investigated in (see [20]).

Definition 1.3. (see [5]) A set K C R" is said to be invex with respect to the mapping 7 :
Kx K —R" ifx+tn(y,z) € K for every x,y € K and t € [0, 1].

Notice that every convex set is invex with respect to the mapping 7(y, ) = y—x, but the converse
is not necessarily true (please see [5],[44]).

Definition 1.4. (see [36]) The function f defined on the invex set K C R™ is said to be preinvex
with respect 7, if for every z,y € K and ¢ € [0, 1], we have that

fr+in(y,z) < (1 —1t)f(z) +tf(y).

The concept of preinvexity is more general than convexity since every convex function is preinvex
with respect to the mapping 7(y, x) = y — x, but the converse is not true.
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Definition 1.5. For k € RT and z € C, the k-gamma function is defined by

nlkrnkr 1

['p(x) = lim 1.3
Its integral representation is given by
o tk
I'y(a) :/ t e wdt. (1.4)
0

One can note that
Fe(a+ k) = alk(a).

For k =1, (1.4)) gives integral representation of gamma function.

Definition 1.6. For £ € R™ and z,y € C, the k-beta function with two parameters x and y is
defined as

1
Br(x,y) = %/ t%_l(l — t)%_ldt. (1.5)
0

For k =1, ([L.5)) gives integral representation of beta function.

Theorem 1.7. Let x,y > 0, then for k-gamma and k-beta function the following equality holds:

_ De(@)Tk(y)
) = )

Definition 1.8. (see [27]) Let @ > 0 and o ¢ {1,2,3,...}, n = [o] + 1, f € C"[a,b] such that
f( exists and are continuous on [a,b]. The Caputo fractional derivatives of order o are defined as
follows:

(1.6)

z ()
‘DS, flx) = I‘(nl— o) /a @ i t)it_)nﬂdt, x> a (1.7)
and
—1)" b (n)
‘Do flx) = FEn 1_)a) / ; _fx)it_)nﬂdt, v <b (1.8)

If o =n€{1,2,3,...} and usual derivative of order n exists, then Caputo fractional derivative
(°D¢, f) (z) coincides with f((z). In particular we have

(DY, f) (z) = (“Dy_f) () = f(x) (1.9)

where n =1 and a = 0.
In the following we recall Caputo k-fractional derivatives.

Definition 1.9. (see [19]) Let & > 0,k > 1 and a ¢ {1,2,3,...}, n = [a] + 1, f € C"[a,b]. The
Caputo k-fractional derivatives of order « are defined as follows:

c o,k . 1 * f(n)(t)
Dyl f(z) = R (= 2) /a = t)%—n+1dt’ r>a (1.10)

O e L L (010
D f(x) ) / :

T (n—2) ), (t—a)F

and

dt, v <b. (1.11)
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The aim of this paper is to establish some generalizations of Ostrowski type inequalities using
new integral identity given in Section [2] for generalized (r; g, s, m, p)-preinvex functions via Caputo
k-fractional derivatives. In Section [3| some applications to special means are establish. In Section [4]
some conclusions and future research are given.

2. Main results

Definition 2.1. (see [I7]) A set K C R™ is said to be m-invex with respect to the mapping
n: K x K x (0,1 — R for some fixed m € (0, 1], if mz + tn(y, mz) € K holds for each z,y € K
and any ¢ € [0, 1].

Remark 2.2. In Definition , under certain conditions, the mapping 7(y, mx) could reduce to
n(y, x). For example when m = 1, then the m-invex set degenerates an invex set on K.

We next give new definition, to be referred as generalized (r; g, s, m, ¢)-preinvex function.

Definition 2.3. Let K C R be an open m-invex set with respect to n : K x K x (0,1] — R,
g :[0,1] — [0, 1] be a differentiable function and ¢ : I — K is a continuous function. The function
f: K — (0,400) is said to be generalized (7; g, s, m, ¢)-preinvex with respect to 7, if

f(mep(x) + g@)n(e(y), e(x),m)) < M. (f(p(x)), f(e(y)), m, s; g(t)) (2.1)

holds for any fixed s,m € (0,1] and for all z,y € I,t € [0, 1], where

M, (f(o(x)), f(e(y)),m,s; (1))

(L= g0 (ple)) + O F ()] £ 0

m(1—g(t))* °(t)
[Fo@n]™ " [fle))]” r=0,
is the weighted power mean of order r for positive numbers f(p(z)) and f(p(y)).

Remark 2.4. In Definition [2.3] it is worthwhile to note that the class of generalized (r; g, s,m, ¢)-
preinvex function is a generalization of the class of s-convex in the second sense function given in
Definition [I.2] For g(t) = t, we get the notion of generalized (r; s, m, ¢)-preinvex function (see [22]).
For r = 1 and ¢(t) = t, we get the notion of generalized (s, m, p)-preinvex function (see [21]). Also,
for r =1, g(t) =t and ¢(x) = z, Vo € I, we get the notion of generalized (s, m)-preinvex function
(see [17]).

In this section, in order to present some new Ostrowski type integral inequalities for general-
ized (r; g, s, m, @)-preinvex functions via Caputo k-fractional derivatives, we need the following new
interesting lemma to obtain our results.

Lemma 2.5. Let « > 0,k > 1 and o ¢ {1,2,3,...}, n = [o] + 1. Suppose K C R be an open
m-invex subset with respect ton : K x K x (0,1] — R for any firxed m € (0,1]. Let ¢ : I — K be
a continuous function and g : [0,1] — [0, 1] a differentiable function. Assume that f : K — R is
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a function on K° such that f € C"[mp(a), mp(a) +n(e(b), ¢(a), m)], where n(p(b), p(a),m) > 0.
Then we have the following equality for Caputo k-fractional derivatives

mep(a)+g(L)n(e (@), (a),m) N
(t = mep(a) 571 fO (1)t
me(a)+g(0)n(e(z),e(a)m)

me(b)+g(1)n(e(z),p(b),m) N
/ (t — mp(B)" 51 F (1)t

mp(b)+g(0)n(p(z),p(b),m)

(@), pla), m) 1 n—g (D) (mo(a x a),m

n(p(b), p(a), m) /0 g" R () f (mep(a) + g(t)n(e(z), p(a), m))d[g(t)]
"R (), (b),m) [T e . ) N

n(e(b), (a),m) /09 () f" D (mep(b) + g(t)n(e(x), ©(b),m))d[g(t)].

Proof . Throughout this paper we denote

It gno(z;a,k,n,m, a,b)

_ 0" (p(2), p(a), m) /1 o
77(90<b>790(a)7m) 0

" (p(), p(b), m) /1 e
n(e(b), ¢(a),m)  Jo

Integrating by parts, we get

vaQJ]A"(I; a? k7 n7 m, a, b) =

. [t”%ﬂm (mipla) + t
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= A /gj;)tn_“lf ) (mip(b) + tn(o(), (), m))dt
_ 0"k (p(2), p(a),m)
n(e(b), pla),m)
g O impla) + gDl (). p(a).m) = g E0)f " mep(a) + g(0)n(p(@). ola). m))
"k (p(2), p(b), m)

(t = mp(a))" F1fF (t)dt

mep(a)+g(0)n(p(z),p(a),m)

mp(b)+9(1)n(p(x),p(b),m) N
Lo (¢ = mp(B) E £ 0y

mp(b n(p(z),0(b),m)

O
Remark 2.6. Under the same conditions as in Lemma for g(t) = t, we get

[fznﬁO(x? Oé, k7 n7 m, a/, b)

0"k (@), p(b), m) ) (mp(b) + n(p(2), 9(b), m))
n(e(b), pla),m)
(o1 (nk — o)l (n — E)

c o,k c ok
X [ D mptayntota.ptaymy—F (19(@) = Dy o) ooy my)—f (mep(b ))]

@) o @m) [ g ) z), ¢(a),m

n(p(b), o(a), m) /Ot FH (mp(a) + tn(e(x), p(a), m))dt

TR (), p(0)m) [Ny, ) i
(e (b), o(a), m) /Ot U (me(b) + tn(e(x), o(b), m))dt.

By using Lemma [2.5] one can extend to the following results.

Theorem 2.7. Let o« > 0,k > 1 and « ¢ {1,2,3,...}, n = [a] + 1. Suppose K C R be an open
m-invexr subset with respect ton : K x K x (0,1] — R for any fized s,m € (0,1]. Let ¢ : [ —>
K be a continuous function and g : [0,1] — [0,1] a differentiable function. Assume that f :
K — (0,400) is a function on K° such that f € C"[me(a), mp(a) + n(e(b), ¢(a), m)], where
n(p(b), p(a),m) > 0. If 0 < r < 1 and f"V is a generalized (r; g, s, m,p)-preinves function on
[me(a), mp(a) + n(e((b), p(a),m)], then the following inequality for Caputo k-fractional derivatives
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holds:

In(e(x), p(a), m)|" %+

I rya, k,n,m,a,b)| <
gm0

=

- nt+s—7+1 1) _gn+§—%+1(0) rY -
+ (n+1) (g ( ) }
(7o) A

|nf%+1

In(p(z), p(b), m)
n(p(b), p(a), m)

n X {m (F" D (p(b)))" By (n - % +1, ; + 1)

1

n (f(nﬂ)(go(x)))T (gn+r_k+ (1) —gn+;—z+ <0)> }7‘,

n+2-2+1

where
g(z)

By (a, b) =/ (1 —¢)" .
9(0)

Proof . Let 0 < r < 1. From Lemma , generalized (r; g, s, m, )-preinvexity of £ Minkowski
inequality and properties of the modulus, we have

|If79777,<,0(x; O[’ k’ n? m; a/, b)’

|77(g0(a:),go(a),m)|”_%+1 ' n—% (n+1)m a T a).m
< FEORORD] /Olg O (mep(a) + g(t)n(e(x), ¢(a), m))|d[g(t)]

(e (@), o), )" e e ) -
T ), p(@), m)] /0'9 OIS (mip(b) + g(n((a), (), m))dlg(t)]

|n—%+1

In(p(x), p(a), m)
n(e(d), p(a), m)

x ( / g @) m(1 = g(0)" (£ (p(@) " + 0" (1) (" (@) | Td[gu)])

In(e(z), (b),m)|" =5+
n(e(b), p(a), m)

x ( | o EO[m = a0y (1) + 50 (1 (@) ] ’"d[gu)])
< In(e(@), e(@) mI—# {( -

+

= n(e(b),e(a),m)

’n—%+1

+( [ o ror @) } s
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1
T

# ([ oo oo }

(), m)["~&*!

jS

x {m (D @) By (n— 5 +1,2+1)

1

I (f(n+1)(§0(l')))r (gn+r_k+ (1) — g”"‘?_z-&- (0)) }r

n+s-¢+1

r

»
Q

z), (b), m)[" k! il v a s
4Jmﬂ&£i&®iw X{”U()W@m%m(”_E+LF+Q

O

Corollary 2.8. Under the same conditions as in Theorem [2.7] if we choose m =k =r =1,
n(py), o(x),m) = o(y) — me(z), p(z) =z, Vo € I, g(t) = t and fO*Y < K, we get the following
inequality for Caputo fractional derivatives:

(x—a)" " —(z—=b)""| aT—a+1)y, . .
‘ [ b—a FO (@) + (1) T[ Dy_f(a) — szf(b)]
SK(Bm—a+Ls+U+n+S_a+l>(ﬁ—@”aijf—xwaﬂ 29

Theorem 2.9. Let o« > 0,k > 1 and o ¢ {1,2,3,...}, n = [a] + 1. Suppose K C R be an open
m-invexr subset with respect ton : K x K x (0,1] — R for any fized s,m € (0,1]. Let ¢ : [ —>
K be a continuous function and g : [0,1] — [0,1] a differentiable function. Assume that f :
K — (0,400) is a function on K° such that f € C" ' mep(a), mp(a) + n(p(d), p(a), m)], where
n(p(b),¢p(a),m) > 0. If 0 <r <1 and (f(”+1))q is a generalized (r; g, s, m, p)-preinvex function on
[my(a), mp(a) + n(pd), p(a),m)], ¢ > 1, p~ + ¢ ' = 1, then the following inequality for Caputo
k-fractional derivatives holds:

aknom.a r . g("f%)pﬂ(l)_g(n*%)pﬂ(o) P 1
frontron ”b)'g(sw) ( (n—fp+1 ) 1 (), ¢ (a),m)
x {m(so(x), pla), m)|"E [ (£ (@) ™ (1= 9(0) 7 = (1= g(1))F)
K] (2.3)

) (670 - 7 0) ]

(@), 9(0), m) " E m (£ (0(0))) " (1= g(0))F+ = (1 = g(1))7+)

}.

2=

(D (@) (1) — g1 0)' ]
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Proof . Suppose that ¢ > 1 and 0 < r» < 1. From Lemma generalized (r; g, s, m, ©)-preinvexity
of ( f (”“))q, Holder inequality, Minkowski inequality and properties of the modulus, we have

|vagv777$0(x; a? k? n7 m, a/, b)’

n(p(x), p(a), m)|"~ &+ (. (D) (0(a o) ola). m
< (o). (@) m)] /Olg O (mep(a) + g(t)n(e(x), v(a), m))|d[g(t)]

(o), (), m)"EE [T e ) -
s T . 197 @I mott) + o). o0, )l )

[n(e(@), pla),m)[" #7111 sy, ’
= ) pla). m) (/9 WL"“”)

1
q

X (/O (f ) (me(a) +g(t)n(w(l‘),@(a),m)))qd[g(t)])

@), Bl mPE ([ e,
). o), m) (/ g “)d[g“”)

3=

1

X (/0 (F7 1 (mep(b) +g(t)n(w(x),@(b),m)))qd[g(t)])

In(o(x), p(a), m)|"~ %+ 1 (n—2)p 1
= n(¢(b), p(a), m) (/0 g (t)d[g(t)])

X (/01 (1= g(0)* (F D (@) + g(8) (S ()" | d[g(t)])

[n(p(@), p(0),m)[""F (Y (e,
), p(@), m) </ g (”d[g(t”)

" (/ 1= ()" ()" +g°(0) (£ ()" |

In(o(z), p(a), m)|"~ 5+ 1 (2} 1
= n(e(b), ¢(a), m) (/0 9 (t)d[g(t)]>

x { ( o (1—g(t)" (f(”“)(@(a)))qd[g(t)])

1

rq

+ (/Olgi(t) (f("“)(sf)(w)))qd[g(t)])r }

[n(p(@), p(0),m)[" "5 (Y (e, ’
1 1) o0 ( [ (t)d[g<t>1)

(e
X { ( i mr(1—g(t)* (f(”“)(@(b)))qd[g(t)])

1
T q

+ (/Olgi(t) (f("“)(so(w)))qd[g(t)]) }
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() () S

X {|n(so(«%‘), p(a),m)|" ! [m (™ (p(a))™ (1= g(0)7" = (1 — g(1))7 )"

(1 @) () - g (0) ]

+ n(p(x), @(b), m)|" 75+ [m (FT ()" (1 = g(0))7 — (1 — g(1))7 )"
@) (W) = g7 )" }

O

Corollary 2.10. Under the same conditions as in Theorem [2.9] if we choose m =k =r =1,
n(e(y), (x),m) = p(y) —me(x), p(r) =z, Vo € I, g(t) =t and f"+) < K, we get the following
inequality for Caputo fractional derivatives:

(o) — (=" il (n—a+1)1. 4 c o
‘ [ b—a ]f( (@) + (-1) T[ D% f(a) — D:c—f(b)]
K 2 ‘ (z — @)+l 4 (b — g)n-atl )
S((71—04)10_1_1);17 (s—l—l) [ b—a ] (2.4)

Theorem 2.11. Let « > 0,k > 1 and o ¢ {1,2,3,...}, n = [a] + 1. Suppose K C R be an
open m-inver subset with respect to n : K x K x (0,1] — R for any fized s,m € (0,1]. Let
¢ : I — K be a continuous function and g : [0,1] — [0,1] a differentiable function. Assume that
f: K —(0,400) is a function on K° such that f € C" ' [mep(a), mp(a) +n(e(b), ¢(a), m)], where
n(p(),p(a),m) > 0. If 0 < r < 1 and (f("“))q is a generalized (r;g, s, m,@)-preinvex function
on [mep(a), me(a) + n(e(b),p(a),m)], ¢ > 1, then the following inequality for Caputo k-fractional
derivatives holds:

(@) n—% n—% n_o 1_%
|15 (x50, k,m,m,a,b)] < (e (2), pla), m)|" <+ (9 (1) —g ’“H(O))
»9,7,P Y b bl 9 P 9

10, p(a), m)

(O (o)) (9"+iz*1<1>-?f*f?*1<0>)"}rq .

(b),m)‘n*%Jﬂ gnf%‘i’l(l)_gnf%«kl(o) 1-1
O ()

. {m (F D))" By (n= T+ 1> +1)

jS

3
—~
jS
|-
=
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1
q

rq =T H1(1) — gt SO\ | T
+ (F" () (9 nfﬁ)_iﬂ <>> } |
r k

Proof . Suppose that ¢ > 1 and 0 < r < 1. From Lemma. 2.5 generalized (r; g, s, m, @)-preinvexity
of ( fntD) ) the well-known power mean inequality, Minkowski inequality and properties of the

modulus, we have

[ fgm.0(T5 0k, m, a, D)
[n(e(2), (a), >!” i w2 ()£ (m St
= Ie (W(a) / 9" E @) F" T (mip(a) + g(t)n(e(), (a), m))|dg(t)]
M(m | : / 16" % ()| Y (mp(b) + g(t)n(e(x), ©(b), m))|dg(t)]

|77(<P($),90(a) )|n k+1 - 11
< A AW ([t ydigon)

n(p(@), o), m)|"" 5+ (s a
), p(a).m) (/9 (“d[g(t”)

. ( [ 9750 (0 ot + gn(e(@), ). m) d[g(t)])

1
q

1
q

. ( [ 920 (1 a0 + (e (o), 10, m)))qd[g@)])

n(p(@), (@), m)[""E1 (11 . -
< el ([ o o)

x ( / g R @) [m(1 = g(0)* (F" P (e(0) 4+ g°(1) (£ (o)) | "d[gof)])

0

[n(p(@), (), m)|"~E+ (1 -
T ), p(@), m) (/09 (t)d[g(t)]>

y { [ w00 - o0y (f<"+1><so<a>>>qd[g<t>1)

+ (/Olgw:—z(t) (f<n+1)(<p(x)))qd[g(t)])T }

n(p(x), p(b),m)[" £ (. -
i n(¢(b), p(a), m) (/09 (f)d[g(t)]>
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_ btplehgle) m £ (57 E7() gn—z+1<o>)1‘;
n(p(b), p(a), m) N — % 1

(0%

x{nmeHx¢@»f”B&D<n—k;+L§+¢>

n+$—%+1(1) _ gn+j—‘;+1(0))r }rq

n+2—-2+1

(ot (4

In(p(z),
n(e(b), p(a), m)

x{m(ﬁ””@@DY”%m<n—%+Jﬂ;+l>

+ p(b), m)|""F (gnz+l<1> - gnz+l<o>)1;

n—4%+1

gn-‘r%—%-‘rl(l) _ gn-‘r%—%-‘rl(o) T ra
n+2—%+1 '

T

(O (o)) (

OJ

Corollary 2.12. Under the same conditions as in Theorem [2.11} if we choose m =k =r =1,
n(py), o(x),m) = (y) — me(z), p(z) =z, Vo € I, g(t) = t and fO*Y < K, we get the following
inequality for Caputo fractional derivatives:

(z—a)" "= (@ =b)"""| T—a+1), .
” b—a ]f( )($)+(_1)+T[Dm_f(a)— Dm_f(b)]

1 T 1 .
<K|—— — 1 1 _
- (n—a+1) (5(“ aTheT )+n+s—a+1)

y (ZL’ _ a)nfa+1 + (b _ :L,)nfa+1
b—a '

Corollary 2.13. Under the same conditions as in Theorem for ¢ = 1, we get Theorem [2.7]

3. Applications to special means

Definition 3.1. (see [6]) A function M : RZ — Ry, is called a Mean function if it has the

internality property:
min{z,y} < M(z,y) < max{z,y}, Va,y € R,.
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It follows that a mean M (x,y) must have the property M(z,xz) = =z, Vo € R,. Now, let us
consider some means for arbitrary positive real numbers «, 5 («a # ).

1. The arithmetic mean:
a+f

2. The geometric mean:

3. The harmonic mean:

2
4. The power mean:
P, = Py(a, ) = (“ ;ﬁ ) gt

5. The identric mean: ,

1(82 .

o { H(E), 0o

a, =

6. The logarithmic mean:
b —a«

7. The generalized log-mean:

L,:=Ly(a,p) =

; peR\{-1,0}

Bp+1 _ a/p+1 P
(p+1)(8—a)

8. The weighted p-power mean:

n P
oq Qi N o
M, ’ ’ ) = g aul
Uy, Uz, *-- y Up i—1

where 0 < a; <1,u; >0(i=1,2,...,n) with > ! ;o = 1.

-

It is well known that L, is monotonic nondecreasing over p € R with L_; := L and Ly := I. In
particular, we have the following inequality H < G < L < I < A. Now, let a and b be positive real
numbers such that a < b. Consider the function M := M (p(z), ¢(y)) : [p(x), p(z) +n(e(y), p(z))] X
[o(x), p(x) + n(e(y), ¢(x))] — R, which is one of the above mentioned means and ¢ : [ — K
be a continuous function and g : [0,1] — [0, 1] a differentiable function. Therefore one can obtain
various inequalities using the results of Section [2| for these means as follows: Replace n(¢(y), ¢(z), m)
with n(o(y), p(z)) and setting n(@(y), o(x)) = M(p(z), ¢(y)) for value m = 1 and Vz,y € I in (2.3),
one can obtain the following interesting inequalities involving means:

|'[fzgvM('7‘)v30(m; Oé, k? n? 1’ a’7 b)l

<(72) (0 ) s
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X {M”‘g“(w(a), () [ (S (@)™ (1= 9(0)) 7+ = (1= g(1))7+)"

1

+ (F" N (p(2)) (971 (1) = gf“(())y] K
 ME(p(0). o) | (£ (B) ™ (1= 9(0)F = (1= g()F )’
(@) (6710~ g 0) }

M"E 4 (p(a), () (gn—%“m - gn—%“(o))l‘q
M(p(a), (b))

x { (f D (p(a)) By, (n — % +1, ; + 1)

+ (f(n+1)(¢(x)))rq (g”JrrkJr (1) — g"tr &t (O)) }rq

M E p(8). () (gn%“(l) - gn%+1<0>)1‘3
M(pla). 9))

X { (™D (p(0)) " By (n — % + 1, ; + 1)

+ (f(nJrl)(gO(x)))rq (gn+f_k+ (1) — g”'i‘;—g-i- (O)) }

n+?—2+1

L5 g01() 0@, k,n,1,a,0)| <

_|_

2l

Letting M (¢(z),¢(y)) = A,G,H,P,,1,L,L,, M,, Vz,y € I,in (3.1)), we get the inequalities involving
means for a particular choice of a generalized (7; g, s, 1, ¢)-preinvex functions ( f (”H))q . The details
are left to the interested reader.

4. Conclusions

In the present paper, the notion of generalized (r; g, s, m, p)-preinvex function was applied for estab-
lished some new generalizations of Ostrowski type inequalities via Caputo k-fractional derivatives.
Motivated by this new interesting class of generalized (r; g, s, m, ¢)-preinvex functions we can indeed
see to be vital for fellow researchers and scientists working in the same domain. We conclude that our
methods considered here may be a stimulant for further investigations concerning Ostrowski, Hermite-
Hadamard and Simpson type integral inequalities for various kinds of preinvex functions involving
classical integrals, Riemann-Liouville fractional integrals, k-fractional integrals, local fractional inte-
grals, fractional integral operators, Caputo k-fractional derivatives, g-calculus, (p, ¢)-calculus, time
scale calculus and conformable fractional integrals.
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