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Abstract

Optimization of the product portfolio has been recognized as a critical problem in industry, manage-
ment, economy and so on. It aims at the selection of an optimal mix of the products to offer in the
target market. As a probability function, reliability is an essential objective of the problem which
linear models often fail to evaluate it. Here, we develop a multiobjective integer nonlinear constraint
model for the problem. Our model provides opportunities to consider the knowledge transferring
cost and the environmental effects, as nowadays important concerns of the world, in addition to the
classical factors operational cost and reliability. Also, the model is designed in a way to simultane-
ously optimize the input materials and the products. Although being to some extent complicated,
the model can be efficiently solved by the metaheuristic algorithms. Finally, we make some numerical
experiments on a simulated test problem.
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1. Introduction

Rising competition in different market segments, rapidly changing the technologies and shortened
product lifecycles made the companies and industries to offer a set of optimized products in order
to meet changing the customer needs [16]. So, as an important scenario for investing, allocating
resources and ensuring strategic fit on the products, portfolio management has attracted especial
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attentions [16]. Companies can benefit from considering several products families, instead of opti-
mizing each product separately, and offer a portfolio with product variety in order to achieve the
competitive differentiation and responding increasingly requests of the customers [21]. Nevertheless,
too wide products range may confuse the customers and lead to complexity which has negative effects
on the profitability, costs, new products development time and customers satisfaction [21]. Hence,
the suggested product portfolio should be planned carefully to address customers requirements of
the target market [9].

Because of the manufacturers concerns about the high failure rates and associated losses of the
product portfolios [19], product portfolio optimization has been traditionally dealt with maximization
of the profit or minimization of the cost. As example, Jiao et al. [9] suggested a model with the
objective of maximizing the expected value of the shared surplus of the product portfolio in the sense
of simultaneously accounting the customers benefit of purchasing a product in a less price and the
producers benefit of selling a product in a higher price [14]. Jiao and Zhang [10] considered customer
preference and choice probabilistically to maximize value of the shared surplus. Muller [13] dealt
with a value–based portfolio optimization in order to maximize profit of the generated revenue and
operational cost. Seifert et al. [20] used a linear programming model to maximize the total profit of
the product portfolio. Azari–Takami et al. [2] proposed a profit maximization model for the problem
by simultaneously considering both of the production and supply rates. Sadeghi et al. [18] suggested
a multiobjective model in order to maximize the market share and to minimize the operational cost
of the product portfolio as well. In another effort, Mangun and Thurston [12] proposed a nonlinear
model to maximize the total portfolio utility with respect to the cost and reliability of the products.
Also, Relich [17] developed a constraint satisfaction problem by taking into account the reliability in
selecting products in the portfolio. All of the reviewed models have been efficiently solved using the
metaheuristic algorithms.

As seen in the recent studies on the product portfolio optimization reviewed above, environmental
effects has been ignored in the suggested models. Nowadays, considering product effects on the
environment during its lifecycle is an important issue. In addition, due to the fact that knowledge is
a powerful tool for the organizations to achieve competitive advantages [11], decreasing the knowledge
transferring cost in the product portfolio planning should be taken care of. As another important
engineering characteristic, reliability has been often disregard in recent product portfolio models.
Although being a costly factor, generally reliability is a crucial element which can decrease the
warranty cost and increase the customers satisfaction [5, 22]. Motivated by these, here we deal with
a product portfolio optimization model in order to simultaneously consider all the four important
objectives operational cost, knowledge transferring cost, environmental effects and reliability. In
addition, it is worth noting that our model can be efficiently solved by metaheuristic algorithms.

The remainder of this work is organized as follows. In Section 2, after a detailed discussion on
the problem specifications, we suggest a multiobjective nonlinear model for the product portfolio
optimization. Using a metaheuristic algorithm, we made some numerical experiments on a simulated
test problem in Section 3. Finally, concluding remarks are provided in Section 4.

2. A multiobjective nonlinear binary model for the product portfolio optimization

Here, we describe specifications, objectives and constraints of our model in details. To proceed, at
first consider a manufacturing company which produces p different products P1,. . . ,Pp where each
product is a combination of m different materials M1,. . . ,Mm. The material Mi (i = 1, . . . ,m) can be
provided as one of the four types ‘new’, ‘reused’, ‘remanufactured’ or ‘recycled’, respectively indexed
by k = 1, 2, 3, 4 and abbreviated by ‘N’, ‘Ru’, ‘Rm’ and ‘Rc’. Preparation process of each material
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type consists of at most eight stages ‘providing the raw material’, ‘manufacturing’, ‘assembling’,
‘collecting’, ‘disassembling’, ‘remanufacturing’, ‘recycling’, and ‘disposing’, respectively indexed by
n = 1, . . . , 8. For example, if the material is of the type new, then its preparation process begins
with disposing the used material, replacing as a raw material, enduring the manufacturing process
and assembling, respectively; then, it should be disassembled at the end of its life. Figure 1 shows
the detailed preparation process of all the four material types.

Figure 1: Preparation process of different material types

The company needs to decide which products should be included in the portfolio to achieve
reasonable levels of the operational cost, knowledge transferring cost, environmental effects and
reliability. So, a multiobjective approach can be employed to model the problem. Note that using
the reliability function makes the model to be nonlinear. Here, we apply the Weibull distribution to
determine the reliability as well [15].

To present our model, we need to consider the following two preliminary assumptions: (i) the
company can meet all the market demands, and (ii) the costs of the product return is linearly added
to all the materials. In what follows, we list the parameters of our multiobjective nonlinear product
portfolio optimization model:

– θi : the characteristic life of the i–th material;

– h : the average time of diary usage of the j–th product;

– d : the average time of annual usage of the j–th product;

– bi : the slope of the Weibull distribution of the i–th material;

– K : the portfolio capacity;

– Tj : the return time of the j–th product, bounded by a positive constant T ;

– B : a large positive number;

– Cni : the operational cost of the i–th material at the n–th preparation step, bounded by a
positive constant Cmax;

– Enni : the environmental effects of the i–th material at the n–th preparation step, bounded by
a positive constant Enmax;

– Kcni : the knowledge transferring cost of the i–th material at the n–th preparation step,
bounded by a positive constant Kcmax;
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– Re : the reliability function which is determined based on the Weibull distribution, bounded
by a positive constant Remax.

In addition, we consider the following binary decision variables for our model:

ykij =

{
1, if the i–th material of the j–th product is of the type k,

0, otherwise;

yj =

{
1, if the portfolio contains the j–th product,

0, otherwise;

and define the normalized decision elements by

z1 =
C

Cmax

, z2 =
En

Enmax

, z3 =
Kc

Kcmax

, z4 =
Re

Remax

,

where, based on Figure 1, we have

C =

p∑
j=1

m∑
i=1

(y1ij(C8i +
5∑

n=1

Cni) + y2ij C4i + y3ij

6∑
n=3

Cni + y4ij(C7i +
5∑

n=2

Cni)), (2.1)

En =

p∑
j=1

m∑
i=1

(y1ij(En8i +
5∑

n=1

Enni) + y2ij En4i +

y3ij

6∑
n=3

Enni + y4ij(En7i +
5∑

n=2

Enni)), (2.2)

Kc =

p∑
j=1

m∑
i=1

(y1ij(Kc8i +
5∑

n=1

Kcni) + y2ij Kc4i + y3ij

6∑
n=3

Kcni + y4ij(Kc7i +
5∑

n=2

Kcni)), (2.3)

Re =

p∏
j=1

m∏
i=1

((y1ij + y4ij){exp−(
h× d× Tj

θi
)b}+ (y2ij + y3ij){exp−(

h× d× Tj
θi

)}). (2.4)

In (2.1), note that the costs of assembling and disassembling are a functions of the consumed time.
Also, the cost of collecting is a function of the distances and the consumed time for the products
collection, and the cost of recycling is a function of the required energy. In (2.2), the SimaPro software
(as a lifecycle assessment program) can be applied to estimate the environmental effects [8, 12]. It
considers the three media ‘solid waste’, ‘air pollution’ and ‘waste water’ for all the eight stages of the
preparation process for each material. The knowledge transferring cost in (2.3) is a function of three
indicators including the documentation time, the support time and the time spent in participating
in the meetings at all the eight stages of the preparation process [1]. As an important element
of the objective function given by (2.4), reliability is determined as a nonlinear function (against
the linear functions which cannot manage the uncertainty [23]) because the breakdown information
related to the materials is not observed and so, it should be estimated [7]. Since failure rate is not
constant, the best reliability probability function is the Wiebull distribution [6]. According to the
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bathtub curve, the slope of the Weibull distribution is considered as 1 for reused and remanufactured
materials, because they are in the useful stage and undergo minimal repair or refurbishment, while
it is considered less than 1 for the new and recycled materials. Also, θi is the mean time to failure
of the i–th material.

Now, with these preliminaries we are in a position to state our product portfolio optimization
model as follows:

min z = (z1, z2, z3,−z4),

s.t.

m∑
i=1

4∑
k=1

ykij ≤ yjB, j = 1, . . . , p, (2.5)

y1 + · · ·+ yp ≤ K, (2.6)

y1ij + y2ij + y3ij + y4ij = yj, i = 1, . . . ,m, j = 1, . . . , p, (2.7)

ykij, yj,∈ {0, 1}, ∀k ∀i ∀j.

Constraint (2.5) ensures that if the j–th product is not placed in the portfolio, then the cor-
responding materials will not used. Also, constraint (2.6) is a capacity condition and controls the
maximum number of the products that could be placed in the portfolio. In addition, constraint (2.7)
limits the i–th material of the j–th product to be only one of the new, reused, remanufactured or
recycled material. As a final note, we can simply choose B in the interval [4m,+∞).

Although the model seem to be to some extent complicated in the sense of illustrating an NP–
hard problem, there are many studies reporting promising results of the metaheuristic algorithms for
solving such problems (see [3] and the references therein). The interest in these strategies remains
particularly vivid for several motivations: the high flexibility that makes it possible to reuse the soft-
wares, and the good performances that allow to efficiently address some large–scale and complicated
problems. Here, we employe the metaheuristic algorithm suggested in [9] to solve the problem.

3. Numerical experiments

Here, we simulate a numerical product portfolio optimization model. In this context, consider a
manufacturing company which produces fifteen different products P1,. . . ,P15 where each product is
a combination of eight different materials M1,. . . ,M8. Suppose that the company determined the
practical upper bounds of the operational cost, knowledge transferring cost, environmental effects,
reliability, the portfolio capacity, the return time of the products, and other necessary information,
as given in Appendix 1.

As mentioned before, the problem was solved by the metaheuristic algorithm of [9] with weighted
sum scalarization of the objective function elements [4]. The generated solution has been illustrated
in Table 1. As seen, six products P1, P6, P8, P13, P14 and P15 as well as their material types were
determined as the optimal products to be placed in the portfolio. More exactly, it can be observed
that product P1 is made of the two materials a1 and a2 which a1 is of the type recycled and a2 is of
the type new. Similar detailed results can be stated for the other five products.

4. Conclusions and future works

We have developed a nonlinear multiobjective model to optimally determine the products which
should be included in a portfolio, together with their material types. In contrast to the recent
studies in this guideline, we have considered the new challenging factors of the real world in the
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Table 1: The generated solution

Constituent products P1 P6 P8 P13 P14 P15

Material Type M1(Rc) M2(N) M1(Rm) M3(Rm) M2(Ru) M1(Rc)
M2(N) M4(Rc) M2(Rm) M4(Rm) M4(Ru) M2(Rc)

M7(N) M4(Rm) M6(Rc) M5(Rm) M3(N)
M8(Rc) M5(Rm) M7(Ru) M6(Ru) M5(Ru)

M6(N) M7(Rc) M6(Ru)
M7(Rm) M7(Rm)
M8(N) M8(N)

sense that we have embedded the environmental effects and the knowledge transferring cost in our
model, in addition to the classical factors operational cost and reliability. The model can be efficiently
solved by the metaheuristic algorithms. A numerical simulation study has been also carried out.

The model can help the companies which intend to produce green products, i.e. products with the
least environmental effects. Obviously, when a company only uses the new materials in the production
process, extensive costs are imposed on the system. However, by entering reused, remanufactured
or recycled materials in the product cycle and considering a closed–loop supply chain, company can
benefit while reducing the environmental effects.

As future studies, it would be interesting to consider customer groups to suggest the portfolio
of products according to their needs. Allowing uncertainty in the costs, considering the aspects of
product design such as scheduling and logistics, and evaluating performance of different metaheuristic
algorithms on the model are relevant issues that can be investigated as well.

Acknowledgement

The authors thank the Research Council of Semnan University for its support. They also thank the
anonymous reviewer for his/her valuable comments helped to improve the quality of this work.

References

[1] K. Aoyama, T. Ugai and J. Arima, Design and evaluation a knowledge management system by using mathematical
model of knowledge transfer, International Conference on Knowledge–Based and Intelligent Information and
Engineering Systems. Springer, Berlin, Heidelberg, 2007.

[2] M. Azari–Takami, R. Sheikh and S. Shib–Sankar, Product portfolio optimization using teaching–learning–based
optimisation algorithm: a new approach in supply chain management, Int. J. Syst. Sci.: Oper. & Logist. 3 (2016)
236–246.

[3] S. Babaie–Kafaki, R. Ghanbari and N. Mahdavi–Amiri, Hybridizations of genetic algorithms and neighborhood
search metaheuristics for fuzzy bus terminal location problems. Appl. Soft Comput. 46 (2016) 220–229.

[4] M. Ehrgott, Multicriteria Optimization, Vol. 491. Springer Science & Business Media, 2005.
[5] M. Feizabadi and A.E. Jahromi, A new model for reliability optimization of series–parallel systems with non–

homogeneous components, Reliab. Eng. Syst. Saf. 157 (2017) 101–112.
[6] A.M. Gillespie, Reliability & maintainability applications in logistics & supply chain, Reliability and Maintain-

ability Symposium (RAMS), 2015 Annual. IEEE, 2015.
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Appendix 1: Test Problem specifications

Table 2: Test problem data

Item Acceptable upper bounds

Operational cost (Cmax) 700 $
Environmental effects (Enmax) 800 mPt
Knowledge transferring cost (Kcmax) 150 $
Reliability (Remax) 1
Portfolio capacity (K) 7
Return time of products (T ) 21900 H
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Table 3: Materials/Products

Product
Material

M1 M2 M3 M4 M5 M6 M7 M8

P1 1 1 0 0 0 0 0 0
P2 1 1 0 0 0 1 0 0
P3 1 1 0 0 1 0 0 0
P4 0 1 0 1 1 1 1 1
P5 0 1 0 0 1 0 0 0
P6 0 1 0 1 0 0 1 1
P7 0 0 1 0 0 1 1 0
P8 1 1 0 1 1 1 1 1
P9 0 1 0 1 0 1 1 0
P10 1 1 0 0 0 0 1 0
P11 0 0 1 1 1 1 1 1
P12 1 1 1 0 1 1 1 0
P13 0 0 1 1 0 1 1 0
P14 0 1 0 1 1 1 1 0
P15 1 1 1 0 1 1 1 1

Table 4: Operational costs

Parameter Preparation process
Material

M1 M2 M3 M4 M5 M6 M7 M8

C1i Providing the raw material 2 20 23 15 12 3 4 8
C2i Manufacturing 4 25 27 30 15 5 6 12
C3i Assembling 1.5 8 9 10 6 2.5 3 5
C4i Collecting 1.5 3 3 3 2 1 1.5 2
C5i Disassembling 1 2.5 2.5 5 3 1.5 1.5 3
C6i Remanufacturing 2 15 15 17 10 3 3.5 8
C7i Recycling 1 7 7 10 5 1.5 2 4
C8i Disposing 1 3 3 5 2 1 1.5 2

Table 5: Environmental effects

Parameter Preparation process
Material

M1 M2 M3 M4 M5 M6 M7 M8

En1i Providing the raw material 8 10 10 9 10 9 9 8
En2i Manufacturing 9 18 18 17 13 10 11 13
En3i Assembling 10 12 13 10 15 13 12 15
En4i Collecting 10 12 10 15 10 12 10 12
En5i Disassembling 8 10 10 12 10 10 12 12
En6i Remanufacturing 12 13 14 18 15 16 15 18
En7i Recycling 8 10 10 12 10 12 10 12
En8i Disposing 8 17 15 15 13 10 12 15
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Table 6: Knowledge transferring costs

Parameter Preparation process
Material

M1 M2 M3 M4 M5 M6 M7 M8

Kc1i Providing the raw material 0.5 2 2 2 1 1 1 1
Kc2i Manufacturing 1.5 3 3.5 5 2.5 3 3 2.5
Kc3i Assembling 1 2.5 2.5 4 1.5 1.5 2 1.5
Kc4i Collecting 1 1 1 1 1 1 1 1
Kc5i Disassembling 0.25 1.5 1.5 2 1 0.5 0.5 0.5
Kc6i Remanufacturing 0.75 1.5 2 3 1 1 1.5 1
Kc7i Recycling 0.25 0.5 0.5 1 0.5 0.5 0.5 0.5
Kc8i Disposing 0.25 0.5 0.5 1 0.5 0.5 0.5 1

Table 7: Characteristic life of the materials

Material M1 M2 M3 M4 M5 M6 M7 M8

θi 20000 40000 40000 30000 16000 9000 8760 17520

Table 8: Reliability parameters

Product h d

P1 10 8760
P2 10 8760
P3 10 8760
P4 10 8760
P5 10 8760
P6 10 8760
P7 10 8760
P8 10 8760
P9 10 8760
P10 10 8760
P11 10 8760
P12 10 8760
P13 10 8760
P14 10 8760
P15 10 8760
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