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This study used particle swarm optimization (PSO) to determine the optimal values of effective design variables 

acting on the stress distribution around a quasi-triangular hole in an infinite orthotropic plate. These parameters 

were load angle, hole orientation, bluntness, fiber angle, and material properties, which were ascertained on the 

basis of an analytical method used by Lekhnitskii [3]. The cost function was regarded as the maximum stress 

created around the hole and was calculated using the aforementioned analytical approach. The finite element 

method was then employed to verify the results of the analytical calculation. The overlap in the analytical and FEM 

calculations confirmed the validity of the solution proposed in this research. The findings further indicated that the 

design variables significantly affect the stress distribution around quasi-triangular holes and structural load-

bearing capacity. The performance of the PSO algorithm was also investigated. 
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1. Introduction 

Composite plates are characterized by superior 
mechanical properties, such as high strength-to-
weight ratios, which is why these materials are 
increasingly used in building industries and many 
other important sectors. The wide application of 
composite plates and their complicated behavioral 
nature compared with that of metals necessitate a 
detailed study of their failure strength. The 
numerous applications of composite plates also 
generate a variety of geometric discontinuities with 
different sizes and shapes. Examples of such 
discontinuities are holes on the doors and windows 
of submarines and airplanes, points for mounting 
manometers and barometers on a furnace wall, 
points of junction between plates and rivets and 
screws, holes that enable the easy flow of cooling 
fluids across turbine blades, and holes created to 
enable the passing of electrical cables and hydraulic 
hoses or the facilitation of fuel flow on a wing. In all 

these cases, geometric changes in different 
structures create highly localized stresses around 
discontinuous areas, where structural failure 
usually occurs. Analyzing stress concentration is 
therefore essential for designers of engineering 
structures because the fracture strength of these 
constructions depends strongly on the stress 
concentration caused by holes. Stress concentration 
is also critical in evaluating the reliability of 
engineering structures. The stress surrounding 
fastened joints, for example, causes 80% of fatigue 
failures in aircraft structures [1]. 

2. Literature review 

Savin [2] was the first to study an infinite plate 
containing a triangular hole with rounded edges—a 
task that he carried out using conformal mapping 
and the Schwarz relation. The author examined 
stress concentration around different holes in 
isotropic plates and around circular and elliptical 
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holes in anisotropic plates. He also calculated the 
stress distribution around an equilateral triangular 
hole with rounded corners in infinite plates. 
Lekhnitskii [3] explored anisotropic plates 
containing circular and elliptical holes, while 
Theocaris and Petro [4] investigated the stress 
distribution around an equilateral triangular hole 
and the effects of bluntness. With the expansion of 
Savin’s method, Daoust and Hoa [5] analyzed 
equilateral triangular holes in infinite isotropic and 
anisotropic plates subjected to uniaxial loading. 
Apart from scrutinizing these holes, they 
investigated other triangular holes with different 
aspect ratios and the effects of curvature bluntness 
on the stress distribution around the holes. 
Tsutsumi et al. [6] explored the solution of a semi-
infinite plane with one circular hole. The authors 
arrived at their solution by repeatedly superposing 
the solution of an infinite plane with one circular 
hole and that of a semi-infinite plane without holes 
to cancel out the stresses arising on both 
boundaries. 

 Rezaeepazh and Jafari [7–8] illuminated the 
stress distribution around several non-circular 
holes in isotropic and composite plates using 
Lekhnitskii’s [3] solution. Asmar and Jabbour [9] 
calculated the stress distribution around a 
rectangular hole in an infinite anisotropic plate 
under tensile loading. They examined the effects of 
bluntness and load angle on the stress analysis of 
perforated plates. On the basis of Savin’s [2] 
potential function, Rao et al. [10] presented 
relationships for the stress analysis of isotropic and 
anisotropic plates containing a rectangular hole. 
Yang et al. [11] used the Airy stress function to look 
into exact solutions for the stresses, strains, and 
displacements in a perforated rectangular plate—
problems that stem from an arbitrarily located 
circular hole subjected to both linearly varying in-
plane normal stresses on two opposite edges and in-
plane shear stresses. 

 Sivakumara et al. [12] probed into the 
optimization of laminate composites containing an 
elliptical hole by using a genetic algorithm. The 
design variables used by the authors were the 
stacking sequence of laminates, the thickness of 
each composite layer, the relative size of a hole, hole 
orientation, and ellipse diameters. They also 
regarded first and second natural frequencies as 
cost functions. Liu et al. [13] presented a newly 
developed fixed grid evolutionary structural 
optimization method to obtain the optimum shape 
of multiple holes in composite structures on the 
basis of the Tsai–Hill failure criterion. The authors 
first considered the effects of the number of holes 
and the spacing relative to each hole, then they used 

the Tsai–Hill failure criterion for a composite plate 
to evaluate the cost function. Cho and Rowlands [14] 
demonstrated the effectiveness of a genetic 
algorithm in minimizing the tensile stress 
concentration in composite laminates containing 
holes. Along with the algorithm, a specially 
developed finite element program was used by the 
authors. Hudson et al. [15] employed ant colony 
optimization for the multiple objective optimization 
of composite sandwich structures for rail vehicle 
floor panels. Almeida and Awruch [16] delved into 
the optimal design of laminate composites using a 
genetic algorithm and finite element approaches. 
The authors regarded fiber angle and the thickness 
of each composite layer as design variables and 
indicated the cost function as achieving the lowest 
deflection and weight.  

 Alonso et al. [17] used particle swarm 
optimization (PSO) on the basis of moving bird 
groups to optimized composite structures. Also 
using PSO and a finite element method (FEM), Chen 
et al. [18] presented an optimization approach to 
ensuring the reliability of composite structures. The 
authors used ANSYS data in MATLAB and presented 
numerical examples of laminates, composite 
cylindrical shells, and composite pressure vessels to 
verify the effectiveness of their method. Sharma et 
al. [19] optimally designed symmetrical laminate 
composites containing an elliptical hole by using a 
genetic algorithm. They obtained the optimum fiber 
angle in the composites under in-plane loading 
conditions and calculated the cost function using the 
Tsai–Hill failure criterion. The design variable that 
they used was the stacking sequence of laminates. 
Zhu et al. [20] considered the optimization of 
composite struts using a genetic algorithm and the 
Tsai–Hill failure criterion, paying attention to 
minimizing the weight of a structure and increasing 
buckling load. The authors adopted fiber volume 
fraction and the stacking sequence of laminates as 
design variables. Jafari et al. [21] calculated the 
optimum values of the effective design variables 
acting on the stress distribution around different 
holes by using the genetic algorithm. 

In this study, a PSO algorithm was used to 
determine the optimal values of effective 
parameters that act on the stress distribution 
around a quasi-triangular hole in  an orthotropic 
plate. Previous studies minimally investigated the 
effects of these parameters on the stress 
distribution around holes. Specifically, the research 
relied on Lekhnitskii’s [3] analytical solution and 
expanded it for application to the quasi-triangular 
hole for the purpose of determining the optimal 
values of the design variables for uniaxial, equi-
biaxial, and shear loading and generating the 
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minimum normalized stress. Because of the 
traction-free boundary conditions imposed on a 
hole’s edge, stresses  and  at the hole’s edge are 
zero, and circumferential stress σθ is the only 
remaining stress. In this research, minimizing 
normalized stress around the hole is considered the 
cost function. Normalized stress is the ratio of the 
maximum value of circumferential stress at the edge 
of the hole () to nominal or applied stress. 

3. Particle Swarm Optimization 

 PSO was presented by Kennedy and Eberhart 
[22]. In an Nvar − dimensional problem, a particle 
includes a row vector with Nvar elements. This 
arrangement is defined as Eq. (1). To initiate the 
algorithm, a number of these particles (as the 
number of the primary particle algorithm) must be 
created. The total particle matrix is then formed and 
expressed as Eq. (2). 

(1) particle = [p1, p2, p3, . . . , pNvar
] 

 

 

(2) 
particles = [

particle1
particle2

particle3...
particleN

]

=

[
 
 
 
 
 
 
p1,1, p2,1, . . . , pNvar,1

p1,2, p2,2, . . . , pNvar,2

p1,3, p2,3, . . . , pNvar,3

.

.

.
p1,N, p2,N, . . . , pNvar,N]

 
 
 
 
 
 

 

 As previously stated, the cost function is to 
minimize normalized stress, which is the ratio of the 
maximum value of circumferential stress at the edge 
of the hole () to nominal or applied stress. The 
cost of each particle is obtained by evaluating the 
cost function for variables p1, p2, p3, . . . , pNvar

 in 
accordance with Eq. (3).  

(3) C. F.i = f(p1, p2, p3, . . . , pNvar
) 

 In the PSO algorithm, the particles update their 
velocities and positions on the basis of the best 
absolute and local solution, as in Eqs. (4) and (5) 
[23].  

(4) Vi,j(t + 1) = ωVi,j(t) + r1,j. c1 (Pi,j(t) −

Xi,j(t)) + r2,j. c2 (Pi,j
∗(t) − Xi,j(t))  

(5) Xi,j(t + 1) = Xi,j(t) + Vi,j(t + 1) 

 In the equations above, Vi,j(t) and Xi,j(t) are the 
current velocity and position of a particle, 
respectively. Let Xi(t) = {xi,1(t), . . ., xi,Nvar

(t)} be the 
position of particle i in an Nvar − dimensional search 
space at iteration t. The updated velocity and 
position of the particle are Vi,j(t + 1) and 

Xi,j(t + 1) = {xi,1(t + 1), . . ., xi,Nvar
(t + 1)}, 

respectively. Item ω is the inertia weight coefficient, 
and c1 and c2 denote two positive constants called 
cognitive and social coefficients, respectively. Items 
r1,j and  r2,j are two random vectors, whose elements 
are r1,j, r2,j ∈ [0,1], and Pi,j(t) and Pi,j

∗(t) are the best 
positions of individual and group experiences, 
respectively. Finally, each particle is updated on the 
basis of the best performance of its relationship 
with condition (6). Moreover, the velocity and 
position of a particle determined on the basis of the 
best position among particles are updated according 
to Eq. (7) [24]. 

(6) if  f(Xi,j(t + 1)) < f(Pi,j(t))    then                         

Pi,j(t + 1) = Xi,j(t + 1)  

(7) if  f(Xi,j(t + 1)) < f(Pi,j
∗(t) )                  then     

Pi,j
∗ (t + 1) = Xi,j(t + 1) 

3.1. Convergence performance 

 PSO has become very popular because of the 
simplicity with which it is implemented and its 
effectiveness in quickly converging to a reasonably 
good solution. The convergence performance of the 
algorithm depends on the conditions presented in 
Eq. (8) [25]. 

(8) 
r1. c1 + r2. c2 > 0  ,   

r1. c1 + r2. c2

2
− ω < 1  ,

𝜔 < 1 

 We know that r1, r2 ∈ [0,1]. As a result, ensuring 
the convergence of the PSO algorithm requires 
expressing the above-mentioned inequalities with 
innovative parameters as Eq. (9). The upper and 
lower bounds of design variables are defined as Eq. 
(10). 

0 < 𝑐1 + c2 < 4       ,    
c1 + c2

2
− 1 < 𝜔 < 1 (9) 

(10) subject to:          { 
0 < θi < 90 ; (𝑖 = 1,2)

0 < θ3 < 180
0 < 𝑤 < 0.5

}      

 As reflected in Eqs. (4) and (5), some of the 
particles may leave the feasible region of a search 
space. To handle these infeasible solutions, the 
“absorb technique” is applied. In this technique, 
invalid particles are moved to the nearest boundary 
by setting all variables outside the feasible region to 
their nearest bound (Eq. (11)). The affected velocity 
components are set to zero (Eq. (2)). In Eqs. (11) 
and (12), lj and uj are the lower and upper bounds 
of the jth component of the search space. 

xi,j(t + 1) = {
lj  if  xi,j(t + 1) < lj
uj  if  xi,j(t + 1) > uj

} (11) 

vi,j(t + 1) = 0  if  xi,j(t + 1)

< lj  or  xi,j(t + 1) > uj 

(12) 

4. Effects of algorithm parameters 
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 The values of the effective parameters for the 
PSO algorithm are listed in Table 1. Changing and 
optimizing these parameters produce a high-
performance algorithm. To illustrate, the effects of 
the parameters related to the algorithms used in 
this work were investigated. Note that the results 
represent boron/epoxy composites and uniaxial 
tensile loading at w = 0.1. 

4.1. Effects of c1 and c2 in the PSO algorithm 

 Fig. 1 illustrates the effects of the number of 
iterations on the cost function at different values of 
c1 and c2. Table 2 presents the values of the cost 
function and the optimum design variables at 
different values of c1 and c2. 

 To emphasize the general search of particles in 
the search space at the beginning of algorithm 
operation and local search at the end of operation, 
c1 is reduced and c2 is increased. Correspondingly, 
the particles are attracted to the best position of the 
swarm. The parameters are updated as Eqs. (13) 
and (14) [26]. 

(13) 
c1(t+1)

= (c1,f − c1,i)
t

tmax

+ c1,i 

(14) 
c2(t+1)

= (c2,f − c2,i)
t

tmax

+ c2,i 

where c1,f , c2,f , c1,i , c2,i are constant, t denotes the 
number of current repetitions of a particle, and tmax 
represents the maximum number of allowable 
iterations. 

Table 1. Values of effective parameters for the PSO algorithm 

 

PSO parameters 

Algorithm parameters: 
Population size = 50 
Maximum of iteration = 40 
Cognitive component 

                                    c1(t+1)
= (c1,f − c1,i)

t

tmax
+ c1,i 

Social component  c2(t+1)
= (c2,f − c2,i)

t

tmax
+ c2,i 

Inertia weight  ωt+1 = (ωi − ωf) (
tmax−t

tmax
) + ωf 

0 < 𝑐1 + c2 < 4       ,    
c1 + c2

2
− 1 < ω < 1 

Constraints: 
Load angle                         0 < 1 < 90 
Fiber angle                        0 < 2 < 90 
Rotation angle                  0 < 3 <  180 
Bluntness factor               0 ≤ w < 0.5 
Cost Function: 
Minimizing normalized stress around the quasi-
triangular hole 

4.2. Effects of ω in the PSO algorithm 

 The inertia weight coefficient () directly affects 
the convergence rate of PSO. This coefficient can be 
used to control the effects of previous velocities on 
current velocities, and its value can be modified to 
improve balance between global and local searches. 
Shi and Eberhart [22] stated that the optimum value 
of  can be improved for most problems by 
changing the weight coefficient from 0.9 at the 
beginning of a search to 0.4 at the end of the search. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Convergence of cost function at different c1, c2 values 
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Table 2. Optimal values and corresponding cost function at different c1, c2 values 

 Population size Number of iterations θ1 θ2 θ3 C.F. 

c1 = 0, c2 = 3 
c1 = 1, c2 = 2 
c1 = 1.5, c2 = 1.5 
c1 = 2, c2 = 1 
c1 = 2, c2 = 2 
Ref. [26] 

50 
50 
50 
50 
50 
50 

26 
23 
24 
33 
24 
17 

8.81 
15.85 
67.56 
79.72 
67.58 
4.30 

75.3 
83.41 

0 
11.07 

0 
71.76 

180 
8.31 

134.98 
87.34 
52.48 

176.76 

3.1102 
3.0486 
3.0523 
3.0793 
3.0487 
3.0484 

 

 

 Fig. 2 depicts the effects of the number of 
iterations on the cost function at different methods 
of calculating . Table 3 presents the values of the 
cost function and the optimum parameters under 
different methods of calculating . In the first 
approach using [26], inertia weight is defined as 
follows (linearly varying):  

(15) 
ωt+1 = (ωi − ωf) (

tmax − t

tmax

) + ωf 

in which ωi and ωf are the primary and final values 
of inertia weight, respectively. In the second 
approach (Convergence factor), a PSO algorithm 
with a convergence factor was defined in [24], and 
the following formula is used to update the position 
and speed of particles: 

 

Vi,j(t + 1) = χ {Vi,j(t) + r1,j. c1 (Pi,j(t) − Xi,j(t))

+ r2,j. c2 (Pi,j
∗ (t) − Xi,j(t))} 

χ =
k

abs(
1−

c
2−√abs(c2−4c)

2
)

  
(16) 

where k ∈ [0,1], c = c1 + c2 (c should be smaller 
than 4.). The third approach enables a dynamic 
decrease in the inertia weight value if a swarm does 
not improve the solution after a certain number of 
iterations [25]. An update is implemented from an 
initial weight (𝜔0) value based on a fraction 
multiplier kω ∈ [0,1]; that is, 

ωt+1 = kω. ωt (17) 

 

 
Figure 2. Convergence of the cost function at different approaches to ω 

Table 3. Optimal values and corresponding cost function for different approaches to ω 

 Population size Number of iterations θ1 θ2 θ3 C.F. 
Linearly varying 50 16 90 22.42 157.5 3.0484 
Convergence factor 50 26 75.15 7.59 82.70 3.0484 
Dynamic decrease 50 (kω = 0.975) 31 19.38 86.94 11.83 3.0484 
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5. Problem description 

 The problem disentangled in this study is an 
infinite plate containing a quasi-triangular hole. As 
shown in Fig. 3, the plate is subjected to biaxial 
loading at angle θ1 (load angle) with respect to the 
x-axis. A triangular hole has arbitrary orientations 
such that its major axis is directed at angle θ3 
(rotation angle) with respect to the x-axis. The fiber 
angle is θ2. 

Replacing stress–strain relations in a 
compatibility relation and rewriting the resultant 
equation in terms of the stress function yield [3] 

R11

∂4F

∂y4
− 2R16

∂4F

∂x ∂y3

+ (2R12 + R66)
∂4F

∂x2 ∂y2

− 2R26

∂4F

∂x3 ∂y
+ R22

∂4F

∂x4

= 0 

(18) 

 Eq. (18) is the compatibility equation for 
anisotropic materials, where 𝑅𝑖𝑗  represents the 

compliance coefficients of perforated plates. The 
general solution of this equation depends on the 
roots of the following characteristic equation: 

R11S
4 − 2R16S

3 + (2R12 + R66)S
2

+ 2R26S + R22 = 0 
(19) 

 In general, Eq. (19) can be proved as having four 
conjugate roots, after which the general expression 
of the stress function can be indicated thus: 

F(x, y) = 2Re[φ(z1) + ψ(z2)] (20) 

 The equation zk = x + Sky (k = 1,2) and Sk are 
the roots of the characteristic equation of 
anisotropic materials. Finally, stress components in 
terms of two potential functions of φ(z1) and ψ(z2) 
are expressed according to Eq. (21) [7]. 

σx = 𝜎𝑥
∞ + 2Re[S1

2φ′′(z1) + S2
2ψ′′(z2)] 

σy = 𝜎𝑦
∞ + 2Re[′′(z1) + S2

2ψ′′(z2)] 

τxy = 𝜏𝑥𝑦
∞ − 2Re[S1

′′(z1) + S2ψ
′′(z2)] 

(21) 

where 

σx
∞ =

σ

2
[(λ + 1) + (λ − 1)cos2θ1] 

σy
∞ =

σ

2
[(λ + 1) − (λ − 1)cos2θ1] 

τxy
∞ =

σ

2
[(λ − 1)sin2θ1] 

(22) 

 In Eq. (22), adopting appropriate values of λ and 
θ1 for stress applied at infinity (σx

∞, σy
∞ , τxy

∞ ) enables 
the consideration of uniaxial loading, equi-biaxial 
loading, and shear loading. The following values of λ 
and θ1 may be incorporated into Eqs. (22) to obtain 
various cases of in-plane loading: 

Inclined uniaxial tension: λ = 0, θ1 ≠ 0 

Equi − biaxial tension: λ = 1, θ1 = 0 

Shear loading: λ = −1, θ1 = π
4⁄ , 3π

4⁄  

 Items φ′′(z1) and ψ′′(z2) are the derivatives of 
functions φ(z1) and ψ(z2) with respect to z1 and 
z2. These analytic functions can be determined by 
applying boundary conditions.  

 Eqs. (23) and (24) are used to calculate stress 
components in the polar coordinate system. In these 
equations,  is the angle between the positive x-axis 
and  (Fig. 4). 

(23) σθ + σρ = σy + σx 

(24) σθ − σρ + 2iτρθ = (σy − σx + 2iτxy)e
2iΩ 

As shown in Fig. 5, the infinite orthotropic plate 
with an arbitrary hole subjected to in-plane loading 
was examined. No external forces are acting on the 
hole’s edge. The superposition method was used to 
calculate the stress distribution around the hole. For 
the no-hole plate subjected to in-plane loading, 
stress functions φ

1
(z1) and ψ

1
(z2) were calculated 

(Fig. 5a). 

 
Figure 3. Perforated orthotropic plate subjected to biaxial 

loading 

Figure 4. Curvilinear coordinates 
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(a)                         (b)                                   (c) 

Figure 5. Scheme for the superposition of a solution for a perforated plate under biaxial loading; (a) plate without a hole, loading at infinity; (b) 

plate with negative loading on the edge of the hole; (c) plate with an arbitrary hole, loading at infinity [27] 

In this stage, using the aforementioned stress 
functions enabled the calculation of the boundary 
conditions (f1 and f2( located on the edge of a 
fictitious hole. Then, the plate with a hole and 
subjected to negative distributed loads –f1 and –f2 at 
the hole’s edge was analyzed (Fig. 5b). In this case, 
stress functions φ

0
(z1) and ψ

0
(z2) were obtained 

on the basis of the Ukadgaonker solution [27]. 
 The stress functions for a perforated plate with a 

traction-free hole and loading at infinity are 
obtained via the superposition of the stress 
functions in the stages discussed above; that is, 

(25) φ(z1) = φ1(z1) + φ0(z1) 
(26) ψ(z2) = ψ1(z2) + ψ0(z2) 

Finally, stress components are obtained by 

replacing the stress functions in Eq. (21) with the 

above-mentioned stress functions. 

5.1. Conformal mapping 

 With the analytical solution proposed by 
Lekhnitskii [3], the stress distribution around a 
circular or an elliptical hole in anisotropic plates 
was obtained. To use this method as a means of 
examining plates with triangular holes, an essential 
requirement is to apply the mapping function, 
similar to what is presented in Eq. (27). According 
to this conformal mapping, the infinite area external 
to a hole can be transformed by the area outside a 
unit circle. 

Z = x + sky (27) 
where 

(28) 
x = cosθ + wcos(2θ) 

y = −(sinθ − wsin(2θ))   
 In the relation above, parameter w determines 

the bluntness factor and changes the radius of 
curvature at the corner of the hole. Changing the 
value of w from zero to 0.3 reduces the curvature of

 

the corners of the triangular hole (Fig. 6). As can be 
concluded from Eq. (28), w = 0 represents a circular 
hole. Bluntness (w) and hole orientation (θ3) are 
important design variables that influence the stress 
distribution around different holes. 

6. Verification of results 

 FEM (ABAQUS) was used to verify the accuracy 
of the analytical results. First, for the orthotropic 
plate with a quasi-triangular hole (w = 0.15), the 
optimum values were obtained using the 
optimization code written in MATLAB. Second, 
considering the optimum values of the effective 
design variables (𝜃1 = 90, 𝜃3 = 30, 𝜃2 = 22) 
enabled the modeling of the problem described in 
the previous section in ABAQUS. Mesh sensitivity 
was scrutinized, and an acceptable mesh was 
chosen. Fig. 7 shows the comparison of the stress 
distributions obtained via the analytical solution 
and FEM for a glass/epoxy composite.  

Fig. 8 shows the comparison of the results 
obtained via the analytical method and FEM for a 
boron/epoxy composite; the comparison involved 
considering the optimum values calculated through 
the PSO optimization code written in MATLAB (𝜃1 = 
90, 𝜃3 = 157, 𝜃2 = 20.40). The findings derived via 
the analytical solution and FEM exhibit good 
agreement, indicating the accuracy and precision of 
the proposed analytical solution. 

w = 0.3              w = 0.2                w = 0.1                w = 0 

Figure 6. Effects of w on the shape of the quasi-triangular hole 
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Figure 7. Comparison of the FEM and analytical results for glass/epoxy composites (w = 0.15) 

 

Figure 8. Comparison of FEM and analytical results for boron/epoxy (w = 0.15) 

7. Results 

 As mentioned earlier, this research ascertained 
the optimal values of design variables that affect the 
stress distribution around a quasi-triangular hole in 
an infinite orthotropic plate by using PSO. To 
achieve this aim, for uniaxial loading and 
determining the specific value of each design 
variable, the optimum values of other design 
variables and their corresponding cost function 
were determined. Then, taking into account all the 
design variables, the value of the cost function was 
incorporated into various cases of in-plane loading. 
The mechanical properties of the materials 
examined are presented in Table 4. The effects of 
hole orientation on the value of the cost function at 
a range of load angles (uniaxial loading), at a w = 

0.05, and for a glass/epoxy composite are shown in 
Fig. 9. These results are presented in the optimum 
fiber angles obtained using the PSO algorithm. As 
indicated in the figure, at different load angles, the 
value of the cost function varies with hole 
orientation. These variations with rotation angle 
occurs at 60. Although these results are applicable 
only to glass/epoxy composites, such periodic 
behavior can also be observed in other materials. 
Fig. 10 presents the effects of fiber angle on the 
value of the cost function at different load angles for 
a glass/epoxy composite. These findings are 
presented in the optimum hole orientation obtained 
using the PSO algorithm. As the figure reflects, the 
maximum and minimum values of the cost function 
at different load angles occur identically at different 
fiber angles. 
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Figure 9. Variations in the cost function with respect to hole orientation at an optimum fiber angle (glass/epoxy) 
 

Figure 10. Variation of the cost function with respect to fiber angle in different load angles (Glass/Epoxy) 

 
Table 4. Properties of the plates 

 E1 (GPa) E2 (GPa) G12 (GPa) ν12 
Graphite/epoxy (T300/5208) 181 10.3 7.17 0.28 
Carbon/epoxy (IM6/SC1081) 177 10.8 7.6 0.27 
Boron/epoxy(B5.6/5505)  201 21.7 5.4 0.17 
Glass/epoxy 38.6 8.27 4.14 0.26 

 
 Fig. 11 shows the effect of hole orientation on 

the cost function at different values of bluntness 
factor. These results are applicable to the optimum 
fiber angle and θ1 = 0. As expected, a decreasing w 
and hole softening reduce the value of the cost 
function. The minimum value of the cost function 
occurs at w = 0, which is equivalent to a circular 
hole.  

 Table 5 lists the optimum values provided in 
Figs. 9 to 11. We endeavored to present the results 
for glass/epoxy (uniaxial loading) composites in 

detail, but for other materials, only the optimum 
values of design variables are provided. 

 Fig. 12 shows the variations in the cost function 
with respect to fiber angle at various rotation 
angles. In this case, the design variable used was 
load angle, which was determined using the PSO 
algorithm. Fig. 13 shows the variations at different 
values of bluntness factor and θ3 = 0. Fiber angle 
was considered a design variable. As shown in the 
figure, except for the circular hole (w = 0), the 
maximum value of the cost function occurs at a load 
angle close to 50°. A load angle of 0° leads to the 
lowest possible value of the cost function. 
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Figure 11. Effects of rotation angle on the cost function at different bluntness values, optimum fiber angle, and θ1=0 (glass/epoxy) 

Table 5. Optimum hole orientation and fiber angle at various load angles and bluntness values (glass/epoxy) 

C.F. θ3 θ2 θ1  C.F. θ3 θ2 θ1  

3.5821 
3.6647 
3.9289 

 
3.6638 
3.5790 

 

0 

35.5 

31 

59 

54.5 
30 

68.80 

90 

0 

90 

0 

22 

0 

30 

45 
 

60 

90 

w = 0.15 

2.6595 
2.6595 
2.6595 

2.6595 
2.6595 

- 

- 

- 

- 

- 

59.4 
89.3 

90 

0.6 

30.5 

0 

30 

45 

60 

90 

w = 0 

4.2410 
4.3770 
4.6606 
4.6643 
4.3791 
4.2304 

60 
36.34 
29.75 

0 
53.64 
30.69 
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90 
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90 
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Figure 12. Variations in the cost function in terms of fibers angle at an optimum load angle (glass/epoxy, w = 0.05) 
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Figure 13. Effects of load angle on the cost function at an optimum fiber angle and different bluntness values (glass/epoxy, θ_3=0) 

 Table 6 presents the optimum values of load and 
fiber angles at different hole orientations. Note that 
at w = 0 during various runs of the program, the 
minimum value of the cost function occurs at 

different load and fiber angles; in all runs, the 
absolute difference between load and fiber angles is 
60°. 

Table 6. Optimum load and fiber angles at different hole orientations (glass/epoxy, w = 0.05) 

 θ3 = 0  θ3 = 15  
 θ2 θ1 |θ1 − θ2| C.F. θ2 θ1 |θ1 − θ2| C.F. 

w = 0 

90.12 
59.37 
59.38 

0 

29.78 
0 

76.96 
59.52 

60.34 
59.37 
59.38 
59.52 

2.6595 
2.6594 
2.6595 
2.6595 

90 
30.81 
12.90 
9.65 

30.77 
90 

72.35 
69.03 

59.23 
59.19 
59.45 
59.38 

2.6595 
2.6595 
2.6595 
2.6595 

w = 0.05 
0 

64.85 

61.8 

0 

61.80 

64.85 

2.7991 

2.7991 

76.54 

13.75 

13.85 

76.27 

62.69 

62.52 

2.7982 

2.7982 

w = 0.1 
0 

66.31 

62.40 

0 

62.40 

66.31 

3.1313 

3.1313 

80.96 

12.27 

14.89 

76.22 

66.07 

63.95 

3.1147 

3.1209 

w = 0.15 
68.83 
67.45 

0.37 
0 

68.46 
67.45 

3.5788 
3.5812 

5.52 
83.83 

74.49 
15.37 

68.97 
68.46 

3.5789 
3.5788 

w = 0.2 
0 

90 
63.35 

0 
63.35 

90 
4.3214 
4.3216 

3.86 
90 

74.30 
16.12 

70.44 
73.88 

4.2341 
4.2397 

 θ3 = 30  θ3 = 45  
 θ2 θ1 |θ1 − θ2| C.F. θ2 θ1 |θ1 − θ2| C.F. 

w = 0 

82.48 
22.38 

63 
10.83 

23.11 
81.75 
3.63 

70.23 

59.37 
59.37 
59.37 
59.40 

2.6595 
2.6595 
2.6595 
2.6595 

14.46 
22.48 
68.64 
23.54 

73.83 
81.86 
9.46 

82.95 

59.37 
59.38 
59.18 
59.41 

2.6595 
2.6595 
2.6595 
2.6595 

w = 0.05 
25.10 

90 
90 

28.20 
64.90 
61.80 

2.8031 
2.8031 

0 
90 

54.75 
35.25 

54.75 
54.75 

2.8532 
2.8532 

w = 0.1 
23.68 

90 
90 

27.60 
66.32 
62.40 

3.1145 
3.1316 

0 
90 

54.76 
35.23 

54.76 
54.77 

3.2051 
3.2048 

w = 0.15 
0 

20.73 
90 

89.53 
90 

68.8 
3.6558 
3.5789 

90 
0 

34.98 
55.01 

55.02 
55.01 

3.7148 
3.7150 

w = 0.2 
18.86 
21.57 

90 

89.30 
90 

26.64 

70.44 
68.43 
63.36 

4.2311 
4.2400 
4.3219 

90 
86.21 

0 

34.62 
33.06 
55.36 

55.38 
53.15 
55.36 

4.2772 
4.4388 
4.4262 
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 Fig. 14 shows the variations in the cost function 
with bluntness factor w (uniaxial tensile loading) for 
different materials. In this case, the values of other 
design variables (θ1, θ2, θ3) are their optimum 
values obtained via the PSO algorithm. 

According to the figure, for all the materials, a 
decreasing w reduces the value of the cost function. 
For w = 0, the value of the cost function is the lowest 
possible value. Fig. 15 indicates the stress 
distribution at different values of w and different 
materials under optimal situations. 

Figs. 16 and 17 display the changes in the 
normalized stress (cost function) around a 
triangular hole in optimal conditions for 
glass/epoxy and boron/epoxy composites at three 
values of w, respectively. 

Finally, Table 7 presents the optimum values of 
different design variables, such as load angle, fiber 
angle, and hole orientation, which were obtained 
through PSO for different w values, all the materials, 
and various cases of loading, such as equi-biaxial 
loading, uniaxial tensile loading, and shear loading. 

Figs. 18 and Fig. 19 show the changes in the 
normalized stress around a triangular hole in 
optimal conditions for glass/epoxy and 
boron/epoxy composites under equi-biaxial and 
shear loading and w = 0.1. 

 
Figure 14. Effects of bluntness on the cost function for 

different materials 

 

(b) (a) 

(d) (c) 
Figure 15. Optimum stress distribution around the hole at different bluntness values and uniaxial tensile loading. (a) Graphite/epoxy, (b) 

glass/epoxy, (c) boron/epoxy, (d) carbon/epoxy 
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8. Conclusion 

This research inquired into the optimum values 
of effective design variables for the stress analysis of 
an infinite orthotropic plate with a quasi-triangular 
hole. The plate was subjected to uniaxial, equi-
biaxial, and shear loading, and the PSO algorithm 
was used to calculate the optimum values of design 
variables. As the design variables, bluntness, hole 
orientation, fiber angle, and load angle are the most 
important design variables that influence the stress 
distribution around triangular holes. The optimum 

values of these design variables were determined 
for different materials, minimizing normalized 
stress around the hole was considered the cost 
function. The results showed that the curvature 
radius of the hole’s corners is not the only 
parameter that effectively reduces normalized 
stress and that the appropriate selection of other 
effective design variables, such as fiber angle, load 
angle, and hole orientation, significantly reduces 
normalized stress. 

 

 

  

w = 0.05 w = 0.1 w = 0.15 

Figure 16. Stress distribution around the hole at different bluntness factors and optimum conditions (glass/epoxy) 

   

w = 0.05 w = 0.1 w = 0.15 

Figure 17. Stress distribution around the hole at different bluntness factors and optimum conditions (boron/epoxy) 
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Table 7. Optimum values of design variables at different bluntness factors and different loading cases 

 CE9000 Glass/Epoxy 
 Equi-biaxial loading Uniaxial tensile loading Shear loading 

w θ2 θ3 C.F. θ1 θ2 θ3 C.F. θ2 θ3 C.F. 
0* 
 

 

0.05 
 

0.1 
 

0.15 

 

60.79 
9.17 

25.86 
60 

87.02 
0 

90 
0 
 

147.79 
12.17 

116.86 
180 

27.05 
180 
90 

180 

2.3977 
2.3977 
2.3977 
2.6830 
2.6832 
3.3104 
3.3104 
4.1786 

 

0 

90 
 

0 

90 

0 

90 

0 

90 

59.4 
30.5 

 

62.7 

27.5 

66.3 

24 

68.8 
22 

- 

- 
 

180-120-60-0 

150-90-30 

180-120-60-0 

150-90-30 

180-120-60-0 
150-90-30 

2.6595 

2.6595 
 

2.7982 

2.7981 
3.1140 
3.1146 
3.5780 
3.5780 

0 

90 
 

0 

90 

0 

90 

0 

90 

- 
- 
 

25.7-85.70-145.71 
4.28-64.28-124.28 

25.35-85.37-145.32 
4.64-64.62-124.64 

24.87-84.87-144.87 
5.14-65.16-125.12 

4.1183 
4.1183 

 

4.2002 
4.2005 
4.4421 
4.4427 
4.8536 
4.8534 

 Boron/Epoxy 
 Equi-biaxial loading Uniaxial tensile loading Shear loading 

w θ2 θ3 C.F. θ1 θ2 θ3 C.F. θ2 θ3 C.F. 
0* 
 

 

0.05 
 

0.1 
 

0.15 
 

63.62 
6.24 

50.30 
0 
 

0 
 

40.41 
20.40 

0 

140.62 
51.24 
75.30 
180 

 
180 

 
100.97 
19.85 

0 

4.1763 
4.1763 
4.1765 
4.5222 

 
5.5161 

 
7.0087 
7.0087 
7.0135 

0 

90 
 

0 

90 

0 

90 

0 

90 

62 

28 
 

65.1 

24.8 

67.5 

22.5 

69.6 

20.4 

- 

- 
 

171.7-111.7-

51.7 

158.3-98.3-

38.3 
172.5-112.5-

52.5 

157.5-97.5-

37.5 

173-113-53 
157-97-37 

2.5651 

2.5651 
 

2.7341 

2.7341 
3.0482 
3.0482 
3.5153 
3.5153 

0 
90 

 
0 

90 
0 

90 
0 

90 

0.92-60.93-120.93 
12.60-72.60-132.60 

 
26.66-86.66-146.68 

3.15-63.33-123.35 
28.10-88.15-148.12 
1.44-61.45-121.45 

28.96-88.96-148.96 
1.03-61.06-121.06 

6.0202 
6.0420 

 
6.1427 
6.2498 
6.5127 
6.5278 
6.9324 

6.9315 

 GY-70/934 Carbon/Epoxy 
 Equi-biaxial loading Uniaxial tensile loading Shear loading 

w θ2 θ3 C.F. θ1 θ2 θ3 C.F. θ2 θ3 C.F. 
0* 
 

 

0.05 
 

0.1 
 

0.15 
 

65.17 
85.95 
81.50 

0 
 

0 
 

0 

112.17 
132.95 
40.50 
180 

 
180 

 
180 

2.7523 
2.7524 
2.7524 
3.5654 

 
5.1959 

 
7.3399 

90 
0 
 

0 

90 

0 

90 

0 

90 

0 

90 
 

90 

0 

90 

0 

90 

0 

- 

- 

 

180-120-60-0 

150-90-30 
180-120-60-0 

150-90-30 

180-120-60-0 

150-90-30 

2.2610 
2.2610 

 
2.3744 

2.3744 
2.650 

2.6500 
3.0650 
3.0650 

0 
90 

 
0 

90 
0 

90 
0 

90 

8.55-68.55-128.55 
43.44-103.44-

163.44 
 

21.14-81.14-141.14 
8085-68.83-128.83 
22.67-82.64-142.68 
7.32-67.35-127.36 

23.23-83.31-143.24 
6.76-66.76-126.72 

9.0581 
9.0581 

 
9.2684 
9.2684 
9.7425 
9.7423 

10.7697 
10.7699 

 Graphite/Epoxy(T300/5208) 
 Equi-biaxial loading Uniaxial tensile loading Shear loading 

w θ2 θ3 C.F. θ1 θ2 θ3 C.F. θ2 θ3 C.F. 
0* 
 

 

0.05 
 

0.1 
 

0.15 
 

3.80 
64.18 
13.49 

0 
 

0 
 

0 
 

20.80 
65.18 
88.49 

0 
 

0 
 

180 

2.5515 
2.5515 
2.5518 
3.1173 

 
4.2163 

 
5.7482 

0 

90 
 

0 

90 

0 

90 

0 

90 

90 

0 
 

90 

0 

90 

0 

90 

0 

- 

- 
 

180-120-60-0 

150-90-3 

180-120-60-0 

150-90-30 

180-120-60-0 

150-90-30 

2.3711 

2.3711 
 

2.4770 

2.4770 
2.7473 
2.7473 
3.1525 
3.1525 

0 
90 

 
0 

90 
0 

90 
0 

90 

10.83-80.82-130.83 
51.16-111.16-

171.16 
 

25.05-85.05-145.05 
64.94-124.94 

24.82-84.82-144.82 
5.17-65.17-125.17 

25.75-85.75-145.75 
4.24-64.24-124.24 

6.4761 
6.4763 

 
6.6148 
6.6145 
7.0071 
7.0071 
7.6716 
7.6712 

* Optimum value         
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(a) (b) 
Figure 18. Stress distribution around the hole under optimum conditions and w = 0.1 for glass/epoxy composites; (a) equi-biaxial 

loading, (b) shear loading 

 

 

(a) (b) 
Figure 19. Stress distribution around the hole under optimum conditions and w = 0.1 for boron/epoxy composites; (a) equi-biaxial 

loading, (b) shear loading 
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