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In the present work, thermo-electro vibration of the piezoelectric nanoplates resting on the elas-
tic foundations using nonlocal elasticity theory are considered. In-plane and transverse displace-
ments of the nanoplate have been approximated by six different modified shear deformation 
plate theories considering transverse shear deformation effects and rotary inertia. Moreover, two 
new distributions of transverse shear stress along the thickness of the nanoplate were introduced 
for the first time. The equations of motion were derived by implementing Hamilton’s principle 
and solved using analytical method for various boundary conditions including SSSS, CSSS, CSCS, 
CCSS and CCCC. Based on a comparison with the previously published results, the accuracy of the 
results was confirmed. Finally, the effects of different parameters such as boundary conditions, 
variations of the thickness to length ratio, aspect ratio, increasing temperature, external voltage, 
foundation coefficients and length scale on the natural frequency of the plate were shown and 
discussed in details. 
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1. Introduction 

Piezoelectric materials such as ZnO, ZnS, PZT, 
etc. are widely used as actuators and sensors due to 
their electromechanical coupling effects. In recent 
years, piezoelectric nanostructures such as 
nanohelices, nanowires, nanorings, etc., have been 
in the spotlight thanks for desires in having small 
systems in comparison with the macro-scaled 
system and are used as essential components in 
different industries as nano-generators, chemical 
sensors, light-emitting diodes, etc. [1-3]. Structures 
with the small dimensions between a few 
nanometers and 100 nanometers (nanostructures) 
do not treat the same as structures with macro 
scale. In fact, the behavior of the structure is 
dependent on the length scale and, conventional 
continuum model cannot be used on such scale. 
Unlike the classical theories which do not consider 
size effect, other developed theories such as strain 
gradient [4], couple stress [5] and nonlocal theory 
[6] are sensitive to length scale in material behavior. 
Nonlocal theory of Eringen as one of the most 

applied theories could capture the nonlocal effects 
and is beneficial for nanostructures. In local classical 
theories, there is a one-to-one relation between 
stress and strain of each point i.e. the state of stress 
in every point is a function of the strain at that 
point; while in nonlocal theory, the stress of a 
reference point is dependent on strains of the whole 
domain. 

Nanostructures held attentions due to their 
unique properties. Recently, nanostructures such as 
nanobeams and nanoplates are widely used in nano-
electromechanical (NEM) devices. Dynamic 
behavior of nanoplates based on classic plate theory 
(CPT) has been discussed using Eringen model [7-
9]. Pradhan and Phadikar [10] utilized the nonlocal 
theory based on first-order shear deformation 
theory (FSDT) so as to predict the vibrational 
behavior of nanoplates. Aghababaei and Reddy [11] 
employed third-order shear deformation plate 
theory (TSDT) for bending and free vibration of 
nanoplates.  Khorshidi and Asgari [12] studied the 
free vibration analysis of functionally graded 
rectangular nanoplates based on nonlocal 
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exponential shear deformation theory. Alibeigloo 
[13] used the three-dimensional theory of elasticity 
for analyzing the free vibration of nanoplates 
employing nonlocal continuum mechanics. 
Extensive studies on piezoelectric structures can be 
found in open literature [14-16]. Khorshidi and 
Pagoli [17] presented an analytical solution for 
vibrating circular plates coupled with piezoelectric 
layers. Dynamic response of piezoelectric nanobeam 
according to Timoshenko beam theory and nonlocal 
theory has been evaluated by Ke and Wang [18]. 
Hung and Yu illustrated the efficacy of the surface 
piezoelectricity on the electromechanical response 
of piezoelectric ring [19]. Jandaghian and Rahmani 
[20] studied the size-dependent vibration analysis 
of functionally graded piezoelectric plates subjected 
to thermo-eletro-mechanical loading with Kirchhoff 
plate theory. Nikoei and Hassani [21] employed an 
isogeometric analysis approach for free vibration of 
laminated composite plates integrated with 
piezoelectric using Reissner-Mindlin theory.  

The elastic foundation was used to model a 
rather soft material in contact with the plate surface. 
Elastic mediums could be simulated with various 
models. First of all, Winkler presented the simplest 
foundation model because He did not consider the 
interaction between lateral springs. For improving 
interaction between springs, different foundation 
models were proposed later such as Pasternak [22], 
Vlasov [23] and Filonenko-Borodich [24] models. 
Pasternak is a useful two-parameter foundation 
model which captures the interaction of adjacent 
springs by joining ends of springs to a shear layer. 
Many studies are dedicated to the dynamic behavior 
of plates resting Pasternak foundation [25, 26]. 
Moradi et al. [27, 28] analyzed the nanocomposite 
plates and sandwich plates reinforced by wavy 
carbon nanotubes resting on elastic foundation. 
They used a mesh-free method and first-order shear 
deformation theory in their analysis. 

Classical plate theory was proposed by Kirchhoff 
[29, 30]. He assumed that straight lines normal to 
the midplane before deformation, remain straight 
and normal to the midplane after deformation. Since 
Kirchhoff theory ignores the transverse shear 
deformation effects, it is not proper for moderately 
thick plates. Therefore, it is devoted to the thin 
plates. First-order shear deformation theory [31, 
32] incorporates the shear deformation effects with 
a constant transverse shear deformation 
distribution along the thickness of the plate. Thus, it 
violates the stress-free conditions at the bottom and 
top of the plate and needs a shear correction factor 
to compensate this error. In order to get more 
accurate results and avoid using the shear 

correction factor, higher-order shear deformation 
theories (HSDT) have been developed. Reddy [33] 
employed a parabolic transverse shear stress 
distribution along the thickness of the plate. His 
model did not need shear correction factor because 
of satisfying free stress conditions at the bottom and 
top of the plate. Various distributions of transverse 
shear stress through the thickness of the plate can 
be found in the literature [34-37]. For example, 
Sayyad and Ghugal [38, 39] presented exponential 
and trigonometric shear deformation theories for 
bending and free vibration analysis of moderately 
thick plates. Different methods such as analytical, 
numerical and semi-analytical methods have been 
utilized for solving the equations of motion 
according to literature. Ke et al. [40] investigated 
the vibration of the Mindlin piezoelectric nanoplate 
for different boundary conditions using the 
differential quadrature method. Khorshidi et al. [41] 
presented the Navier solution for vibrating 
piezoelectric nanoplate. They considered only fully 
simply-supported boundary condition in their 
analytical solution. 

In the present study, the vibration analysis of 
piezoelectric nanoplates under external voltage and 
temperature resting on a Pasternak foundation for 
five different boundary conditions has been 
illustrated. Dynamic analysis was carried out for six 
types of different modified shear deformation 
theory and nonlocal elasticity theory. Governing 
equations were reduced to a single equation using a 
simple method and analytical solution for this single 
equation was obtained for five different boundary 
conditions. In the result section, efficacy of different 
variables such as foundation coefficients, nonlocal 
parameter, aspect ratio, temperature rising and 
external voltage on fundamental frequency was 
discussed in detail. 

2. Nonlocal elasticity theory for piezoe-
lectric nanoplates 

As previously mentioned, the stress at each point 
in the nonlocal theory is related to the strain field in 
whole domain of the body. This theory has been 
developed by Zenkur [42] for capturing thermal 
effects. Based on this theory, stress and electric 
displacement at a reference point are expressed as: 

𝜎𝑗𝑘(𝑥) = ∫ 𝛼(|𝑥 − 𝑥′|, 𝜏) (𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝑥′) −
𝑉

𝑒𝑘𝑖𝑗𝐸𝑘(𝑥′) − 𝜆𝑖𝑗𝛥𝑇)𝑑𝑥′  

(1) 

𝐷𝑖(𝑥) = ∫ 𝛼(|𝑥 − 𝑥′|, 𝜏) (𝑒𝑖𝑘𝑙𝜀𝑘𝑙(𝑥′) −
𝑉

𝜅𝑘𝑖𝑗𝐸𝑘(𝑥′) − 𝑝𝑖𝛥𝑇)𝑑𝑥′  

(2) 
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𝜎𝑖𝑗,𝑗 = 𝜌�̈�𝑖  , 𝐷𝑖,𝑗 = 0 , 𝐸𝑖 = −𝜙,𝑖  (3) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

(4) 

In the above equations, 𝜎𝑖𝑗 , 𝐷𝑖 , 𝜀𝑖𝑗 , 𝑢𝑖  and 𝐸𝑘 (i, j, 
k= 1,2, 3) denote the components of stress field, 
electric displacement, strain, displacement and 
electric field respectively. 𝐶𝑖𝑗𝑘𝑙  are elastic constants; 
𝑒𝑖𝑘𝑙 and 𝜅𝑘𝑖𝑗 are piezoelectric and dielectric 
constants; 𝜆𝑖𝑗 and 𝑝𝑖  are thermal moduli and 
pyroelectric constants respectively. 𝛼(|𝑥 −
𝑥′|, 𝜏) represents the  Kernel function in nonlocal 
theory such that 𝛼(|𝑥 − 𝑥′|, 𝜏) is Euclidean distance 
and τ=e0a/L. where e0, a and L denote the material 
constant, internal and external characteristic length 
respectively. Since the integral form of nonlocal 
elasticity theory is complicated, Eringen [6] 
obtained a differential form of nonlocal theory in the 
following equations. 

(1 − (e0a)2∇2)σij = Cijklεij − ekijEk − λijΔT  (5) 

(1 − (e0a)2∇2)Di = eiklεkl + κikEk + p̃iΔT (6) 

where ∇2=
𝜕

𝜕𝑥2 +
𝜕

𝜕𝑦2 represent the Laplace 

operator. Under the assumption of plane stress 
conditions, following constitutive relations would be 
derived by expanding (5) and (6): 

(1 − (𝑒0𝑎)2∇2)𝜎11 = �̃�11𝜀11 + �̃�12𝜀22 −
�̃�31𝐸3 − 𝜆11Δ𝑇  

(1 − (𝑒0𝑎)2∇2)𝜎22 = �̃�12𝜀11 + �̃�11𝜀22 −
�̃�31𝐸3 − 𝜆11Δ𝑇  

(1 − (𝑒0𝑎)2∇2)𝜎13 = 2�̃�44𝜀13 − �̃�15𝐸1 

(1 − (𝑒0𝑎)2∇2)𝜎23 = 2�̃�44𝜀23 − �̃�15𝐸2 

(1 − (𝑒0𝑎)2∇2)𝜎12 = 2�̃�66𝜀12 

(7) 

(1 − (𝑒0𝑎)2∇2)𝐷1 = 2�̃�15𝜀13 + �̃�11𝐸1 +
�̃�1Δ𝑇  

(1 − (𝑒0𝑎)2∇2)𝐷2 = 2�̃�15𝜀23 + �̃�11𝐸2 +
�̃�1Δ𝑇  

(1 − (𝑒0𝑎)2∇2)𝐷3 = �̃�31𝜀11 + �̃�31𝜀22 +
�̃�33𝐸3 + �̃�3Δ𝑇  

(8) 

where 

�̃�11 = 𝑐11 −
𝑐13

2

𝑐33
, �̃�12 = 𝑐12 −

𝑐13
2

𝑐33
, �̃�66 =

𝑐66, �̃�44 = 𝑐44  

�̃�31 = 𝑒31 −
𝑐13𝑒33

𝑐33
, �̃�15 = 𝑒15, �̃�11 = 𝜅11,

�̃�33 = 𝜅33 +
𝑒33

2

𝑐33
    

�̃�11 = 𝜆11 −
𝑐13𝜆33

𝑐33
, �̃�33 = 𝜆33,  �̃�1 = 𝑝1,  �̃�3 =

𝑝3 +
𝑒33𝜆33

𝑐33
  

(9) 

3. Modified shear deformation theory 

Generally, the modified shear deformation 
theories are displacement-based ones which are 
recognized to be strong methods for upgrading the 
accuracy of the results [43]. Against the classical 
plate theory, modified shear deformation theories 
consider both rotary inertia and shear deformation 
effects. Fig. 1 not only shows the distribution of 
transverse shear stress along the thickness of the 
plate, but also verifies that these theories satisfy the 
tangential traction free boundary condition. Thus, a 
shear correction factor is not required in such 
theories. 

According to former studies, modified shear 
deformation theories have been developed using 
hyperbolic, exponential, polynomial and 
trigonometric functions along the thickness of the 
plate. Based on the modified shear deformation 
theory, the displacement field could be expressed in 
the following form: 

 
Fig. 1. Distribution of transverse shear stress through 

thickness of plate 
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𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑥
+

𝑓𝑖(𝑧)𝜉(𝑥, 𝑦, 𝑡)  

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑦
+

𝑓𝑖(𝑧)𝜓(𝑥, 𝑦, 𝑡)  

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑦) 

(10) 

where u1, u2 and u3 represent displacements of an 
arbitrary point along x, y and z axis, respectively; w 
is the out-plane displacement of the mid-plane in 
the nanoplate (on the z-direction); ξ and ψ are 
rotation functions in xoz- and yoz- plane; u and v 
denote in-plane displacements of midplane surface 
of the plate along x-axis and y-axis, respectively. 
Based on this theory, displacements u1 and u2 
include two parts; First part is the same as classical 
plate theory; second part which is considered to 
capture shear deformations. Depending on choosing 
fi(z) (i=1,6), these shear deformation theories are 
varied according to Table 1. In fact, the function fi(z) 
specifies the distribution of transverse shear stress 
along thickness coordinate. The last two functions 
f(z) in Table 1 are suggested for the first time in this 
article. It is worth mentioning that the in-plane 
displacement components could be neglected (u and 
v=0) in the analysis of transverse vibration due to 
the homogeneity of the structure [12]. 

4. Free Vibration Anlysis of Piezoelectric 
Nanoplates 

Consider a rectangular peizoelectric nanoplate 
with length L1 along x- axis (0<x<L1), width L2 along 
y- axis (0<y< L2) and thickness h in z-direction (-
h/2<z<h/2) as shown in Fig. 2. Nanoplate is 
subjected to external voltage V0, temperature rising 
∆T and is rested on an elastic foundation. Wang [3] 
approximated the electric potential as a 
combination of cosine and linear variation in order 
to satisfy the Maxwell equation: 

�̃�(𝑥, 𝑦, 𝑧, 𝑡) = −𝐶𝑜𝑠(𝛾𝑧)𝜙(𝑥, 𝑦, 𝑡) +
2𝑉0

ℎ
𝑧  (11) 

where γ=π/h and 𝜙(𝑥, 𝑦, 𝑡) is electric potential in 
midplane of nanoplate. By neglecting the in-plane 
displacements and substituting displacement field 
(10) in (4) and electric potential (11) in (3), linear 
strains and electric field could be found as below: 

𝜀11 = −𝑧
𝜕2𝑤

𝜕𝑥2
+ 𝑓𝑖(𝑧)

𝜕𝜉

𝜕𝑥
  

𝜀22 = −𝑧
𝜕2𝑤

𝜕𝑦2
+ 𝑓𝑖(𝑧)

𝜕𝜓

𝜕𝑦
 

(12) 

𝜀12 =
1

2
(−2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑓𝑖(𝑧) (

𝜕𝜓

𝜕𝑥
+

𝜕𝜉

𝜕𝑦
)) 

𝜀13 =
1

2
𝜉

𝜕𝑓𝑖(𝑧)

𝜕𝑧
, 𝜀23 =

1

2
𝜓

𝜕𝑓𝑖(𝑧)

𝜕𝑧
 

 

𝐸1 = 𝐶𝑜𝑠(𝛾𝑧)
𝜕𝜙

𝜕𝑥
, 𝐸2 = 𝐶𝑜𝑠(𝛾𝑧)

𝜕𝜙

𝜕𝑦
 , 

𝐸3 = −𝛾𝑆𝑖𝑛(𝛾𝑧)𝜙 −
2𝑉0

ℎ
    

(13) 

Strain energy (U), kinetic energy (T) and work 
done by external forces (Wf) in piezoelectric 
nanoplate could be obtained as follow: 

𝑈 =
1

2
∫ ∫ (𝜎11𝜀11 + 𝜎22𝜀22 + 2𝜎12𝜀12 +

ℎ

2
−ℎ

2
𝐴

2𝜎13𝜀13 + 2𝜎23𝜀23 − 𝐷1𝐸1 − 𝐷2𝐸2 −
𝐷3𝐸3)𝑑𝑧 𝑑𝐴  

(14) 

𝑇 =
1

2
𝜌 ∫ ∫ ((

𝜕𝑢1

𝜕𝑡
)2 + (

𝜕𝑢2

𝜕𝑡
)2 +

ℎ

2
−ℎ

2
𝐴

(
𝜕𝑢3

𝜕𝑡
)2)𝑑𝑧𝑑𝐴  

(15) 

𝑊𝑓 =
1

2
∫ (𝐹𝑥

𝜕2𝑤

𝜕𝑥2 + 𝐹𝑦
𝜕2𝑤

𝜕𝑦2 + 𝑘𝑤𝑤 −
𝐴

𝑘𝑝∇2𝑤)𝑑𝐴  

𝐹𝑥 = 𝐹𝑃𝑥 + 𝐹𝑇𝑥 + 𝐹𝐸𝑥 , 𝐹𝑦 = 𝐹𝑃𝑦 + 𝐹𝑇𝑦 + 𝐹𝐸𝑦  

(16) 

Table 1. Different shear deformation theories 

fi(z) Theory  

𝑧e−2(
𝑧

ℎ
)

2

 
exponential [38] f1(z) 

ℎ

𝜋
sin (

𝜋𝑧

ℎ
) 

trigonometric [39] f2(z) 

ℎ sinh (
𝑧

ℎ
) − 𝑧 𝑐𝑜𝑠ℎ(

1

2
)

 

hyperbolic [35] f3(z) 

𝑧(
5

4
−

5𝑧2

3ℎ2
)

 

parabolic [36] f4(z) 

𝑧(
3

ℎ
−

4𝑧2

ℎ3
)

 

1st  suggestion f5(z) 

𝑧(
1

ℎ
−

2𝑧2

ℎ3
+

8𝑧4

5ℎ5
) 

2nd suggestion f6(z) 

 
Fig. 2. Geometry of piezoelectric nanoplate subjected to the 

thermo-electro loads resting on elastic foundation
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where A is the mid-plane of nanoplate (at z=0); ks 
and kp are spring stiffness and Pasternak’s modulus 
respectively. (FPx, FPy), (FTx, FTy) and (FEx, FEy) are 
normal forces created by axial force P, temperature 
rising ΔT and external electric voltage V0 given as: 

𝐹𝑃𝑥 = 𝐹𝑃𝑦 = 𝑃 (17) 

𝐹𝑇𝑥 = 𝐹𝑇𝑦 = �̃�11ℎΔ𝑇 (18) 

𝐹𝐸𝑥 = 𝐹𝐸𝑦 = −2�̃�31𝑉0 (19) 

Hence, Hamilton’s principle would be 
transformed to: 

∫ (𝛿𝑇 + 𝛿𝑊𝑓 − 𝛿𝑈)𝑑𝑡 = 0
𝑡

0
                                       (20) 

By incorporating the Eqs. (14) through (19) into 
Eq. (20) and integrating by parts, the following 
equations would be obtained [41]: 

𝐿1𝜉 + 𝐿2𝜓 + 𝐿3𝜙 = 𝐿4𝑤 (21) 

𝐿5𝜉 + 𝐿6𝜓 + 𝐿7𝜙 = 𝐿8𝑤 (22) 

𝐿9𝜉 + 𝐿10𝜓 + 𝐿11𝜙 = 𝐿12𝑤 (23) 

𝐿13𝜉 + 𝐿14𝜓 + 𝐿15𝜙 = 𝐿16𝑤 (24) 

where the operator Li is defined by 

L1 = L6 = (A17 + A18)
∂2

∂x ∂y
 (25) 

𝐿3 = 𝐿10 = (𝐵5 + 𝐵7)
𝜕

𝜕𝑦
 (26) 

𝐿2 = 𝐴16
𝜕2

𝜕𝑦2 + 𝐴18
𝜕2

𝜕𝑥2 − 𝐴19 − 𝐼6(1 −

(𝑒0𝑎)2∇2)
𝜕2

𝜕𝑡2  
(27) 

𝐿4 = 𝐿14 = (𝐴13 + 2𝐴15)
𝜕3

𝜕𝑥2𝜕𝑦
+ 𝐴11

𝜕3

𝜕𝑦3 −

𝐼5(1 − (𝑒0𝑎)2∇2)
𝜕3

𝜕𝑡2𝜕𝑦
  

(28) 

𝐿5 = 𝐴18
𝜕2

𝜕𝑦2 + 𝐴16
𝜕2

𝜕𝑥2 − 𝐴19 − 𝐼6(1 −

(𝑒0𝑎)2∇2)
𝜕2

𝜕𝑡2  
(29) 

𝐿7 = 𝐿9 = (𝐵5 + 𝐵7)
𝜕

𝜕𝑥
  (30) 

𝐿12 = 𝐿15 = 𝐵3∇2  (31) 

𝐿11 = 𝐵8∇2 − 𝐵9  (32) 

𝐿8 = 𝐿13 = (𝐴13 + 2𝐴15)
𝜕3

𝜕𝑦2𝜕𝑥
+ 𝐴11

𝜕3

𝜕𝑥3 − (33) 

𝐼5(1 − (𝑒0𝑎)2∇2)
𝜕3

𝜕𝑡2𝜕𝑥
  

𝐿16 = 𝐴10
𝜕4

𝜕𝑥4 + (2𝐴12 + 4𝐴14)
𝜕4

𝜕𝑦2𝜕𝑥2 +

𝐴10
𝜕4

𝜕𝑦4 − 𝑘𝑤 + 𝑘𝑝∇2 − (1 −

(𝑒0𝑎)2∇2)(𝐼3
𝜕4

𝜕𝑡2𝜕𝑥2 + 𝐼3
𝜕4

𝜕𝑡2𝜕𝑦2 − 𝐹𝑥
𝜕2

𝜕𝑥2 −

𝐹𝑦
𝜕2

𝜕𝑦2)  

(34) 

Moreover, Ai and Bi are given as: 

{𝐴10, 𝐴12, 𝐴14} = ∫ {�̃�11, �̃�12, �̃�66}

ℎ

2

−ℎ

2

𝑧2𝑑𝑧 (35) 

{𝐴11, 𝐴13, 𝐴15} = ∫ {�̃�11, �̃�12, �̃�66}
ℎ

2
−ℎ

2

𝑧 𝑓(𝑧)𝑑𝑧  (36) 

{𝐴16, 𝐴17, 𝐴18} = ∫ {�̃�11, �̃�12, �̃�66}
ℎ

2
−ℎ

2

𝑓(𝑧)2𝑑𝑧  (37) 

𝐴19 = ∫ �̃�44 (
𝜕𝑓(𝑧)

𝜕𝑧
)

2ℎ

2

−ℎ

2

 (38) 

{𝐼3, 𝐼5, 𝐼6} = ∫ 𝜌{𝑧2, 𝑧𝑓(𝑧), 𝑓(𝑧)2}

ℎ

2

−ℎ

2

𝑑𝑧 (39) 

{𝐵3, 𝐵5} = ∫ {𝑧, 𝑓(𝑧)}�̃�31𝛾𝑆𝑖𝑛(𝛾𝑧)𝑑𝑧

ℎ

2

−ℎ

2

 (40) 

𝐵7 = ∫ �̃�15

𝜕𝑓(𝑧)

𝜕𝑧
 𝐶𝑜𝑠(𝛾𝑧)𝑑𝑧

ℎ

2

−ℎ

2

 (41) 

𝐵8 = ∫ �̃�11 𝐶𝑜𝑠2(𝛾𝑧)𝑑𝑧

ℎ

2

−ℎ

2

 (42) 

𝐵9 = ∫ �̃�33(𝛾𝑆𝑖𝑛(𝛾𝑧))2𝑑𝑧

ℎ

2

−ℎ

2

 (43) 

Then, ,  and can be obtained in terms of w 
according to Cramer method in solving systems of 
linear equations into Eqs. (21) through (23). 

Γ1𝜉 = Γ2𝑤, Γ1𝜓 = Γ3𝑤, Γ1𝜙 = Γ4𝑤 (44) 

where the operator Γ𝑖  is defined as: 

Γ1 = L11L2L5 − L10L3L5 − L1L11L6 +
L1L10L7 + L3L6L9 − L2L7L9  

(45) 
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Γ2 = 𝐿12𝐿3𝐿6 − 𝐿11𝐿4𝐿6 − 𝐿12𝐿2𝐿7 +
𝐿10𝐿4𝐿7 + 𝐿11𝐿2𝐿8 − 𝐿10𝐿3𝐿8  

(46) 

Γ3 = −𝐿12𝐿3𝐿5 + 𝐿11𝐿4𝐿5 + 𝐿1𝐿12𝐿7 −
𝐿1𝐿11𝐿8 − 𝐿4𝐿7𝐿9 + 𝐿3𝐿8𝐿9  

(47) 

Γ4 = 𝐿12𝐿2𝐿5 − 𝐿10𝐿4𝐿5 − 𝐿1𝐿12𝐿6 +
𝐿1𝐿10𝐿8 + 𝐿4𝐿6𝐿9 − 𝐿2𝐿8𝐿9  

(48) 

Finally, by taking the operator Γ1 from both sides 
of Eq. (24) and using Eqs. (44) through (48), 
transverse displacement equation of piezoelectric 
nanoplate can be obtained as follows: 
𝐿13Γ2𝑤 + 𝐿14Γ3𝑤 + 𝐿15Γ4𝑤 = 𝐿16Γ1𝑤 (49) 

5. Solution Procedure 

Analytical solution for Eq. (49) can be applied to 
different boundary conditions according to Table 2. 
The solution that satisfies appropriate boundary 
conditions can be expressed in the following form: 

𝑤(𝑥, 𝑦, 𝑡) = 𝑊𝑚𝑛𝑋𝑚(𝑥)𝑌𝑛(𝑦)𝑒𝑖𝜔𝑡  (50) 

where ω is the natural frequency associated with 
(mth, nth) mode. Eigenfunctions Xm(x) and Yn(y) 
which are listed in Table 2 are chosen so that, satisfy 
at least geometric boundary conditions. By 
substituting Eq. (50) into Eq. (49) and using 
orthogonal properties of trigonometric functions, 
partial differential equation (49) would be 
converted to an algebraic equation and the solution 
will be found.   

6. Numerical results 

In this section, numerical results for vibration 
analysis of piezoelectric nanoplate subjected to 
thermo-electro loads resting on the elastic 
foundation under different boundary conditions 
including, SSSS, CSSS, CSCS, CSCS, CCSS, CCCC are 
illustrated. For all calculations, length of nanoplate 
(L1) is considered 50nm and thickness (h) is taken 
as 5nm, otherwise they are specified. The results 
obtained from the modified shear deformation 
theories are so similar to each other and it is not 
possible to show this slight difference between them 
through the figures; consequently, it is necessary to 
choose one theory for interpreting the results. 

Accordingly, all figures were plotted based on 
f6(z). Material properties of PZT4 used in this 
section are given as [40]: 

 𝐸0 = 109, 𝐸1 = 10−9, 𝐸2 = 105, 𝐸3 = 10−4   
𝑐11 = 132𝐸0, 𝑐12 = 71𝐸0, 𝑐13 = 73𝐸0 
𝑐33 = 115𝐸0, 𝑐44 = 26𝐸0, 𝑐66 = 30.5𝐸0, 𝜌 = 7500,  

 𝑒31 = −4.1, 𝑒15 = 10.5, 𝑒33 = 14.1, ℎ = 5𝐸1  

𝐿1 = 50𝐸1, 𝜅11 = 5.841𝐸1, 𝜅33 = 7.124𝐸1 
𝜆11 = 4.738𝐸2, 𝜆33 = 4.529𝐸2, 𝑝

1
= 𝑝

3
= 0.25𝐸3 

Moreover, the following parameters were used 
for illustrating results: 

𝜇 =
𝑒0𝑎

𝐿1
, Ω = 𝜔𝐿1√

𝜌

𝑐11
, 𝐷 =

𝑐11ℎ3

12
    

𝐾𝑤 =
𝐿1

4𝑘𝑤

𝐷
, 𝐾𝑝 =

𝐿1
2𝑘𝑝

𝐷
, 𝑆 =

ℎ

𝐿1
  

Table 2. Admissible functions for various boundary conditions [44] 

 Boundary conditions  functions X(x) and Y(y)  

 𝐴𝑡 𝑥 = 0, 𝑥 = 𝐿1 𝐴𝑡 𝑦 = 0, 𝑦 = 𝐿2 𝑋𝑚(𝑥) 𝑌𝑛(𝑦) 

SSSS 𝑋𝑚(0) = 𝑋′′
𝑚(0) = 0 

𝑋𝑚(𝐿1) = 𝑋′′
𝑚(𝐿1) = 0 

𝑌𝑛(0) = 𝑌′′
𝑛(0) = 0 

𝑌𝑛(𝐿2) = 𝑌′′
𝑛(𝐿2) = 0 

𝑆𝑖𝑛(
𝑚 𝜋 𝑥

𝐿1
) 𝑆𝑖𝑛(

𝑛 𝜋 𝑦

𝐿2
) 

CSSS 𝑋𝑚(0) = 𝑋′
𝑚(0) = 0 

𝑋𝑚(𝐿1) = 𝑋′′
𝑚(𝐿1) = 0 

𝑌𝑛(0) = 𝑌′′
𝑛(0) = 0 

𝑌𝑛(𝐿2) = 𝑌′′
𝑛(𝐿2) = 0 

𝑆𝑖𝑛(
𝑚 𝜋 𝑥

𝐿1
)𝐶𝑜𝑠(

𝑚 𝜋 𝑥

𝐿1
− 1) 𝑆𝑖𝑛(

𝑛 𝜋 𝑦

𝐿2
) 

CSCS 𝑋𝑚(0) = 𝑋′
𝑚(0) = 0 

𝑋𝑚(𝐿1) = 𝑋′′
𝑚(𝐿1) = 0 

𝑌𝑛(0) = 𝑌′
𝑛(0) = 0 

𝑌𝑛(𝐿2) = 𝑌′′
𝑛(𝐿2) = 0 

𝑆𝑖𝑛(
𝑚 𝜋 𝑥

𝐿1
)𝐶𝑜𝑠(

𝑚 𝜋 𝑥

𝐿1
− 1) 𝑆𝑖𝑛(

𝑛 𝜋 𝑦

𝐿2
)𝐶𝑜𝑠(

𝑛 𝜋 𝑦

𝐿2
− 1) 

CCSS 𝑋𝑚(0) = 𝑋′
𝑚(0) = 0 

𝑋𝑚(𝐿1) = 𝑋′
𝑚(𝐿1) = 0 

𝑌𝑛(0) = 𝑌′′
𝑛(0) = 0 

𝑌𝑛(𝐿2) = 𝑌′′
𝑛(𝐿2) = 0 

𝑆𝑖𝑛2(
𝑚 𝜋 𝑥

𝐿1
) 𝑆𝑖𝑛(

𝑛 𝜋 𝑦

𝐿2
) 

CCCC 𝑋𝑚(0) = 𝑋′′
𝑚(0) = 0 

𝑋𝑚(𝐿1) = 𝑋′
𝑚(𝐿1) = 0 

𝑌𝑛(0) = 𝑌′′
𝑛(0) = 0 

𝑌𝑛(𝐿2) = 𝑌′
𝑛(𝐿2) = 0 

𝑆𝑖𝑛2(
𝑚 𝜋 𝑥

𝐿1
) 𝑆𝑖𝑛2(

𝑛 𝜋 𝑦

𝐿2
) 
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For verification of this model, results obtained 
from simply supported square nanoplate have been 
compared with corresponding ones in the open 
literature. Table 3 indicates an excellent agreement 
between the present work and the former studies 
results. According to this table, there is a bit 
different among the results obtained from various 
shear deformation theories. These differences are 
due to the fact that, function f(z) have different 
expansions through the thickness in various 
theories. It is worth to mention that every extra 
power in the expansion of function f(z) through the 
thickness of the structure includes additional 
unknown variables in those theories. Additionally, 
physical interpretation of these unknown variables 
are difficult [46]. Thus, it is better to use such 
distributions that are simpler with acceptable 
accuracy. Although two new proposed theories are 
simpler than other modified shear deformation 
theory, they are nearly identical in accuracy. The 
expansion of the functions f(z) through the 
thickness of the structure for various distribution 
mentioned in Table 1 are given as follow: 

f1(z) = 𝑧 −
2𝑧3

ℎ2
+

2𝑧5

ℎ4
−

4𝑧7

3ℎ6
+…. 

f2(z) = 𝑧 −
𝜋2𝑧3

6ℎ2
+

𝜋4𝑧5

120ℎ4
−

𝜋6𝑧7

504ℎ6
+ ⋯  

f3(z) = (1 − 𝑐𝑜𝑠ℎ (
1

2
)) 𝑧 +

𝑧3

6ℎ2
+

𝑧5

120ℎ4
+

𝑧7

5040ℎ6
+ ⋯  

f4(z) =
5𝑧

4
−

5𝑧3

3ℎ2
 

f5(z) =
3𝑧

ℎ
−

4𝑧3

ℎ3
 

f6(z) =
𝑧

ℎ
−

2𝑧3

ℎ3
+

8𝑧5

5ℎ5
 

Fundamental frequencies of the simply 
supported piezoelectric nanoplate are presented in 
Table 4 based on different theories for various 
values of aspect ratios and thickness ratios. 
According to this table, the results obtained based 
on f5(z) are equal to the results obtained by f4(z) up 
to seven decimal places due to the fact that both of 
these distributions are third-order polynomial along 
the thickness of the plate. Moreover, it is seen that 

the fundamental frequencies of the structure based 
on various fi(z) are a little different and can be 
sorted in the order of f6(z)> f1(z)> f2(z)> f3(z)> f4(z)= 
f5(z). In fact, by decreasing the thickness of the 
structure, the difference among these theories 
declines since shear deformation effects could be 
neglected in the thin plates. The results in this table 
have been extracted for the values of µ=0.1 and 
ΔT=V0=Kw=Kp=0. 

Fig. 3 shows the variation of the first four 
dimensionless frequencies of simply-supported 
nanoplate with the nonlocal parameter. This figure 
depicts that nonlocal parameter is more highlighted 
in higher modes because wavelength gets smaller by 
increasing the number of modes. Thus, the nonlocal 
parameter is more significant for smaller 
wavelengths. If nonlocal model views as atoms 
connected to each other by springs, in the case of 
local elasticity, the stiffness of these springs takes an 
infinite value. Thus, frequencies and stiffness of 
structure decreased with the increase in the 
nonlocal parameter, as Fig. 4 emphasizes on this 
matter. 

 
Fig. 3. Variation of first four dimensionless frequencies of SSSS 

nanoplate with nonlocal parameter 

 

Table 3. Comparison of fundamental dimensionless frequency of SSSS square piezoelectric nanoplate with varying nonlocal parameter  

e0a/L1 exponential trigonometric hyperbolic parabolic 1st suggestion 2nd suggestion [40] [45] 

0 0.60590 0.60582 0.60580 0.60580 0.60580 0.60593 0.6068 0.6290 

0.1 0.55371 0.55364 0.55361 0.55361 0.55361 0.55374 0.5545 0.5748 
0.2 0.45292 0.45286 0.45285 0.45285 0.45285 0.45295 0.4536 0.4702 
0.3 0.36362 0.36357 0.36356 0.36356 0.36356 0.36364 0.3641 0.3775 
0.4 0.29712 0.29709 0.29708 0.29707 0.29707 0.29714 0.2976 0.3085 

0.5 0.24871 0.24868 0.24867 0.24867 0.24867 0.24872 0.2491 0.2582 
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Table 4. Comparison fundamental frequency (GHz) of SSSS piezoelectric nanoplate with various theories  

S 
𝐿1

𝐿2
 f1(z) f2(z) f3(z) f4(z) f5(z) f6(z) 

0.01 

0.5 0.3993743 0.3993740 0.3993739 0.3993739 0.3993739 0.3993745 
1 0.6188323 0.6188315 0.6188312 0.6188312 0.6188312 0.6188327 

2.5 1.8720008 1.8719913 1.8719888 1.8719887 1.8719887 1.8720048 

0.05 

0.5 1.9852550 1.9852150 1.9852033 1.9852030 1.9852030 1.9852717 
1 3.0644812 3.0643795 3.0643506 3.0643500 3.0643500 3.0645238 

2.5 9.0365220 9.0354308 9.0351154 9.0351089 9.0351089 9.0369784 

0.1 

0.5 3.9011997 3.9008939 3.9008005 3.9007993 3.9007993 3.9013267 
1 5.9565367 5.9557790 5.9555485 5.9555453 5.9555453 5.9568515 

2.5 16.471277 16.464190 16.461682 16.461695 16.461695 16.474162 

0.2 
0.5 7.3288709 7.3267856 7.3260518 7.3260551 7.3260551 7.3297205 
1 10.823112 10.818284 10.816484 10.816503 10.816503 10.825062 

2.5 25.831823 25.796501 25.778487 25.779217 25.779217 25.845245 

 

 
Fig. 4. Variation of dimensionless fundamental frequency with 

nonlocal parameter for various boundary conditions 

Variation of the first four dimensionless 
frequencies of simply-supported nanoplate with 
thickness ratio is displayed in Fig. 5. As the 
thickness of the plate increases, frequency rises 
because increasing the thickness would improve the 
strain energy and rigidity of the structure as shown 
in this figure. Moreover, this figure reveals that 
nonlocal effect is insignificant for thin plates. As 
boundary condition gets stronger support, the 
rigidity of structure rises and frequency of vibration 
increases. Thus, frequency parameter is lowest in 
SSSS and highest in CCCC just as Fig. 6 approves this. 
The effect of aspect ratio on fundamental frequency 
parameter for SSSS, CSCS and CCCC nanoplates is 
plotted in Figs. 7-9. For a constant length of 
nanoplate, the width of nanoplate gets smaller by 
increasing the aspect ratio. On the other hand, it is 
obvious that the dynamic behavior of nanoplate is 
considerably dependent on the dimensions of 
nanoplate. Hence, as these figures depict, the 

nonlocal effect is more notable for higher aspect 
ratios.  This behavior was observed for other two 
boundary conditions. 

 
Fig. 5. Variation of first four dimensionless frequencies of SSSS 

nanoplate with length to thickness ratio 

 

 
Fig. 6. Variation of dimensionless fundamental frequency with 

thickness ratio for various boundary conditions 
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Fig. 7. Variation of fundamental dimensionless frequencies of 

SSSS nanoplate with aspect ratio 

 
Fig. 8. Variation of fundamental dimensionless frequencies of 

CSCS nanoplate with aspect ratio 

 
Fig. 9. Variation of fundamental dimensionless frequencies of 

CCCC nanoplate with aspect ratio 

Figs. 10-11 show the effect of external voltage on 
dimensionless fundamental frequency for a 
piezoelectric nanoplate. It can be seen from the Fig. 
9 that fundamental frequency is quite dependent on 

the external voltage. Exerting negative and positive 
voltage creates the compressive (𝑃 > 0) and tensile 
(𝑃 < 0) forces, respectively. Compressive force 
decreases or weakens the stiffness and tensile force, 
increases or improves the stiffness so fundamental 
frequencies decrease by increasing the external 
voltage. Additionally, it can be understood from Fig. 
10 that decreasing the frequency is more prominent 
in larger values of the nonlocal parameters. 

It is observed from Figs. 11-12 that changing 
temperature would not have much effect on 
fundamental frequency for all sets of boundary 
condition and increasing the temperature, causes a 
slight reduction in the stiffness and natural 
frequency of piezoelectric nanoplate.  It is seen from 
Figs. 10-13 that external voltage has the most effect 
on the fundamental frequency; while changing the 
temperature has not much influence on 
fundamental frequency. This is due to the fact that 
the coefficient of electrical load is much more than 
the coefficient of thermal load according to the Eqs. 
(18) and(19), i.e. 2�̃�31 ≫ �̃�11ℎ. 

 
Fig. 10. Variation of fundamental frequency of SSSS nanoplate 

with external voltage(L1=50nm, L2=25nm h=10nm) 

 
Fig. 11. Variation of dimensionless fundamental frequency of 

nanoplate with external voltage for various boundary conditions 
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Fig. 12. Variation of dimensionless fundamental frequency of 

SSSS nanoplate with increasing temperature (S=0.2) 

 
Fig. 13. Variation of dimensionless fundamental frequency of 

nanoplate with increasing temperature (S=0.2, μ=0) 

Fig. 14 shows the effects of Winkler and shearing 
layer coefficient on fundamental frequency. As it 
could be seen, foundation enhances the frequency of 
the structure by increasing the strain energy and 
rigidity of nanoplate. Furthermore, it is observed 
that fundamental frequency is considerably 
dependent on shearing layer coefficient than 
Winkler parameter for all sets boundary conditions. 
In order to show the effect of foundation parameters 
on the frequency parameter, the variation of the 
dimensionless fundamental frequency of the 
structure versus foundation parameters is plotted in 
Figs. 15-16. In addition, it is seen that nonlocal 
effects are more prominent in larger values of 
foundation parameters. 

7. Conclusions 

The free vibration analysis of piezoelectric 
nanoplates subjected to electrical-thermal loads 
resting on the elastic foundation using nonlocal 
elasticity theory based on the various modified 
shear deformation theories was studied. Two new 
distributions of shear stress along thickness were 

introduced for the first time in this article. 
Governing equations were derived using Hamilton’s 
principle. The system of governing equations was 
converted to a single partial differential equation 
using a simple approach which is the equation of 
transverse vibration of nanoplate. The transverse 
vibration equation was solved for five different 
boundary conditions including SSSS, CSSS, CSCS, 
CCSS, CCCC, and effects of different parameters such 
as thickness to length ratio, aspect ratio, increasing 
temperature, external voltage, foundation 
coefficients and length scale on natural frequencies 
were illustrated in detail. The numerical results 
show that: 

 Two new modified shear deformation theories 
have acceptable accuracy like other modified 
shear deformation theories. 

 
Fig. 14. Variation of dimensionless fundamental frequency of 
nanoplate with increasing foundation parameter (S=0.2, μ=0.1) 

 
Fig. 15. Variation of dimensionless fundamental frequency of 

SSSS nanoplate with increasing shearing layer coefficient 
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Fig. 16. Variation of dimensionless fundamental frequency of 

SSSS nanoplate with Winkler coefficient 

 Two new proposed theories satisfy free stress 
conditions at the top and bottom of the plate 
automatically and they do not need any shear 
correction factor.  

 Nonlocal effects reduced the natural frequencies 
of structure and this reduction is more 
prominent in higher modes. 

 As aspect ratio increases, natural frequencies 
increase and nonlocality has significant effects at 
higher aspect ratio. 

 Stiffness of structure and natural frequencies 
increase as nanoplate gets thicker and nonlocal 
effects are more noticeable in thicker nanoplates 

 As boundary condition get stronger support, 
rigidity of structure rises and frequency of 
vibration increases. Thus, frequency parameter 
is lowest in SSSS and is highest in CCCC. 

 Although thermal effects would not have much 
effects on frequencies of nanoplate, external 
voltage influences largely on them. 

 Foundation enhances the frequency of structure 
by increasing the strain energy and rigidity of 
nanoplate. Moreover, frequency is more 
dependent to shearing layer coefficient than 
Winkler parameter.  

 Nonlocality effects are more prominent in larger 
values of foundation parameters. 
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