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The present article investigates the elasto-thermodiffusive interactions in a transversely 

isotropic elastic medium in the context of thermoelasticity with one relaxation time 

parameter and two relation time parameters. The resulting non-dimensional coupled 

equations are applied to a specific problem of a half-space in which the surface is free of 

tractions and is subjected to time-dependent thermal and chemical loadings. The analytical 

expressions for the displacement components, stresses, temperature, strain, mass diffusion, 

and chemical potential are obtained in the physical domain by employing the normal mode 

analysis as a tool. These expressions are calculated for a copper-like material and the results 

are depicted graphically. A comparative study of a diffusive medium and a thermoelastic 

medium show that diffusion has a significant effect on the thermophysical quantities. 

Furthermore, in the absence of the effect of thermodiffusion, the results agree with the 

existing literature.  
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1. Introduction 

Thermoelastic diffusion, which is also known as 
elasto-thermodiffusion in elastic solids, deals with 
the coupling effects of the fields of temperature, 
mass diffusion, and strain, in addition to heat and 
mass exchange with the environment. It has 
extensive applications in geophysics and other 
industrial fields, including the extraction of oil from 
oil deposits. In recent years, the subject of 
thermoelastic diffusion has received serious 
attention. The theory of thermoelastic diffusion 
was first developed by Nowacki [1–4]. Gawinecki et 
al. [5] proved a theorem about the existence, 
uniqueness, and regularity of the solutions for a 
nonlinear parabolic thermoelastic diffusion 
problem. Gawinecki and Szymaniec [6] established 
a theorem about the global existence of the solution 
for the same problem. In the theory developed by 
Nowacki [1–4], the classical coupled thermoelastic 

model was used [7]. It should be mentioned that 
the theory of coupled dynamical thermoelasticity 
predicts an infinite speed for thermal signals, 
which is physically unrealistic. There has been an 
increased interest in the field of heat propagation 
to remove this unrealistic prediction, which has led 
to the development of well-established theories of 
generalized thermoelasticity. Generalized 
thermoelasticity theories involve hyperbolic-type 
governing equations and predict the finite speed of 
thermal signals. For example, Lord and Shulman 
[8] proposed the generalized thermoelasticity 
theory, which is known as the LS model, involving 
one relaxation time. Green and Lindsay [9] 
developed the temperature-rate-dependent 
thermoelasticity model (GL model) involving two 
relaxation times.  

Recently, Sherief et al. [10] developed a 
generalized thermoelastic diffusion theory with 
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one relaxation time, which allowed waves to 
propagate at finite speeds. Sherief and Saleh [11] 
investigated the problem of a thermoelastic half-
space in the context of the generalized 
thermoelastic diffusion theory with one relaxation 
time. Singh [12] discussed the reflection wave 
phenomena from the free surface of an elastic solid 
with generalized thermodiffusion with one 
relaxation time and two relaxation times in a later 
study [13]. Aouadi [14] studied diffusion in an 
infinitely long solid cylinder and in an infinite 
elastic body with a spherical cavity [15]. The 
uniqueness and reciprocity theorems for the 
equations of a generalized thermoelastic diffusion 
problem in isotropic media were proven by Aouadi 
[16] on the basis of the Laplace transform method. 
Kumar and Gupta [17] studied the wave 
propagation at the boundary surface of an inviscid 
fluid under thermoelastic diffusion. Recently, 
Othman et al. [18] analyzed the effects of diffusion 
on a two-dimensional problem of generalized 
thermoelasticity in the context of the Green–
Naghdi theory. Deswal and Choudhary [19–21] 
also analyzed a two-dimensional thermoelastic 
diffusion problem using the same theory. Kumar 
and Kansal [22] discussed the propagation of 
waves on the free surface of a transversely 
isotropic body under generalized thermoelastic 
diffusion. Kothari and Mukhopadhyay [23, 24] 
investigated thermoelastic diffusion inside a 
spherical shell under three different theories. 
Wang et al. [25] studied the thermoelastic dynamic 
solution of a multilayered spherically isotropic 
hollow sphere for spherically symmetric problems. 
Such a body is said to possess transverse isotropy 
about any radius vector drawn from the center to a 
given point of material. Recently, several 
researchers, including El-Sayed [26], Karmakar 
and Kanoria [27], and Bhattacharya and Kanoria 
[28, 29], have used the elasto-thermodiffusive 
response to solve several problems. In addition, a 
few remarkable works on generalized 
thermoelastic diffusion have been published [30–
33]. 

In the present analysis, we study the 
generalized thermoelastic diffusion in a 
transversely isotropic two-dimensional 
thermoelastic medium subjected to a prescribed 
temperature and chemical loading in which the 
boundary is free of traction. The analysis compares 
the thermoelastic diffusion model with two 
relaxation times, also known as the Green–Lindsay 
model with diffusion (GLD), and the thermoelastic 
diffusion model with one relaxation time, also 

known as the Lord–Shulman model with diffusion 
(LSD) for a thermodiffusive medium. Introducing a 
normal mode analysis, the governing equations 
have been expressed and solved in terms of normal 
modes. The numerical estimates for the thermal 
stresses, temperature, mass concentration, and 
chemical potential have been computed for a 
copper-like material and depicted graphically; the 
most significant points arising from our analysis 
have also been highlighted. In the absence of 
thermodiffusion, the LSD and GLD have been 
compared with the Lord–Shulman (LS) heat 
transfer model and the Green–Lindsay (GL) heat 
transfer model. 

2. Formulation of the Problem 

We consider a transversely isotropic elastic 
medium in a two-dimensional 𝑥𝑦 plane subjected 
to thermal and chemical loadings on the plane𝑦 =
0. The displacement components  and 𝑣 in the 𝑥 
and 𝑦 directions are given as: 

( , , ),  ( , , )u u x y t v v x y t   
(1) 

The stress–strain temperature relations for the 
present problem are given as:  

𝜎𝑥𝑥 = 𝐶11𝑒𝑥𝑥 + 𝐶12𝑒𝑦𝑦 − 𝛽1(𝑇 +
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where 𝐶𝑖𝑗(𝑖, 𝑗 = 1,2) is the elastic coefficient, 
𝜎𝑖𝑗(𝑖, 𝑗 = 1,2) is the stress tensor, 𝑒𝑖𝑗(𝑖, 𝑗 = 1,2) is 
the strain tensor, 𝛽1 and 𝛽2 are the tensors of 
thermal and diffusion moduli, respectively, and 𝜏1 
and 𝜏1 are the thermal and diffusion relaxation 
times, respectively. 

The equations of motion in the 𝑥 and 
𝑦directions are given by: 
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where 𝜌 is the density. 
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The heat conduction equation corresponding to 
the problem, introduced by some unified 
parameters, is defined as:  

𝐾𝛻2𝑇 = 𝜌𝑐𝜈(�̇� + 𝛼0�̈�) + 𝑇0𝛽1 (1 +

𝜒
𝜕

𝜕𝑡
) (

𝜕�̇�

𝜕𝑥
+

𝜕�̇�

𝜕𝑦
) + 𝑐𝑇0(�̇� + 𝛼1�̈�)   (7) 

where 𝛼0  and 𝛼1 are the thermal and diffusion 
relaxation times satisfying the relations 𝜏1 ≥ 𝛼0 ≥
0 and 𝜏1 ≥ 𝛼1 ≥ 0. For𝜒 = 0 from Equation (7), we 
have the GLD model. However, if 𝛼0 = 𝛼1 = 𝜏0, we 
have the LSD model in the presence of 
thermodiffusion; 𝜏0is the relaxation time for the LS 
model. 

The chemical potential 𝑃 is given by: 

𝑃 = −𝛽2𝑒𝑘𝑘 + 𝑑𝐶 − 𝑐𝑇 (8) 

where 𝑐 and 𝑑 are the measures of the thermo-
diffusion effect and the diffusive effect, 
respectively. The mass flux 𝜂𝑖  is given by: 

𝜂𝑖 = −𝐷𝑃,𝑗 (9) 

where 𝐷 is the diffusive constant. The diffusion 
equation is given by:  

𝐷𝛽2𝛻2𝑒 + 𝐷𝑐𝛻2𝑇 + �̇� = 𝐷𝑑𝛻2𝐶 (10) 

The following non-dimensional variables are as 
follows:  

𝑥′ = 𝑐1𝜂𝑥, 𝑦′ = 𝑐1𝜂𝑦, 𝑢′ = 𝑐1𝜂𝑢, 𝑣′ = 𝑐1𝜂𝑣, 𝑡′ =

𝑐1
2𝜂𝑡 ,𝜏1′

= 𝑐1
2𝜂𝜏1 , 𝜏′1 = 𝑐1

2𝜂𝜏1, 𝛼′1 = 𝑐1
2𝜂𝛼1 , 𝛼′0 =

𝑐1
2𝜂𝛼0, 𝜃′ =

𝑇𝛽1

𝐶11
, 𝜂 =

𝜌𝑐𝜈

𝐾
, 𝑐1

2 =
𝐶11

𝜌
, 𝐶′ =

𝛽2𝐶

𝐶11
, 𝑃′ =

𝑃

𝛽2
 

After removing the primes, the above equations 
can be written in a non-dimensional form as: 

𝜎𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+ (𝑎2 − 𝑎1)

𝜕𝑣

𝜕𝑦
− (𝜃 + 𝜏1�̇�) −

(𝐶 + 𝜏1�̇�)  
(11) 

𝜎𝑦𝑦 = (𝑎2 − 𝑎1)
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
− (𝜃 + 𝜏1�̇�) −

(𝐶 + 𝜏1�̇�)  
(12) 

𝜎𝑥𝑦 = (
1 + 𝑎1 − 𝑎2

2
) (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) (13) 

where 

𝑎1 =
𝐶11 − 𝐶12

2𝐶11

 

𝑎2 =
𝐶11 + 𝐶12

2𝐶11

 

 

Therefore, the equations of motion in the 𝑥 and 
𝑦 directions are given by:  

𝜕2𝑢

𝜕𝑥2 + 𝑎1
𝜕2𝑢

𝜕𝑦2 + 𝑎2
𝜕2𝑣

𝜕𝑥𝜕𝑦
  

=
𝜕2𝑢

𝜕𝑡2 +
𝜕

𝜕𝑥
(𝜃 + 𝜏1�̇�) +

𝜕

𝜕𝑥
(𝐶 + 𝜏1�̇�)  

(14) 

𝑎1
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 + 𝑎2
𝜕2𝑢

𝜕𝑥𝜕𝑦
  

=
𝜕2𝑣

𝜕𝑡2 +
𝜕

𝜕𝑦
(𝜃 + 𝜏1�̇�) +

𝜕

𝜕𝑦
(𝐶 + 𝜏1�̇�)  

(15) 

The heat conduction equation is given by: 

𝛻2𝜃 = (�̇� + 𝛼0�̈�) + 𝜀 (1 + 𝜒
𝜕

𝜕𝑡
) �̇�  

+𝛿(�̇� + 𝛼1�̈�)  

(16) 

where 

𝜀 =
𝑇0𝛽1

2

𝐾𝐶11

 

𝛿 =
𝑐𝛽1𝑇0

𝛽2

 

 

The chemical potential is given by:  

𝑃 = −𝑒𝑘𝑘 + 𝛼3𝐶 − 𝛼1𝜃  (17) 

The diffusion equation takes the form: 

𝛻2𝑒 + 𝛼1𝛻2𝜃 + 𝛼2�̇� = 𝛼3𝛻2𝐶 (18) 

where 

𝛼1 =
𝑐𝐶11

𝛽1𝛽2
  

𝛼2 =
𝐶11

𝜂𝛽2
2𝐷

  

𝛼3 =
𝑑𝐶11

𝛽2
2   

 

3. Normal Mode Analysis 

First, we choose the following equation: 
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(𝑢, 𝑣, 𝜃, 𝜎𝑖𝑗 , 𝑃, 𝐶)(𝑥, 𝑦, 𝑡) =

(𝑢∗, 𝑣∗, 𝜃∗, 𝜎∗
𝑖𝑗 , 𝑃∗, 𝐶∗)(𝑦) 𝑒𝑥𝑝( 𝜔𝑡 + 𝑖𝑎𝑥)  

(19) 

where 𝜔 is the complex time constant and 𝑎 is the 
wave number in the 𝑥  direction. Therefore, 
employing the normal mode analysis, the above 
equations can be written as: 

[𝑎1𝐷2 − (𝑎2 + 𝜔2)]𝑢∗(𝑦) +

𝑎2𝑖𝑎𝐷𝑣∗(𝑦) = 𝑖𝑎(1 + 𝜏1𝜔)𝜃∗(𝑦) +

𝑖𝑎(1 + 𝜏1𝜔)𝐶∗(𝑦)  

(20) 

[𝐷2 − (𝑎1𝑎2 + 𝜔2)]𝑣∗(𝑦) +

𝑎2𝑖𝑎𝐷𝑢∗(𝑦) = (1 + 𝜏1𝜔)𝐷𝜃∗(𝑦) +

(1 + 𝜏1𝜔)𝐷𝐶∗(𝑦)  

(21) 

[𝐷2 − (𝑎2 + 𝜔 + 𝛼0𝜔2)]𝜃∗(𝑦) =

𝜀𝜔(1 + 𝜒𝜔)𝑖𝑎𝑢∗(𝑦) + 𝜀𝜔(1 +

𝜒𝜔)𝐷𝑣∗(𝑦) + 𝛿[𝜔 + 𝛼1𝜔2]𝐶∗(𝑦)  

(22) 

𝑃∗(𝑦) = −𝑖𝑎𝑢∗(𝑦) − 𝐷𝑣∗(𝑦) +

𝛼3𝐶∗(𝑦) − 𝛼1𝜃∗(𝑦)  
(23) 

[𝑖𝑎𝐷2 − 𝑖𝑎3]𝑢∗(𝑦) + [𝐷3 −

𝑎2𝐷]𝑣∗(𝑦) + 𝛼1[𝐷2 − 𝑎2]𝜃∗(𝑦) =
[𝛼3𝐷2 − (𝛼3𝑎2 + 𝛼2𝜔)]𝐶∗(𝑦)  

(24) 

When we eliminate𝐶∗(𝑦) from Equations (20)–
(22) and (24), they can be simplified to the 
following: 

[𝑎1𝐷3 − 𝑐41]𝑢∗(𝑦) = [𝑐42𝐷2 −

𝑐43]𝑣∗(𝑦)  
(25) 

[𝑐51𝐷2 − 𝑐52]𝑢∗(𝑦) + 𝑐53𝐷𝑣∗(𝑦) =

[𝑐54𝐷2 − 𝑐55]𝜃∗(𝑦)  
(26) 

[𝑐61𝐷4 − 𝑐62𝐷2 + 𝑐63]𝑢∗(𝑦) =
[𝑐64𝐷2 − 𝑐65]𝜃∗(𝑦) + [𝑐66𝐷3 −

𝑐67𝐷]𝑣∗(𝑦)  

(27) 

where 

𝑐41 = 𝑎2 − 𝑎2𝑎2 + 𝜔2  

𝑐42 = 𝑖𝑎(1 − 𝑎2)  

𝑐43 = 𝑖𝑎(𝑎1𝑎2 + 𝜔2)  

𝑐51 = 𝛿𝑎1(𝜔 + 𝛼1𝜔2)  
 

𝑐52 = 𝛿(𝜔 + 𝛼1𝜔2)(𝑎2 + 𝜔2) −

𝜀𝜔𝑎2(1 + 𝜏1𝜔)(1 + 𝜒𝜔)  

𝑐53 = 𝑎2𝑖𝑎𝛿(𝜔 + 𝛼1𝜔2) + 𝜀𝜔𝑖𝑎(1 +

𝜏1𝜔)(1 + 𝜒𝜔)  

𝑐54 = 𝑖𝑎(1 + 𝜏1𝜔)  

𝑐55 = 𝑖𝑎(1 + 𝜏1𝜔)(𝑎2 + 𝜔 + 𝛼0𝜔2) −

𝑖𝑎(𝜔 + 𝛼1𝜔2)(1 + 𝜏1𝜔)  

𝑐61 = 𝑎1𝛼3, 𝑐62 = 𝑎1(𝛼3𝑎2 + 𝛼2𝜔) +

𝛼3(𝑎2 + 𝜔2) − 𝑎2(1 + 𝜏1𝜔)  

𝑐63 = (𝑎2 + 𝜔2)(𝛼3𝑎2 + 𝛼2𝜔) − 𝑎4  

𝑐64 = 𝛼1𝑖𝑎(1 + 𝜏1𝜔) + 𝑖𝑎𝛼3(1 + 𝜏1𝜔)  

𝑐65 = 𝛼1𝑖𝑎3(1 + 𝜏1𝜔) + 𝑖𝑎(1 +

𝜏1𝜔)(𝛼3𝑎2 + 𝛼2𝜔)  

𝑐66 = 𝑖𝑎(1 + 𝜏1𝜔) − 𝑖𝑎𝑎2𝛼3  

𝑐67 = 𝑖𝑎3(1 + 𝜏1𝜔) − 𝑎2𝑖𝑎(𝛼3𝑎2 +

𝛼2𝜔)  

Furthermore, if we eliminate 𝑢∗(𝑥) and 𝜃∗(𝑥) 
from Equations (25)–(27), we obtain the following 
equation: 

𝐷8𝑣∗(𝑦) − ℑ11𝐷6𝑣∗(𝑦) +

ℑ22𝐷4𝑣∗(𝑦) − ℑ33𝐷2𝑣∗(𝑦) +

ℑ44𝑣∗(𝑦) = 0  

(28) 

where 

ℑ11 =
1

(𝑐54𝑐61𝑐42−𝑐66𝑐54𝑎1)
[𝑐42(𝑐61𝑐55 +

𝑐62𝑐54 + 𝑐64𝑐51) + 𝑐63𝑐54𝑐61 −
𝑎1(𝑐54𝑐67 − 𝑐55𝑐66 − 𝑐64𝑐53) −
𝑐41𝑐66𝑐54]  

 

ℑ22 =
1

(𝑐54𝑐61𝑐42−𝑐66𝑐54𝑎1)
[𝑐42(𝑐54𝑐63 +

𝑐62𝑐55 + 𝑐64𝑐52 + 𝑐65𝑐51) +
𝑐43(𝑐61𝑐55 + 𝑐62𝑐54 + 𝑐64𝑐51) −
𝑎1(𝑐55𝑥67 − 𝑐65𝑐53) − ℑ55]  

ℑ33 =
1

(𝑐54𝑐61𝑐42−𝑐66𝑐54𝑎1)
[𝑐43(𝑐54𝑐63 +

𝑐62𝑐55 + 𝑐64𝑐52 + 𝑐65𝑐51) +
𝑐42(𝑐55𝑐63 + 𝑐65𝑐52) − 𝑐41(𝑐55𝑐67 −
𝑐65𝑐53)]  

ℑ44 =
1

(𝑐54𝑐61𝑐42−𝑐66𝑐54𝑎1)
[𝑐43(𝑐55𝑐63 +

𝑐65𝑐52)]  

ℑ55 = 𝑐41(𝑐54𝑐67 − 𝑐55𝑐66 − 𝑐64𝑐53)  

The solution of Equation (28) is obtained as: 

𝑣∗(𝑦) = ∑ 𝑅𝑗(𝑎, 𝜔)

4

𝑗=1

𝑒−𝑘𝑗𝑦 (29) 

where 𝑘𝑗
2(𝑗 = 1,2,3,4) are the roots of the equation 
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𝑘8 − ℑ11𝑘6 + ℑ22𝑘4 − ℑ33𝑘2 + ℑ44 =

0  
(30) 

It can be shown that 𝑢∗(𝑦) and 𝜃∗(𝑦) satisfy the 
same equation as follows:  

[𝐷8 − ℑ11𝐷6 + ℑ22𝐷4 − ℑ33𝐷2 +

ℑ44]{𝑢∗(𝑦), 𝜃∗(𝑦)} = 0  
(31) 

Thus, the solutions are: 

𝑢∗(𝑦) = ∑ 𝑅′
𝑗(𝑎, 𝜔)4

𝑗=1 𝑒−𝑘𝑗𝑦  (32) 

𝜃∗(𝑦) = ∑ 𝑅″
𝑗(𝑎, 𝜔)4

𝑗=1 𝑒−𝑘𝑗𝑦  (33) 

Substituting Equations (29), (32). and (33) into 
Equations (25) and (26), we obtain:  

𝑅′
𝑗(𝑎, 𝜔) = 𝑝𝑗𝑅𝑗(𝑎, 𝜔)  

𝑗 = 1(1)4  

𝑅″
𝑗(𝑎, 𝜔) = 𝑞𝑗𝑅𝑗(𝑎, 𝜔)  

𝑗 = 1(1)4  

 

The mass concentration is given by:  

𝐶∗(𝑦) = ∑ 𝛽𝑗𝑅𝑗(𝑎, 𝜔)4
𝑗=1 𝑒−𝑘𝑗𝑦  (34) 

where 

𝛽𝑗 =
1

1+𝜏1𝜔
[

{𝑎1𝑘𝑗
2−(𝑎2+𝜔2)}𝑝𝑗

𝑖𝑎
− 𝑎2𝑘𝑗 −

(1 + 𝜏1𝜔)𝑞𝑗] , 𝑗 = 1(1)4  

(35) 

Furthermore, the chemical potential is given by: 

𝑃∗(𝑦) = ∑ 𝛼𝑗𝑅𝑗(𝑎, 𝜔)4
𝑗=1 𝑒−𝑘𝑗𝑦  (36) 

where 

𝛼𝑗 = −𝑖𝑎𝑝𝑗 + 𝑘𝑗 + 𝛼3𝛽𝑗 − 𝛼1𝑞𝑗  

𝑗 = 1(1)4  
(37) 

Therefore, by substituting Equations (29) and 
(32)–(34) into Equations (11)–(13), the stress 
components are given by:  

𝜎𝑥𝑥
∗ (𝑦) = ∑ [𝑖𝑎𝑝𝑗 − (𝑎2 − 𝑎1)𝑘𝑗 −4

𝑗=1

𝑞𝑗 − 𝛽𝑗] 𝑅𝑗(𝑎, 𝜔)𝑒−𝑘𝑗𝑦  
(38) 

𝜎𝑦𝑦
∗ (𝑦) = ∑ [𝑖𝑎(𝑎2 − 𝑎1)𝑝𝑗 − 𝑘𝑗 −4

𝑗=1

𝑞𝑗 − 𝛽𝑗] 𝑅𝑗(𝑎, 𝜔)𝑒−𝑘𝑗𝑦  
(39) 

𝜎𝑥𝑦
∗ (𝑦) = (

1+𝑎1−𝑎2

2
) ∑ [𝑖𝑎 −4

𝑗=1

𝑘𝑗𝑝𝑗] 𝑅𝑗(𝑎, 𝜔)𝑒−𝑘𝑗𝑦  
(40) 

4. Boundary Conditions 

The problem is to solve subjected to the 
following boundary conditions. The bounding 
plane 𝑦 = 0  is subjected to a thermal loading as 
follows: 

𝜃(𝑥, 𝑦, 𝑡) = 𝑛(𝑥, 𝑡)on𝑦 = 0  (41) 

The mechanical boundary conditions on the 
bounding plane 𝑦 = 0 are given by:  

𝜎𝑦𝑦(𝑥, 𝑦, 𝑡) = −𝑝(𝑥, 𝑡)on𝑦 = 0   (42) 

𝜎𝑥𝑦(𝑥, 𝑦, 𝑡) = 0on𝑦 = 0  (43) 

The bounding plane 𝑦 = 0  is subjected to a 
chemical loading as follows: 

𝑃(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑡)on𝑦 = 0  (44) 

Employing the normal mode analysis on the 
boundary conditions, we derive the following 
equations from Equations (41)–(44):  

∑ 𝑞𝑗𝑅𝑗(𝑎, 𝜔) = 𝑛∗4
𝑗=1   (45) 

∑ [𝑖𝑎(𝑎2 − 𝑎1)𝑝𝑗 − 𝑘𝑗 − 𝑞𝑗 −4
𝑗=1

𝛽𝑗]𝑅𝑗(𝑎, 𝜔) = −𝑝∗  
(46) 

∑ [𝑖𝑎 − 𝑘𝑗𝑝𝑗]𝑅𝑗(𝑎, 𝜔) = 04
𝑗=1   (47) 

∑ 𝛼𝑗𝑅𝑗(𝑎, 𝜔) = 𝑔∗4
𝑗=1   (48) 

5. Numerical Results and Discussions 

The aim of this section is to present the 
analytical numerical results obtained in the 
preceding sections. For the numerical 
computations, we have considered a copper-like 
material. Since 𝜔is a complex time constant, we 
have 𝜔 = 𝜔0 + 𝑖𝜉 and 𝑒𝜔𝑡 = 𝑒𝜔0𝑡(𝑐𝑜𝑠 𝜉 𝑡 +
𝑖 𝑠𝑖𝑛 𝜉 𝑡). 

The values of the material constants are given 
as follows [27, 34, 35]: 
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𝐶11 = 1.628 × 1011𝑁𝑚−2  

 

𝐶12 = 0.632 × 1011𝑁𝑚−2  

𝐶13 = 0.508 × 1011𝑁𝑚−2  

𝐶33 = 0.627 × 1011𝑁𝑚−2  

𝐶44 = 0.770 × 1011𝑁𝑚−2  

𝛼𝑡 = 1.78 × 10−5𝐾−1  

𝛼𝑐 = 1.98 × 10−4𝑚3𝐾𝑔−1  

𝜃0 = 293𝐾  

𝜔0 = −0.5  

𝜉 = 1  

𝑃∗ = −4  

𝑛∗ = 5.5  

𝑔∗ = 1.4  

𝑎 = 1  

𝛽1 = 5.5889 × 106𝑁𝑚−2 𝑑𝑒𝑔−1   

𝛽2 = 6.72737 × 107𝑁𝑚−2 𝑑𝑒𝑔−1,  

𝐾 = 405 𝑊𝑚−1 𝑑𝑒𝑔−1,  

𝐷 = 0.95 × 10−8𝑘𝑔𝑠𝑚−3  

𝑐 = 0.9 × 104 𝑚2𝑠−2𝐾−1  

𝑑 = 0.6 × 106 𝑚5𝐾𝑔−1𝑠−2  

The hypothetical values of the dimensionless 
relaxation time parameters are: 

𝛼0 = 0.01  

 
𝜏1 = 0.02  

𝛼1 = 0.1  

𝜏1 = 0.2  

Figs. 1–7 have been plotted to study the effect of 
thermodiffusion on the thermophysical quantities 
when 𝑥 = 0.2  and 𝑡 = 0.4 for the thermoelastic 
diffusion model with two relaxation times (GLD) 
and the thermoelastic diffusion model with one 
relaxation time (LSD). In these figures, the 
continuous lines correspond to a thermodiffusive 
medium (WD) and the dotted lines correspond to a 
without thermodiffusive medium (WOD) for the GL 
model of heat transfer and the LS model of heat 
transfer.  

Fig. 1 depicts the variation of the displacement 
component 𝑢 with respect to 𝑦for 𝑥 = 0.2 at time 
𝑡 = 0.4. The figure shows that the displacement 
attains its maximum magnitude at 𝑦 = 0; as𝑦 

increases, the magnitude of 𝑢decreases and 
reaches zero for both the LS and GL models. In 
addition, the magnitude of 𝑢is larger for the GL 
model than the LS model. Furthermore, as seen in 
the figure, the magnitude of 𝑢corresponding to the 
GLD and LSD models is greater than that of the GL 
and LS models. 

 

Fig. 1. Variation of 𝑢 with respect to 𝑦 for 𝑡 = 0.4 and 𝑥 = 0.2 

 

Fig. 2. Variation of v with respect to y for t=0.4 and x=0.2. 

 
Fig. 3. Variation of θ with respect to y for t=0.4 and x=0.2 
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Fig. 2 shows the variation of the displacement 
component 𝑣with respect to y when 𝑥 = 0.2 and 
𝑡 = 0.4 for both models. From the figure, we can 
observe that the vertical displacement 𝑣 attains its 
maximum magnitude on the plane 𝑦 = 0; 
as𝑦increases, the magnitude of 𝑣 decreases. 
Furthermore, due the presence of thermodiffusion, 
the magnitude of 𝑣 is greater for the GLD and LSD 
models than for the GL and LS models. For both the 
diffusive medium and the elastic medium, the 
magnitude of 𝑣for the GL model is greater than that 
of the LS model.  

Fig. 3 depicts the variation of the temperature 𝜃 
with respect to y for both the LS and GL models for 
WD and WOD when 𝑡 = 0.4 and 𝑥 = 0.2. The figure 
shows that the magnitude of 𝜃 on the plane 𝑦 = 0 
satisfies the thermal boundary condition of our 
problem as given in Equation (41). Furthermore, in 
the LS model, the magnitude of 𝜃 increases for the 
interval 0 < 𝑦 < 0.2  to attain its maximum value 
at  𝑦 = 0.2 in the diffusive medium, and then 
decreases sharply as 𝑦increases. However, in the 
GL model, the smoothness in the profile of 𝜃 is 
revealed. The presence of thermodiffusion has a 
tendency to increase the magnitude of the profile 
of the temperature field.  

Fig. 4 shows the variation of the stress 
component 𝜎𝑥𝑦with respect to distance 𝑦 when 𝑡 =
0.4 and 𝑥 = 0.2 for the thermoelastic diffusion 
model with one relaxation time (LSD) and the 
model corresponding to two relaxation times 
(GLD) against the LS and GL heat transfer models. 
It is observed that 𝜎𝑥𝑦 has a value of zero on the 
plane𝑦 = 0 for both models, which satisfies the 
mechanical boundary condition of the problem 
given in Equation (43). The figure also shows that 
the magnitude of 𝜎𝑥𝑦 is greater for the diffusive 
medium than for the elastic medium. The decay of 
the magnitude of 𝜎𝑥𝑦 is also faster for the elastic 
medium (WOD) than the diffusive medium (WD). 

Fig. 5 depicts the variation of the stress 
component 𝜎𝑦𝑦 against distance 𝑦 for 𝑥 = 0.2 and 
𝑡 = 0.4. As shown in the figure, 𝜎𝑦𝑦 attains its 
maximum magnitude on the plane 𝑦 = 0 where the 
pressure is given and the magnitude of 𝜎𝑦𝑦 
decreases as 𝑦 increases. The decay of 𝜎𝑦𝑦 is faster 
for the elastic medium (WOD) than for the diffusive 
medium (WOD). 

Fig. 6 shows the variation of the chemical 
potential 𝑃against the distance 𝑦for 𝑡 = 0.4 and 
𝑥 = 0.2for both the LS and GL models in the 
presence and absence of thermodiffusion. As 
shown in the figure, for the LS model, the chemical 
potential increases for the interval 0 < 𝑥 < 0.2 and 

then decreases sharply as𝑦 increases. However, the 
decrease of 𝑃is slower in the GL model than in the 
LS model. Furthermore, because of the presence of 
thermodiffusion (GLD and LSD), the magnitude of 
𝑃becomes less in the elastic medium (WOD) than 
in the diffusive medium (WOD) for both the GL and 
LS heat transfer models. 

 

Fig. 4. Variation of 𝜎𝑥𝑦 with respect to 𝑦 for 𝑡 = 0.4 and 𝑥 = 0.2 

 

Fig. 5. Variation of 𝜎𝑦𝑦 with respect to 𝑦 for 𝑡 = 0.4 and 𝑥 = 0.2 

 

Fig. 6. Variation of 𝑃 with respect to 𝑦 for 𝑡 = 0.4 and 𝑥 = 0.2 



 

102 A. Sur, M. Kanoria/ Mechanics of Advanced Composite Structures 6 (2019) 95 – 104 

 

Fig. 7 shows the variation of the mass 
concentration 𝐶 for 𝑡 = 0.4 and 𝑥 = 0.2. The 
presence of thermodiffusion has a tendency to 
decrease the magnitude of the profile of 𝐶 for both 
the LS and GL models. 

Figs. 8 and 9 depict the variation of the shearing 
stress 𝜎𝑥𝑦 and temperature 𝜃 for the LS model in a 
diffusive medium (WD) for different values of 𝑦and 
𝑡 when 𝑥 = 0.2. It can be observed that as time 
increases, the magnitudes of the profiles of the 
shearing stress and the temperature distribution 
also increase, which supports the physical fact. 

6. Conclusion 

In the present analysis, the classical Fick’s 
diffusion law is replaced by a generalized 
expression that involves two relaxation times. It 
allows a delayed response between the relative 
mass flux vector and the potential gradient. A two-
dimensional transversely isotropic 
thermodiffusive medium has been considered in 
the context of the LSD model and the GLD model of 
generalized thermoelasticity. All the figures exhibit 
the different peculiarities that occur during the 
propagation of waves. The conclusions may be 
summarized as follows. 
 The presence of thermodiffusion has a tendency 

to increase the magnitude of the profile of the 
displacement components, temperature, stress 
components, chemical potential, and the mass 
concentration within the medium.  

  The magnitude of the displacement 
components are greater for the GL model than 
the LS model of generalized thermoelasticity.  

 As time increases, the magnitudes of the stress 
component and temperature also increase, 
which occurs in the real situation. 

 

Fig. 7. Variation of 𝐶 with respect to 𝑦 for 𝑡=0.4 and 𝑥=0.2 

 

Fig. 8. Profile of 𝜎𝑥𝑦 with respect to 𝑦 and 𝑡 when 𝑥 = 0.2 

 

Fig. 9. Profile of 𝜃 with respect to 𝑦 and 𝑡 when 𝑥 = 0.2 
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