
Journal of Rehabilitation in Civil Engineering 6-1 (2018) 88-103 

DOI: 10.22075/JRCE.2018.376.1072 

 

journal homepage: http://civiljournal.semnan.ac.ir/ 

An Artificial Neural Network Model for Estimating 

the Shear Contribution of RC Beams Strengthened by 

Externally Bonded FRP 

E. Moradi
1
, H. Naderpour

2*
 and A. Kheyroddin

3
 

1. M.Sc. Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran 

2. Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran 

3. Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran 

 
Corresponding author: naderpour@semnan.ac.ir 

ARTICLE INFO 

 

ABSTRACT 

Article history: 

Received: 28 January 2014 

Accepted: 08 June 2014 

 

This paper provides an artificial neural network model for 

predicting the shear contribution of FRP in reinforced 

concrete (RC) beams strengthened in shear with externally 

bonded FRP. Although there are some models and equations 

for estimating the contribution of FRP, these models, in 

some cases, have a significant error in the calculation of FRP 

contribution. One of the reasons for these errors is neglecting 

the effect of shear span (a) to the effective depth of beam (d) 

ratio in FRP performance. In this model, mechanical and 

dimensional properties of RC beams strengthened and 

strengthening materials, and also the shear span to the 

effective depth of beam ratio (a/d) are taken as input 

parameters, and the shear contribution of FRP is the target of 

the network. After a comprehensive review in existing 

literature, 96 strengthened RC beams which all of them have 

FRP rupture failure mode were selected which 92 of them 

were used for training, validation and testing the network and 

four of them were used for controlling the generalization of 

the network. Finally, the outputs of the model have 

compared with ACI 440.2R, fib 14 and CIDAR guidelines, 

and the result indicated that the ANN model is more accurate 

than the existing guideline equations based on experimental 

result. 
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1. Introduction 

Nowadays, deterioration condition of the 

existing reinforced concrete (RC) structures, 

is one of the main anxiety of the modern 

communities. in the last decade, 

strengthening of RC structure usually uses to 

do by epoxy bonding of steel plates on the 

face of concrete elements, increasing the 

element section by placing extra reinforced 

http://dx.doi.org/10.22075/jrce.2018.376.1072
http://civiljournal.semnan.ac.ir/
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and casting concrete around the existing 

section [1,2]. In recent years, considerable 

research has been conducted on the use of 

fiber-reinforced polymer (FRP) for 

strengthening exciting structures. FRP 

materials due to best performance and 

enhancement of strength and ductility have 

been highly regarded, and many 

experimental studies have been carried out 

on the use of these materials [3-12]. 

Although the shear failure of RC beams is 

sudden, brittle, and without any warning in 

nature [3], most of the studies on 

strengthening have conducted on flexural 

strengthening. Using epoxy-bonding of FRP 

composites on side faces of RC beams, 

brittle behavior changes to ductile behavior 

[4]. 

The first study in shear strengthening of RC 

beams with FRP was performed by Berset 

[5]. He tested some RC beams in both of 

control specimens and FRP-strengthened 

specimens type and developed a simple 

analytical model for shear contribution of 

FRP composite, which in this model, FRP 

treated similar to steel stirrups. Uji [6] tested 

RC beams strengthened by FRP with 

bonding FRP on their side faces either 

vertical or inclined. In this study, Uji 

focused on debonding shear stress. In 

another work, Veilhaber and Limberger [7] 

tested some large scale RC beams, and the 

test results indicated that even small 

amounts of external reinforcement could 

avoid brittle shear failure. Chajes et al. [8] 

tested 12 beams, four as control specimens 

and eight as strengthened RC beams with 

aramid, E-glass, and graphite fibers. The 

tests results indicated that FRP composite 

increases in the ultimate strength of about 60 

to 150 percent. Sato et al. [9] tested some 

RC beams with shear strengthening by FRP 

strips or continuous fabrics, and the result of 

tests indicated that the effect of partial 

strengthening on the shear contribution of 

composite materials. Gamino [10] has tested 

some RC beams for investigating the effect 

of anchorage for avoiding FRP-debonding. 

The results of another study have been 

showed that the strain values in FRP 

increase only after the appearance of the 

shear crack crossing the FRP wraps [11]. 

Jung-Yoon Lee et al. [12] tested ten RC 

beam strengthened with FRP for 

investigating the effective strain of 

composite material, and the test results 

indicated that the effective strain of FRP at 

shear failure decreased as the amount of 

FRP increased or as the apace of FRP strips 

decreased. 

In recent years, artificial neural networks 

have been of interest to researchers in the 

utilizing of various civil engineering fields 

[13]. ANN tools are an efficient method for 

further understanding of the behavior of RC 

members and concrete. Since the shear 

failure of RC beams involves a complex 

mechanism and the capacity of FRP in shear 

strengthened RC beams depends on different 

parameters, usage of Artificial Neural 

Network (ANN) can help to predict the 

ultimate contribution of FRP composite. 

2. Existing Models of RC Beam 

Shear Strengthening 

Although numerous studies have been 

conducted on the shear capacity of the 

strengthened RC beams, because of 

complicated mechanism of shear failure, the 

precision of existing models is not 

appropriate to predict the shear contribution 

of FRP materials.  
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The following shear models commonly 

applied in practical design and researches. 

These models have used for comparing the 

result of proposed model based on 

experimental database [Table 1-4]. Presented 

equations in ref. 14-17 are the most common 

standard for calculating the shear 

contribution of FRP materials, and their 

formulas have been used for comparison 

with the experimental result against the 

result of the ANN model presented in this 

paper. 

3. Artificial Neural Networks 

Artificial neural networks (ANN) are 

computing tools for modeling complex 

problems inspired by biological neurons. A 

biological neuron has major parts which are 

of particular interest in understanding an 

artificial neuron and include: dendrites, 

soma, axon, and synapse. The first wave of 

interest in neural networks emerged after the 

introduction of simplified neurons by 

McCulloch and Pitts in 1943s. The analogy 

between biological and artificial neural 

networks was shown in Table 5. These 

neurons are connected with a connection 

link in each layer. 

The training operation of a network is done 

by adjusting the values of the weights 

between layers. At each epoch, the network 

output is computed based on weigh 

coefficients and was compared with the real 

value. According to the error rate, the 

network weight is adjusted until the network 

output matches the target value. The 

feedforward backpropagation network is one 

of the simple various ANN that has the 

appropriate ability to modeling complex 

function. Backpropagation is the 

generalization of the Widrow–Hoff learning 

rule to multiple-layer networks and 

nonlinear differentiable transfer functions. 

Feedforward networks often have one or 

more hidden layers of sigmoid transfer 

functions associated with a linear in the 

output layer. 

Nowadays, the results of the parametric 

study that carried out on the various field of 

structural engineering using artificial neural 

networks were shown the capability of this 

tolls [13, 20, 21]. 

Table 1. ACI 440 [14] shear calculation equations. 
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Table 2. fib 14 [15] shear calculation equations. 
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Table 3. CIDAR [16] shear calculation equations. 
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Table 4. JSCE [17] shear calculation equations. 
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Table 5. The analogy between biological and artificial neural networks. 

Biological Neural 

Network 
Artificial Neural Network 

Soma Neuron 

Dendrite Input 

Axon Output 

Synapse Weight 

 

4. Neural Network Model 

As the first step for providing a sufficient 

group of data for training, verifying and 

testing of the neural network, a 

comprehensive review has done among 

existing papers in shear strengthening of RC 

beams and a set of the test result on shear 

strengthening of RC beams by FRP 

composites was collected. Although at first 

the data set involved more than 300 

strengthened RC beams, they had a different 

type of failure; like FRP rupture, debonding, 

and flexural failure. So for training a 

reasonable network that can predict the 

shear contribution of FRP at ultimate load, 

altogether about one-third of tests (96 

specimens) which have FRP rupture failure 

were chosen. 92 specimens of whole data 

were selected for training, validation, and 

testing the network and four specimens for 

controlling the result of the network. 

For using the ANN method for estimating 

the shear contribution of FRP in shear 

strengthened RC beams, choosing the 

appropriate parameters is a significant 

remarkable factor. At first, ten parameters 

were determined based on physical 

considerations as input parameters of the 

network. For choosing these parameters, 

existing models and equations in shear 

strengthening of RC beams have been 

studied, and the following parameters have 

been selected: 

ultimate FRP strain (ɛfu), effective depth of 

FRP (df), width of FRP strips (wf), center to 

center spacing of FRP strips (sf), the angle 

between fiber direction and beam axis (α), 

concrete compressive strength (f’c), effective 

depth of RC beam (d), modulus of elasticity 

of FRP (Ef) and FRP thickness (tf) are the 

effective parameters in FRP performance. In 

addition to these nine parameters, shear span 

(a), is another parameter which can 

determine the type of beam (slender beam or 

deep beam) and play a forcible role in FRP 

contribution [12]. 

From another point of view, for training a 

good network, whatever input parameters 

are fewer, the results will be better [20]. So 

after a comprehensive and carefully 

investigation between different models and 

guidelines, some of the mentioned 

parameters have been incorporated for 

decreasing the number of input parameters. 

This process has done, as described in the 

following: 

With due attention to existing equations and 

models [14-16], the width of FRP strips (wf) 

and spacing of FRP strips (sf) have direct 

proportion and inverse proportion with FRP 

contribution respectively. Also increasing 

the value of (sinα + cosα) can improve FRP 

performance. So these three parameters were 

incorporated together and make a single 

parameter. 
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The modulus of elasticity of FRP (Ef) and 

FRP thickness (tf) show the rigidity of 

composite. According to existing equations, 

both of these two parameters have a 

proportion with FRP contribution. So these 

parameters were incorporated together and 

make a single parameter. 

According to existing research [effect of…], 

the type of beam (slender or deep) can 

influence on FRP performance. Shear span 

(a) to the effective depth of beam (d) ratio is 

a parameter which shows beam type. So 

these two parameters were incorporated for 

making a difference between a slender beam 

and deep beam.  

Finally, ten parameters were changed into 

six parameters as network input vectors, 

which are summarized as follow: 

(1) The ultimate strain of FRP composite 

(ɛfu) 

(2) The effective depth of FRP, (df) 

(3) Width and spacing factor, B = (wf / 

sf).(sin α) 

(4) Concrete compressive strength, (f’c) 

(5) FRP rigidity factor, R = Ef . tf 

(6) Shear apan to the effective depth of 

beam ratio (a/d) 

Having the six input parameters as described 

above, the shear contribution of FRP 

material was the target node of the neural 

network. Because of variable scopes of input 

parameters and target, before training the 

selected data, scaling for the whole data 

were done. For scaling, all the data were 

drawn to their standard values using Eq. 

(1),(2) and Table 6, which the mean and the 

standard digression values of scaled data 

were 0 and 1 respectively. A feed-forward 

backpropagation type of network was 

chosen. The Levenberg-Marquardt algorithm 

was used as network training function, 

which randomly divides input vectors and 

target vectors into three sets, including 

training, validation, and testing. The relative 

percentage of these sets can be changed. In 

this study, 70% of whole data was specified 

as the training data. Also, 15% of database 

was used as validation data, and remind15% 

was chosen as testing data randomly. 

2 2
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1
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n
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S x x
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 (2) 

Where for each input parameter and target, 

S
2
 is the variance of data, n is the number of 

data, xi is the value of the parameter, x


is the 

average of the parameter, zi is the scaled 

value and S is the root of the variance 

(standard deviation). 

Table 6. Statistics properties of input and target data. 
Input 

parameters 
B 

f


 

R 

(GPa.mm) 
a/d f'c (MPa) df (mm) Vf (kN) 

Max. 0.08 0.006 3.212 1.25 9.63 88.9 15.4 

Min. 1.41 0.037 130.26 4.08 57.27 510 493 

Mean 0.66 0.017 36.03 2.73 31.11 276.05 81.47 

Variance 0.108 5.281E-5 757.824 0.375 92.17 9762.5 6086/84 

Std. dev. 0.329 0.007 27.529 0.613 9.6 98.805 78.02 
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One hidden layer was used as transfer 

functions in this ANN model, which it was 

tangent-sigmoid. The number of neurons in 

the hidden layer is changeable, and it usually 

depends on the number of input data. In this 

study, some networks were created with 

different numbers of neurons, called ANN-x, 

which x shows the number of hidden 

neurons, to find out the optimum number of 

hidden neurons. The results of each one are 

indicated in Fig. 2 and 3. As it’s clear, the 

network with eight hidden neurons has the 

best performance (Fig. 2, 3). Fig. 4 indicates 

the architecture of a network with eight 

neurons in the hidden layer. Although 

increasing the number of hidden neurons 

usually makes the network give better 

results, if the number of hidden neurons be 

very high, it can cause the problem of over-

fitting. 

 
Fig. 2. Regression values for networks with 4–15 neurons in the hidden layer. 

 
Fig. 3. MSE comparison for networks with 4–15 neurons in the hidden layer. 
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Fig. 4. The architecture of a network with eight neurons in the hidden layer. 

The criterion for stopping the training 

process of the network was Mean Square 

Error (MSE), which is the average squared 

difference between outputs and targets. 

Lower values of MES mean better 

performance of the network. Regression 

values (R-values) indicate the relationship 

between outputs and targets. The maximum 

value of R-value is 1, and it shows a close 

relationship between outputs and target 

values and in contrast, R-value near to 0 

means a random relationship. Fig.1, 2 shows 

the MSE and R-values of networks with 

different numbers of hidden neurons. The 

best network is the network which its MSE 

be lower, and its R-value is higher (network 

whit eight hidden neurons). 

Figs. 4-6 indicate the performance of ANN-8 

network. Fig. 5 shows the MSE of the 

network started at a large value and 

decreasing to a small value. The plot shows 

three lines because as mentioned above, the 

92 specimens were divided into three groups 

randomly. Training on the training vectors 

continues as long as training reduces the 

error of the network on the validation 

vectors. When the network memorizes the 

training set, training is stopped. Fig. 7 

indicates the regression values of three sets 

of data and also the regression of whole data 

altogether. As it’s clear, the regression values 

show a close relationship between outputs 

and targets, and it means the network has 

trained well. 

 
Fig. 5. Mean squared error of ANN-8 network. 
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Fig. 6. Training state of ANN-8 network 

 
Fig. 7. Regression values for training, validation, and test data. 
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5. Comparison of ANN Results with 

Existing Empirical Models 

The four common equations for prediction 

of FRP shear contribution in strengthened 

RC beams are ACI 440 [14], fib bulletin 14 

[15], CIDAR [16], and JSCE [17] 

guidelines. The simulated shear contribution 

of FRP in strengthened RC beams from the 

neural network is compared with the 

prediction of the three existing models, and 

the result is mapped in fig. 8-12. If there is a 

perfect agreement between experimental 

results and the calculated results from the 

models and network, all point will settle 

along the 45° line. The error distribution of 

models and simulated results against 

experimental results are summarized in 

Table 7. According to Figs. 8-12 and Table 

7, it can be observed that the results of the 

network have a good agreement with 

experimental results in comparison with the 

results of existing models. The mean 

average error between experimental and 

prediction results for ANN model, ACI 440, 

fib 14, CIDAR and JSCE equations are 

equal to 12.9%, 52.9%, 52.6%, 42.9%, and 

47.7% respectively. These values indicate 

that the average error in ANN result is so 

less than other models. In addition to the 

mean of errors between experimental results 

and the predicted results, the Root of Mean 

Squared Error (RMSE) has calculated for 

ANN outputs and the results of four other 

models. ANN model has the minimum 

RMSE rather than another existing model 

(Table 8) .Although the average of errors 

and RMSE can be good for comparison the 

errors of models, this parameter doesn’t 

indicate the distribution of errors between 

calculated and experimental values. So for 

comparison, the distribution of errors, 

variance of errors around their average has 

calculated for each equation and also for the 

ANN model. This parameter for ANN 

model, ACI 440, fib 14, CIDAR and JSCE is 

equal to 13.3%, 27.1%, 48.6%, 24.3%, 

24.1% and 20.1% respectively. These values 

show that the distribution of errors around 

the mean error for the ANN model is more 

uniform than other equations (Table 8). 

Table 7. Distribution of errors for different existing models and ANN model. 
Range of 

error (%) 
Number of data in the range for models  Percentage to whole data for models (%) 

 
ANN 

model 
[14] [15] [16] [17]  

ANN 

model 
[14] [15] [16] [17] 

±10 49 11 14 5 5 
 

53.3 12.0 15.2 5.4 5.4 

±20 76 14 27 6 17 
 

82.6 15.2 29.3 6.5 18.5 

±30 83 20 40 15 24 
 

90.2 21.7 43.5 16.3 26.1 

±40 85 27 49 17 33 
 

92.4 29.3 53.3 18.5 35.9 

±50 89 40 53 22 50 
 

96.7 43.5 57.6 23.9 54.3 

±60 92 52 59 29 61 
 

100 56.5 64.1 31.5 66.3 

±70 92 72 69 41 79 
 

100 78.3 75.0 44.6 85.9 

±80 92 79 77 68 84 
 

100 85.9 83.7 73.9 91.3 

±90 92 87 79 89 89 
 

100 94.6 85.9 96.7 96.7 

±100 92 89 81 92 90 
 

100 96.7 88.0 100 97.8 

±120 92 92 83 92 91 
 

100 100 90.2 100 98.9 

±140 92 92 85 92 91 
 

100 100 92.4 100 98.9 

±160 92 92 87 92 91 
 

100 100 94.6 100 98.9 

±180 92 92 90 92 92 
 

100 100 97.8 100 100 

±200 92 92 92 92 92 
 

100 100 100 100 100 
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Fig. 8. Comparison between ANN results and experimental values. 

 
Fig. 9. Comparison between ACI 440 results and experimental values. 

 
Fig. 10. Comparison between fib 14 results and experimental values. 
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Fig. 11. Comparison between CIDAR results and experimental values. 

 
Fig. 12. Comparison between JSCE results and experimental values 

 

Fig. 13. Comparison between ANN results and other equations predictions. 
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Table 8. Comparison of average error, RMSE, 

and variance values between the ANN model 

and existing model. 

Models Avg. error (%) RMSE VAR. (%) 

ANN model 12.89 0.19 13.29 

ACI 440 52.52 0.59 27.11 

fib 14 52.60 0.72 48.62 

CIDAR 42.49 0.49 24.1 

JSCE 47.72 0.55 20.1 

 

Considering to Table 7 can be determined 

that more than half of data have an error less 

than ±10% while the percentage of data 

which have this amount of error are about 

12%, 15% and 5% for ACI 440, fib 14 and 

CIDAR respectively. For controlling the 

generalization of network performance, the 

FRP shear contribution of four remained 

specimens is calculated by existing models 

and simulated with the network. The results 

indicated that the proposed network has a 

good generalization and can perform for 

other data well. For controlling data, ANN, 

ACI 440, fib 14, and CIDAR code has an 

average error equal to 17%, 101%, 46%, and 

59% respectively. This simulation indicates 

the generalization of the modeled network 

and shows that this network can predict the 

shear contribution of other specimens which 

it has not trained by them. 

6. Sensitivity Analysis 

For finding the effect of parameters that 

have used as input vectors of the network, 

sensitiveness analyze has done by Garson 

method and the results according to Eq. (3). 

In this equation N is the number of input 

parameters, L is the number of hidden 

neurons, wrj is the weight which connects 

input vectors to hidden neurons, and the 

amount of equation (Qik) is the importance 

percentage of each input parameter. This 

method is based on weights which perform 

on input parameters and make a relation 

between them according to target, and the 

sensitiveness value of each input parameters 

shows the relative importance of it against 

other inputs.  The results indicate that shear 

span (a) to the effective depth of beam (d) 

ratio has the maximum percentage of 

importance (22.6%) and this parameter plays 

the main roll in FRP performance, which 

changing in its value can have a significant 

effect on shear contribution of FRP. But 

existing models and equations don’t 

consider this important parameter. Also, 

width and spacing factor (B) has the 

minimum effect on shear contribution of 

FRP between parameters. The results of 

sensitiveness analyze are summarized in 

Table 9. 
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Table 9. The importance of each parameter in sensitiveness analyze. 
Parameters Relative importance  

The ultimate strain of FRP (ɛfu) (%) 17.3 

Effective depth of FRP (df) (%) 16.8 

Width and spacing factor B (%) 9.9 

Concrete compressive strength (f’c) (%) 12.7 

FRP rigidity factor R (%) 20.7 

Shear apan to effective depth (a/d) (%) 22.6 

All (%) 100.0 
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Fig. 14. The relative importance of input parameters on outputs. 

7. Conclusion 

In this paper, an Artificial Neural Network 

was presented for estimating the shear 

contribution of FRP in RC beam 

strengthened with externally bonded FRP. A 

set of 92 RC beams were selected as training, 

validation, and test and four data were used 

for controlling the generalization the 

network. One of input parameter was the 

shear span to the effective depth of beam 

(a/d) ratio which none of existing models and 

equations consider to this parameter. The 

result of comparison ANN model and other 

models based on experimental is summarized 

here: 

 The average of errors for ANN model, 

ACI 440, fib 14, and CIDAR guidelines 

is 12.9%, 52.9%, 52.6%, and 61.1% 

respectively. These values show that 

the ANN model provides a more 

accurate result than other models. 

 The variance of errors around means 

error for the ANN model is about 

13.3%, which is significantly less than 

other models. Comparison between the 

variance of errors indicates that the 

errors distributed around mean errors 

of ANN model uniformly. 

 More than 50% of whole data have less 

than 10% error in the ANN model. 

While the percentage of data with 

errors equal or less than this amount for 

ACI 440, fib 14 and CIDAR is 

12%,15%, and 5% respectively. 

 A sensitiveness analyze has performed 

for finding out the importance of each 

input parameter on network output by 

Garson method. The results indicated 

that the shear span to the effective 

depth of beam (a/d) has the maximum 

effect on the contribution of FRP while 

the width and spacing parameters (B) 

has the minimum effect. 

Notation 

AFRP = area of FRP shear reinforcement; 

bw = minimum width of RC beam; 

DFRP = stress distribution factor in FRP; 

d = effective depth of the cross section; 

dFRP = effective depth of the FRP shear 

reinforcement_usually equal to d for 
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rectangular sections and (d-thickness) of the 

slab for T sections; 

dFRP,t = distance from the compression face to 

the top edge of the FRP; 

EFRP = Young’s modulus of the FRP; 

fc = compressive strength of concrete; 

fFRP = tensile strength of FRP; 

h = height of the beam; 

dFRP,e = effective height of FRP; 

Le = effective bond length; 

SFRP = center to center spacing of FRP strips 

measured along longitudinal axis; 

tFRP = thickness of FRP shear reinforcement; 

wFRP = width of FRP; 

α = fiber angle direction with respect to the 

longitudinal axis of the beam; 

βL = bond length coefficient; 

βw = strip width coefficient; 

gb = partial safety factor for bond strength, 

equals 1.25; 

ɛFRP,e = effective FRP strain in principal fiber 

direction; 

ɛFRP,u = ultimate tensile strain in FRP; 

θ = crack angle direction with respect to the 

longitudinal axis of the beam; 

rFRP = FRP shear reinforcement ratio; 

ɛFRP,max = maximum stress in FRP; 
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