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In this paper, a new method proposed for structural damage 

detection from limited number of sensors using extreme 

learning machine (ELM). One of the main challenges in 

structural damage identification problems is the limitation in 

the number of used sensors. To address this issue, an 

effective model reduction method has been proposed. To 

condense mass and stiffness matrices, the second-order 

approximation of Neumann series expansion (NSEMR-II) 

has been used. Mode shapes and frequencies of damaged 

structures and corresponding generated damage states used 

as input and output to train extreme learning machine, 

respectively. To show the effectiveness of presented method, 

three different examples consists of a truss structure, 

irregular frame and shear frame have been studied. The 

obtained results show the ability of the proposed approach in 

identifying and estimating different damage cases using 

limited numbers of installed sensors and noisy modal data.  
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1. Introduction 

Identification of damage in structures has 

received increasing attention in the last few 

decades. One of the many nondestructive 

evaluation approaches is based on the change 

of vibration parameters with a change in the 

structural properties [1]. 

One of the main challenges in structural 

damage identification problems is the 

limitation in the number of used sensors. To 

address this issue, different model reduction 

methods has been proposed [2-3]. 

Hosseinzadeh et al. [4] have been developed 

a damage identification method using cuckoo 

search algorithm and a new model 

condensation method (iterated improved 

reduction system (IIRS)). In other work, 

Kourehli et al. [5] proposed a new damage 

detection approach based on reduced 

stiffness matrices and pattern search 

optimization algorithm. Li et al. [6] presented 

a damage identification method for offshore 

jacket structures based in incomplete modal 

https://dx.doi.org/10.22075/jrce.2018.13348.1242
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data. Also, Rasouli et al. [7] used Guyan’s 

static reduction method and particle swarm 

evolutionary algorithm to detect damage in 

structures. Also, some researchers used the 

mode shape expansion approaches for 

structural damage detection [8]. Ghannadi et 

al. [9] developed a novel method for damage 

identification based on expanded mode shape 

data and artificial neural network. To expand 

mode shapes, SEREPa expansion method has 

been used. In this study, space truss and 

plane truss used to show the effectiveness of 

presented method. 

Nowadays, different learning machines (LM) 

have been used to identify damage in 

structures. Most of these methods used modal 

data or static responses of structures as input 

data to predict damage existence and severity 

as output. Recently, Djemana et al. [10] 

developed a damage identification method 

using extreme learning machine (ELM). In 

this paper, piezoelectric sensors have been 

used. Results showed that ELM can be used 

as a tool to predict of a single damage in 

structures. The obtained results reveal that 

ELM is an effective tool to identify structural 

damages. Also, Gökdağ [11] presented a 

method to identify crack in beams under 

moving vehicle. In this paper an objective 

function formulated using dynamic responses 

of beam structures and solved by the particle 

swarm optimization (PSO). The results reveal 

that the proposed method can predict cracks 

with depth ratio of 0.1. Also, different 

optimization techniques have been proposed 

in recent years to detect damage in structures 

[12-14]. Hoseini vaez et al. [15] used wavelet 

transform to identify damages in Koyna dam. 

Also, Hoseini vaez et al. [16] proposed a 

damage identification approach in post-

tensioned slab using 2D wavelet transforms. 

Also, bagheri et al. [17] used discrete wavelet 

analysis to detect damage in structures under 

earthquake excitation. In other work, 

Yazdanpanah et al. [18] presented a damage 

identification method based on new damage 

indicator. Results show a better performance 

of proposed indicator in comparison with 

other indicators. Also, Naderpour and 

Fakharian [19] identified modal parameters 

of structures using wavelet packet transform 

and peak picking method. Kourehli [20] used 

modal data of damage plate structures as 

input and damage states as output to train 

ELM. To show the performance of the 

presented method, a cantilever and a plate 

with four-fixed have been used. Also, 

Kourehli [21] used artificial neural network 

and the Guyan reduction method to identify 

damages. Recently, Ghadimi et al. [22] 

presented a novel approach to predict cracks 

in beam structures using ELM. 

In this paper, a new structural damage 

identification method is presented based on 

limited number of sensors data and ELM. In 

this approach, NSEMR-II is used to condense 

mass and stiffness matrices, while ELM is 

used to predict damage. The evaluate the 

effectiveness of proposed method, three 

different examples, namely a truss bridge, 

frame structure and 15-story shear frame 

containing single damage or several damages 

have been used. The obtained results reveal 

that the proposed method is viable method to 

identify structural damages. 

2. Neumann series Expansion-Based 

Model Reduction 

One of the main challenges in structural 

damage identification problems is the 

limitation in the number of used sensors. To 

address this issue, different model reduction 

methods have been proposed in literature 

[23-28]. In this study, a highly accurate 

condensation model, namely, NSEMR-II is 
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used to reduce the finite element model. The 

background of NSEMR-II approach is briefly 

summarized in the following. 

The analytical model of a given structure can 

be divided to master and slave DOFs as 

follows 

[
𝐾𝑚𝑚 𝐾𝑚𝑠

𝐾𝑠𝑚 𝐾𝑠𝑠
] {
𝜙𝑗
𝑚

𝜙𝑗
𝑠 } =

𝜆𝑗 [
𝑀𝑚𝑚 𝑀𝑚𝑠

𝑀𝑠𝑚 𝑀𝑠𝑠
] {
𝜙𝑗
𝑚

𝜙𝑗
𝑠 }                              (1) 

where the superscripts “m” and ‘‘s” denote 

the master and slave DOFs, respectively.  

So, the reduced mass (𝑀𝑟) and stiffness (𝐾𝑟) 

matrices based on NSEMR-II can be 

expressed as [24]: 

𝑀𝑟 = 𝑇𝑇M T                                               (2) 

𝐾𝑟 = 𝑇𝑇K T                                                (3) 

Where 

𝑇 = [

𝐼

−[𝐵1 + 𝐾𝑠𝑠
−1𝑀𝑠𝑠(𝐴1𝐴4 + 𝐴1𝐴5)]

−1
×

[𝐵2 + 𝐾𝑠𝑠
−1𝑀𝑠𝑠(𝐴1𝐴2 + 𝐴1𝐴3)]

]        (4) 

and 

𝐴1 = 𝐾𝑠𝑠
−1𝑀𝑠𝑠𝐾𝑠𝑠

−1𝐾𝑠𝑚𝑀𝑚𝑚
−1               (5) 

𝐴2 = 𝐾𝒎𝒎𝑀𝒎𝒎
−1𝐾𝑚𝑚                              (6) 

𝐴3 = 𝐾𝑚𝑠𝑀𝑠𝑠
−1𝐾𝑠𝑚                                   (7) 

𝐴4 = 𝐾𝑚𝑚𝑀𝑚𝑚
−1𝐾𝑚𝑠                               (8) 

𝐴5 = 𝐾𝑚𝑠𝑀𝑠𝑠
−1𝐾𝑠𝑠                                    (9) 

𝐵1 = 𝐼 + 𝐴1𝐾𝑚𝑠                                       (10) 

𝐵2 = 𝐾𝑠𝑠
−1𝐾𝑠𝑚 + 𝐴1𝐾𝑚𝑚                      (11) 

In this paper, the NSEMR-II is used to 

condense mass and stiffness matrices to 

measured master DOFs. 

3. Extreme Learning Machine 

(ELM) 

The ELM is an extremely fast single-hidden 

layer feedforward neural network which was 

originally proposed by Huang et al. [29].  In 

ELM, the weights of the output layer 

optimize by Moore-Penrose generalized 

inverse. The structure of ELM can be seen in 

Fig. 1. See more details in refs. [22, 29]. 

 
Fig. 1. The structure of ELM. 

4. Numerical Examples 

To show the performance of the proposed 

method using frequencies and incomplete 

mode shapes, three different numerical 

examples have been studied. A truss 

structure, irregular frame and shear frame are 

modeled using finite element method. In this 

paper, the effect of damages, simulated by 

reduction in elasticity modulus of structural 

finite elements. See more details in ref. [21]. 

Then, different damage scenarios considered 

and natural frequencies and incomplete mode 

shapes of the damaged structure are obtained 

and used as the input data to train ELM. 
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4.1. Truss Structure  

The first example is a plane truss structure 

with 17 elements and 8 nodes (see Fig. 2). 

The finite element model of studied 

structures was simulated by using MATLAB 

software. 

 
Fig. 2. Plane truss structure. 

Table 1 shows the characteristics of different 

elements in studied steel truss bridge 

structure. In this paper, the first three 

vibrating modes are utilized for damage 

detection. 

To compare the performance of different 

model reduction approaches, three different 

model reduction approaches namely, Guyan’s 

approach, first-order and NSEMR-II has been 

studied. Table 2, presented the first ten 

natural frequencies obtained by various 

reduction approaches for truss structure. It 

can be seen that the NSEMR-II has less 

errors and is more accurate, which is utilized 

in this paper. 

Table 1. Characteristics of truss elements. 

Element

s 

Element

s length 

(m) 

Cross-

sectiona

l area 

(cm2) 

Sections 

B1B3 16.0 181.0 IPB360 

B1T1 8.0 72.7 IPB360 

B2T1 11.3 181.0 IPB360 

B2T2 8.0 143.0 IPBL360 

B2T3 11.3 373.0 
IPBV300+2PL350*

10 

B3T3 8.0 72.7 IPE360 

T1T3 16.0 373.0 
IPBV300+PL350*1

0  

 

To evaluate presented method, three different 

damage cases are considered by reduction in 

elasticity modulus of truss elements. The 

considered reduction factors in different truss 

elements listed in Table 3. As it can be seen 

from Fig. 2, sensors installed at joints T1, T2, 

T3, T4, T5 and selected as measured DOFs. 

 

Table 3. Considered reduction factors in different truss elements. 

Case 1   Case 2   Case 3 

Element 

number 

Damage 

ratio 
  

Element 

number 

Damage 

ratio  

Element 

number 

Damage 

ratio 

12 0.1 
 

6 0.2 
 

3 0.2 

- - 
 

16 0.1 
 

7 0.2 

- -   - -   15 0.1 

 

In real cases, the presented approach uses 

mode shapes and frequencies of the damaged 

structure in measured DOFs. So, in the 

numerical examples using the finite element 

modeling, some hypothetical damage 

scenarios have been used to obtain the mode 

shapes and frequencies. 

mailto:IPBV300@PL350*10
mailto:IPBV300@PL350*10
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Table 2. The first ten natural frequencies obtained by various reduction approaches for truss structure. 

Natural frequencies (Hz) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

Unreduced damaged model 11.087 15.975 28.716 49.970 63.458 67.732 76.509 91.382 91.815 100.452 

Guyan's method 11.144 16.160 29.939 52.987 66.046 74.179 88.795 118.944 206.513 215.519 

Guyan's method's errors (%) 0.512 1.157 4.262 6.038 4.078 9.517 16.059 30.162 124.922 114.549 

The first order aproxmation 11.088 15.976 28.725 50.230 64.254 68.806 83.631 101.090 107.575 157.033 

The first order aproxmation errors (%) 0.006 0.007 0.034 0.520 1.254 1.586 9.310 10.624 17.165 56.326 

The second order aproxmation 11.088 15.976 28.719 50.027 63.711 68.043 79.267 91.854 102.117 116.250 

The second order aproxmation errors (%) 0.005 0.006 0.011 0.114 0.398 0.459 3.605 0.517 11.220 15.727 

 

To train ELM, incomplete mode shape and 

frequencies (modal data) of damaged 

structures used an input and corresponding 

damage severity (DS) used as output. 

Training data consists of modal data of truss 

structures with different DS values equal to 

0%, 10%, 20% and 0, 10 % for elements 

numbered 2,4,6,8,10,12 and elements 

numbered 1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 17 

respectively. In this case, only 10000 random 

combinations of the assigned DSs used to 

train and test ELM. Table 4 show the 

performance of the ELM for detecting and 

estimating damage. It can be see that the low 

values of MSE has been achieved. 

Table 4. Performance of the ELM in truss bridge. 

  
Sample 

Numbers 
MSE 

Training 9000 5.910E-06 

Testing 1000 7.797E-06 

 

Finally, the effectiveness of the presented 

approach has been studied using three 

damage cases. Fig. 3 shows that the 

presented approach is robust and effective in 

spite of limited number of measurements 

which may be noisy data. 

4.2. Frame Structure 

The second example is an irregular steel 

frame with 7 column elements, 8 beam 

elements and 11 free nodes, as shown in Fig. 

4. The steel material properties are mass 

density ρ=7850 kg/m
3
, elasticity modulus 

E=200 GPa. For columns, mass per unit 

length is m=117.75 kg/m, moment of inertia 

is I=3.3 10−4 m
4
, and cross-sectional area is 

A=1.5 10−2 m
2
. while for beams this 

properties are m=119.32 kg/m, I=3.69 10−4 

m
4
 and A=1.52 10−2 m

2
 [31]. In this 

example, the measured DOFs are 11 

translational DOFs to identification of 

damage in frame structure. 

 
Fig. 4. Irregular plane steel frame. 
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Table 5, presented the first ten natural 

frequencies obtained by various reduction 

approaches for frame structure. It can be see 

that the NSEMR-II is more accurate and 

utilized in this paper.  

Also, the considered reduction factors (DSs) 

in different frame elements listed in Table 6. 

 

 

 
Fig. 3 Obtained results for three different damage cases using noise free data and 5% noisy data in truss 

structure. 

Table 6. Considered reduction factors in frame 

structure elements. 

Case 1   Case 2   Case 3 

Element 

number 

Damage 

ratio 
  

Element 

number 

Damage 

ratio  

Element 

number 

Damage 

ratio 

10 0.1 
 

2 0.2 
 

4 0.1 

- - 
 

19 0.1 
 

11 0.2 

- -   - -   18 0.1 

 

To generate training patterns, DS values 

equal to 0%, 10%, 20% for elements 

numbered 2,8,14,19 and 0, 10 % for other 

elements, were considered for every element 

in the structure. In this case, only 10000 

random combinations of the assigned DSs 

used to train and test ELM. Table 7 show the 

efficiency of the ELM with low values of 

MSE. 
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Table 7. Performance of the ELM in frame 

structure. 

  
Sample 

Numbers 
MSE 

Training 9000 1.158E-06 

Testing 1000 2.945E-06 

 

Fig. 5 show the performance of the presented 

method for detecting and estimating damage 

severities in different elements using only 

translational DOFs measurements for frame 

structure which may be noisy data. 

Table 5. The first ten natural frequencies obtained by various reduction approaches for frame structure. 

Natural frequencies (Hz) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

Unreduced damaged model 11.901 27.032 42.759 81.507 98.516 103.270 106.222 117.252 126.583 132.295 

Guyan's method 11.904 27.059 42.802 107.307 202.603 224.161 299.904 368.990 389.269 436.242 

Guyan's method's errors (%) 0.028 0.102 0.099 31.653 105.656 117.063 182.336 214.699 207.520 229.750 

The first order aproxmation 11.904 27.058 42.799 107.440 116.671 160.047 198.985 209.526 214.299 260.222 

The first order aproxmation errors (%) 0.026 0.095 0.094 31.816 18.429 54.980 87.329 78.698 69.295 96.698 

The second order aproxmation 11.903 27.055 42.799 83.228 100.720 106.537 119.607 129.951 144.247 163.513 

The second order aproxmation errors (%) 0.023 0.086 0.093 2.111 2.237 3.164 12.600 10.831 13.954 23.597 

 

4.3. Fifteen Story Shear Frame 

The fifteen story shear frame is shown in Fig. 

6. For this case, 8 sensors installed on the 1, 

3, 5, 7, 9, 11, 13, 15 stories (see fig. 6). Also, 

the stiffness and mass in different stories are 

shown in Table 8. 

 
Fig. 6 15-story shear frame. 

Table 8. The characteristics of the shear frame. 

Story number Mass (ton) 
Stiffness 

(MN m
-1

) 

1-5 50 300 

6-10 50 200 

11-15  50 100 

 

Table 9, presented the first ten natural 

frequencies obtained by various reduction 

approaches for frame structure. It can be seen 

that the NSEMR-II is more accurate and 

utilized in this paper. 

To show the performance of presented 

method, three different damage cases are 

considered. The considered reduction factors 

in different shear frame story’s stiffness listed 

in Table 10. 
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Fig. 5 Obtained results for three different damage cases using noise free data and 5% noisy data in frame 

structure. 

Table 10. Considered reduction factors in 

different shear frame story’s stiffness. 

Case 1   Case 2   Case 3 

Element 

number 

Damage 

ratio 
  

Element 

number 

Damage 

ratio  

Element 

number 

Damage 

ratio 

2 0.1 
 

9 0.2 
 

7 0.1 

- - 
 

13 0.1 
 

8 0.2 

- -   - -   14 0.2 

 

To generate training patterns, DS values 

equal to 0%, 10%, 20% for elements 

numbered 1,3,5,7,9,11,13,15 and 0, 10 % for 

other elements, were considered for every 

element in the structure. In this case, only 

10000 random combinations of the assigned 

DSs used to train and test ELM. Table 11 

shows the low values of MSE in training and 

testing stages. 

Table 11. Performance of the ELM in shear 

frame. 

  
Sample 

Numbers 
MSE 

Training 9000 4.7189E-07 

Testing 1000 6.148E-07 
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Fig. 7 show that the performance of the 

proposed approach for detecting and 

estimating damage severities in different 

elements using incomplete measurements 

noisy data. The obtained results indicate that 

the proposed approach is promising in 

identification of different damage cases. 

Table 9. The first ten natural frequencies obtained by various reduction approaches for 15-story shear 

frame. 

Natural frequencies (Hz) f1 f2 f3 f4 f5 f6 f7 f8 

Unreduced damaged model 1.084 2.751 4.675 6.275 8.205 9.646 11.239 12.232 

Guyan's method 1.086 2.780 4.802 6.597 8.641 10.333 12.729 16.684 

Guyan's method's errors (%) 0.222 1.061 2.725 5.131 5.312 7.124 13.260 36.392 

The first order aproxmation 1.084 2.751 4.676 6.291 8.240 9.779 11.870 16.136 

The first order aproxmation errors (%) 0.000 0.001 0.032 0.257 0.427 1.379 5.615 31.909 

The second order aproxmation 1.084 2.751 4.675 6.276 8.209 9.694 11.621 15.535 

The second order aproxmation errors (%) 0.000 0.000 0.001 0.017 0.042 0.499 3.406 26.996 

 

 

 
Fig. 7. Obtained results for three different damage cases using noise free data and 5% noisy data in 15-

story shear frame. 
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5. Conclusions 

In the presented study, damage identification 

problem was investigated using extreme 

learning machine and incomplete 

measurements. To condense mass and 

stiffness matrices, the NSEMR-II has been 

used. The ELM which is an extremely fast 

learning machine, used to predict damage. 

The performance of the presented approach 

was evaluated by using three examples, e.g., 

a truss structure, irregular frame and 15-story 

shear frame. Also, the performance of the 

presented approach has been studied using 

noisy data (5% noise). Results reveal that the 

prented approach is robust and promising 

using sparse sensor measurement and noisy 

data. 
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