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behave differently from shallow beams and 

generally their ultimate capacity is controlled 

by shear strength. The conventional design 

formulas not be useable for this type of RC 

beams. Some semi rational methods such as 

Strut-and-tie method have proposed to 

analysis and design of deep beams. Strut-

and-tie modeling is the most rational and 

simple method for designing nonflexural 

members currently available. Specific strut-

and-tie models need to be developed, 

whereas shallow beams are characterized by 

linear strain distribution and most of the 

applied load is transferred through a fairly 

uniform diagonal compression field. Design 

of nonflexural members using strut-and-tie 

modeling incorporates lower bound theory of 

plasticity assuming that both the concrete and 

the steel are perfectly plastic. The behavior 

and dimensional properties of steel are well 

known and the strength of members failing in 

tension can be predicted with some degree of 

certainty. The foundation of the method was 

laid by Ritter in 1899.  Ritter’s original goal 

was to explain that stirrups in reinforced 

concrete members provided more than dowel 

action in resisting shear. Mörsch (1909) 

expanded on Ritter’s model by proposing that 

the diagonal compressive stresses in the 

concrete need not be discrete zones, but 

could be a continuous field.  Foster, S.J et al 

(1998), Hwang et al (2002) and Brown et al 

(2007) proposed strut-and-tie model based on 

the softened strut-and-tie model, for 

determining the shear strength of 

discontinuity regions failing in diagonal 

compressions. The strut-and-tie provisions in 

ACI 318-02 were developed for the design of 

all forms of discontinuity regions and not 

specifically deep beams. Thus, it is not 

surprising that this study reveals that 

Appendix. A of ACI 318-05 provides 

conservative and scattered estimates of the 

strength of deep beams. The proposed 

compatibility is based on the strut-and-tie 

method, which considers the effects of 

compression softening, is shown to provide 

accurate estimates of the measured load-

carrying capacities of reinforced concrete 

deep beams.  Park et al (2007) proposed a 

different Strut-and -Tie method that the 

proposed method employs constitutive laws 

for cracked reinforced concrete, considers 

strain compatibility. Arabzadeh et al (2009) 

proposed a new method based on Strut-and-

Tie Model (STM) to determine the shear 

capacity of simply supported RC deep beams 

and an efficiency factor for concrete with 

considering the effect of web reinforcements. 

they assumed that, the total carried shear 

force by RC deep beam provided by two 

independent resistance, namely diagonal 
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concrete strut due to strut-and-tie mechanism 

and the equivalent resisting force resulted by 

web reinforcements, web reinforcing. Eom et 

al (2010) developed a secant stiffness method 

was developed for the inelastic design 

of strut-and-tie models (STMs). According to 

the design strategy intended by the engineer, 

struts and ties are classified as elastic and 

inelastic elements. An analytical method for 

predicting the shear strength of deep beams 

with respect to the force-transferring 

mechanisms is proposed by Lu et al (2013). 

The use of fiber-reinforced polymers (FRPs) 

can now be considered common practice in 

the field of strengthening and rehabilitation 

of reinforced concrete structures. The 

effectiveness of this technique is widely 

documented by theoretical and experimental 

researches and by applications on real 

structures. Numerous studies have been 

conducted in connection with the beams 

strengthened with FRP; For example D.I. 

Kachlakev et al (1999), J. Sim et al (2005) 

and Tersawy et al (2013) evaluated Effect 

parameters including strengthening pattern, 

angle of placement of fibers, the number of 

FRP layers and layer thickness. Khalifa 

(1999) and Omar Chaallal et al (2006) 

investigated combined effect of shear 

reinforcement and FRP layer. Adhikary et al 

(2004) and Yungon et al (2011) studied Shear 

Strengthening RC beams Using CFRP 

Laminates and Anchors, Maaddavwy et al 

(2009) reported that structural response of 

RC deep beams with opening was primary 

dependent on the degree of the interruption 

of the natural load path. 

The objective of current study is 

investigation of the ability of the STM to 

analyze of RC deep beams strengthened in 

shear with externally bonded (EB) CFRP, 

research data to predict the shear capacity of 

RC deep beams with FRP are very limited; 

Godat (2013) proposed Strut- and- Tie 

Method for externally FRP Shear 

Strengthened Large scale RC Beams, In the 

method, externally bonded CFRP can act as 

additional tension ties. The tensile forces in 

the steel stirrups and the CFRP laminates are 

combined according to a proposed equation. 

Research data on shear strengthening of deep 

beams strengthened with FRP are very 

limited. Therefore, in current design 

guidelines such as the ACI code, CFRP-

strengthened slender members can be 

analyzed with some accuracy, while FRP-

strengthened deep beams are still being 

analyzed by approximate procedures that 

have been developed for slender members. At 

present study, it is beneficial for structural 

engineer to find a new method that estimate 

the loading capacity for RC deep beams 
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strengthened with externally bonded FRP. 

Reinforced concrete beams strengthened in 

shear by externally bonded FRPs exhibit 

complex behavior, which makes it difficult to 

develop a robust predictive model that is 

appropriate for practical design work. For 

such beams, all existing models use a third 

term to account for the contribution of FRP 

to shear strength, as follows: Vr = Vc + Vs + 

VFRP. Where, the shear resistant of Vr is the 

sum of the shear-strength contribution of the 

concrete (Vc), of the steel stirrups (Vs), and 

of the FRP (VFRP). This equation is widely 

used to predict the shear strength of FRP-

reinforced concrete beams because of its 

simplicity. However, the disadvantage of this 

equation is that the shear strength is based on 

the sum of the separate shear-strength 

contributions, with no recognition of existing 

interactions between the various components.  
 

2. Numerical modeling program 

In this paper, STM approach is calibrated 

with 104 test beams with a small shear span-

to-depth ratio (
ୟ

ୢ
ൌ 0.89, 1.19, 1.34, 1.45) 

representative of deep-beam behavior. Those 

specimens shear-strengthened with different 

scheme which are modelled through the 

finite elements method and analyzed 

according under statically push over load. 

 2.1. Finite Element Model 

In this study, nonlinear analysis was utilized 

using the finite element analysis software 

ABAQUS. The concrete beam was modeled 

using C3D8R elements. For modeling 

reinforcing bars in three dimensional 

concrete elements, reinforcement bars are 

embedded as truss elements (T3D2). External 

FRP is modeled using S4R elements with 

orthotropic behavior. 
 

 2.2. Material properties 

Reinforced concrete is a complicated 

material to be modelled. Among three crack 

models for reinforced concrete elements 

which ABAQUS software provides: (1) 

Smeared crack concrete model (2) Brittle 

crack concrete model, and (3) Concrete 

damaged plasticity model (CDP), in this 

paper, for modeling concrete, CPD model is 

used to model complete inelastic behavior of 

concrete in both tension and compression 

including damage characteristics. This model 

assumes that the main two failure 

mechanisms if concrete are tensile cracking 

and compressive crushing. In this model 

uniaxial tensile and compressive behavior is 

characterized by damaged plasticity. 

For modeling steel reinforcing steel, an 

elastoplastic model is used to determine the 

behavior of steel in tension and compression. 
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stress in web bars equals to ߚ ௬݂ and term ݂ 

is substituted by mean stress in FRP sheet 

equals to ߙ ݂ .According to modeling results 

 is coefficient that depends on the ߙ and ߚ

equivalent perpendicular ratio and must be 

less than 1.0 

Substituting Eq.19 equal to Eq. 2 gives 

௨ܸ ൌ ߭௨ ݂
ᇱܣ௦௧(21)                                   ߠ݊݅ݏ 

Where: 

߭௨ ൌ ߭  ߭ோ  ߭ி ൌ

߭  ோߩߚ


ೞ
.


ᇲ .

ଵ

௦ఏ
 ிߩߙ



ೞ
.


ᇲ .

ଵ

௦ఏ
         

(22) 
 

According to Eq.22, it is proved that after 

concrete diagonal cracking the reduction 

effect of concrete softening is reduced and 

the efficiency factor of concrete in the 

presence of web reinforcing and FRP layer 

can be substituted by ߭௨ , the difference 

between ߭௨ and ߭ just equals the ߭ோ  ߭ி 

provided by the web reinforcements and FRP 

layer. Therefore it can be assumed that the 

shear strength of deep beam is governed only 

by the diagonal compression strut, but to 

determine the strut force in Eq. 2 , the 

efficiency factor must be computed with 

considering the improvement effect of web 

reinforcements and FRP layer by Eq.22. 
 

6. Solution procedure 

The first term of Eq.22 presents the 

efficiency factor in the absence of web 

reinforcement and FRP. Cracked concrete 

subjected to high tensile strain in the 

direction normal to the compression is 

observed to be softer than concrete in a 

standard cylinder test. This phenomenon of 

strength and stiffness reduction is commonly 

referred to as compression softening. 

Applying this softening effect to the STM, it 

is recognized that the tensile straining 

perpendicular to the strut will reduce the 

capacity of the concrete strut to resist 

compressive stresses. The efficiency factor of 

concrete strength has offered numerous 

relationships; previous studies proved that, 

with increasing shear span-to-depth ratio 

measured efficiency factor for the strut 

concrete decreases and by increasing 

concrete strength, concrete becomes brittle 

and the efficiency factor of strut decreases. 

The numerical formulations developed in this 

paper relied on work previously carried out 

by Arabzadeh et al.  Eq. 22 is a function of 

the two unknown parameters ߚ	 and ߙ which 

will be determined on the basis of obtained 

results from modeling and analysis of 104 

deep beams shear-strengthened by CFRP 

under Push over statically load. According to 

the results of performed analysis all of 

specimens failed in shear or shear-flexural 
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mode. Concrete compressive strength, 

Different scheme of FRP, various values of   

a/d   and area of web reinforcing were 

assumed for modeling of deep beams. 

The unknown factors are determined using 

regression and minimizing the residual errors 

finally as: 

ߚ ൌ ோߩ0.357
ି.ସହ 

ߙ ൌ
0.085
ߞ

ிߩ
ି.ହ 

Therefore, Eq.22 becomes 

߭௨ ൌ
ᇲ

షబ.య

.ା.ଵହቀ
ೌ

ቁ
మ  ோ.ହହߩ0.357



ೞ
.


ᇲ .

ଵ

௦ఏ


.଼ହ

క
ி.ହߩ



ೞ
.


ᇲ .

ଵ

௦ఏ
                                     (23) 

 

Where: in Eq.23,	ࡾࡰ࣋  and ࡲࡰ࣋ are expressed 

as a percentage of equivalent reinforcement 

and FRP ratio perpendicular to splitting crack 

respectively. ࣈ  is Proportional to the angle of 

the FRP layers and can be computed as 
 

a. If  Fibers placed horizontally or 

vertically, ߦ ൌ 1 

b. If Fiber placed perpendicular to diagonal 

crack, ߦ ൌ  ߠଶݏܿ

c. If the Fiber is angle other than 

perpendicular to diagonal crack, 

equivalent horizontal and vertical of 

layers is calculated then ߦ ൌ 1 
 

Substituting Eq.22 in Eq.21 gives; 
 

௨ܸ ൌ

ᇲ
బ.ళ

.ା.ଵହቀೌ

ቁ
మ .௦௧ܣ ߠ݊݅ݏ 

ௐܣோି.ସହߩ0.357 ௬݂ܿߠݏ 

.଼ହ

క
ௐிܣிି.ହߩ ݂ܿ(24)                           ߠݏ 

Where:  ܣௐ and ܣௐி are the equivalent 

area of perpendicular web reinforcements 

and FRP crossing strut respectively and can 

be computed as; 

ܣ ൌ ߠݏܿܣ   (25)                        ߠ݊݅ݏܣ

ௐிܣ ൌ ߠݏܿܣ   (26)                     ߠ݊݅ݏܣ

 

Where: ܣ and ܣ are the areas of vertical 

and horizontal reinforcement crossing strut 

respectively. ܣ And A୦ are the areas of 

vertical and horizontal FRP layer crossing 

strut respectively. ߩோ and  ߩி are expressed 

as a percentage of equivalent reinforcement 

and FRP ratio.  

7. STM Expression 

The proposed method has determined based 

on the behavior of CFRP shear-strengthened 

deep beams and result of shear-strengthened 

deep beams using the finite element method. 

To regression proposed method, 104 beams 

with different scheme of FRP which are 

modelled and analyzed through the Non 

Linear finite elements method and analyzed 

according under Push over load.  

A summary of obtained results from 

nonlinear FEM ሺ ௨ܸሻ and the predictions for 
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shear capacity 	ሺ ௌ்ܸெሻ	by the proposed 

model are shown in the Table 1 and Fig 7, 8. 
 

8. Evaluation of proposed model 

reliability 

To evaluate the accuracy and reliability of 

proposed method, the shear capacity 

experimental specimens which have been 

tested by other researcher have been 

compared with result by Strut-and-Tie 

method. 

The details of the experimental specimens 

and results of the comparison shown in Table 

2 

Correlation between the experimental results 
and predicted strength by proposed model is 
plotted for all series in Figs.9 

 

Table1.  A summary of these beams that have modeled in, and result of the application of proposed model for the 
beams 

 
Beam 

 
ࢇ
ࢊ

 
 
 

 %࣋	
 
 

 %ࡾࡰ࣋
 

 

 
 %ࡲࡰ࣋

 
 

 ࢛ࢂ
 

ࡹࢀࡿࢂ

 
ࡹࢀࡿࢂ
࢛ࢂ

 
 

Beam
ࢇ
ࢊ

 
 

 
%࣋

 

 
 %ࡾࡰ࣋

 
 

 
 %ࡲࡰ࣋

 
 ࢛ࢂ

 
 ࡹࢀࡿࢂ

 

 
ࡹࢀࡿࢂ
࢛ࢂ

C50 0.89 2.5 0.182 - 179 172 0.96 C25 0.89 2.5 0.182 - 115 111 0.97 
C50-1-1 0.89 2.5 0.182 0.208 183 183.7 1 C25-1-1 0.89 2.5 0.182 0.21 125 123 0.98 
C50-2-1 0.89 2.5 0.182 0.4 208 198 0.95 C25-2-1 0.89 2.5 0.182 0.4 130 132 1.01 
C50-3-1 0.89 2.5 0.182 0.75 201 197 0.98 C25-3-1 0.89 2.5 0.182 0.75 137 136 0.99 
C50-4-1 0.89 2.5 0.182 0.66 250 217 0.87 C25-4-1 0.89 2.5 0.182 0.66 145 154.5 1.07 
C50-1-2 0.89 2.5 0.182 0.347 187 187.2 1 C25-1-2 0.89 2.5 0.182 0.35 128 126 0.98 
C50-2-2 0.89 2.5 0.182 0.667 232 205 0.88 C25-2-2 0.89 2.5 0.182 0.67 147 138.5 0.94 
C50-3-2 0.89 2.5 0.182 1.25 229 205 0.89 C25-3-2 0.89 2.5 0.182 1.25 158 143 0.91 
C50-4-2 0.89 2.5 0.182  1.1 259 230 0.89 C25-4-2 0.89 2.5 0.182  1.1 165 167 1.01 
C50-1-3 0.89 2.5 0.182  0.55 192 191.5 1 C25-1-3 0.89 2.5 0.182  0.55 134 130 0.97 
C50-2-3 0.89 2.5 0.182 1.06 250 213 0.85 C25-2-3 0.89 2.5 0.182 1.06 155 146 0.94 
C50-3-3 0.89 2.5 0.182 2 276 216 0.78 C25-3-3 0.89 2.5 0.182 2 175 151.5 0.87 
C50-4-3 0.89 2.5 0.182 1.76 299 246 0.82 C25-4-3 0.89 2.5 0.182 1.76 186 173.2 0.93 

C50 1.19 1.85 0.228 - 135 133.4 0.99 C25 1.19 1.85 0.228 - 95 91 0.96 
C50-1-1 1.19 1.85 0.228 0.296 149 148.7 1 C25-1-1 1.19 1.85 0.228 0.29 110 109.5 1 
C50-2-1 1.19 1.85 0.228 0.276 169 162.7 0.96 C25-2-1 1.19 1.85 0.228 0.28 116 120.2 1.03 
C50-3-1 1.19 1.85 0.228 0.75 169 165.3 0.98 C25-3-1 1.19 1.85 0.228 0.75 124 123 0.99 
C50-4-1 1.19 1.85 0.228 0.59 178 176 0.99 C25-4-1 1.19 1.85 0.228 0.59 126 133.5 1.06 
C50-1-2 1.19 1.85 0.228 0.49 153 157.2 1.02 C25-1-2 1.19 1.85 0.228 0.49 111 114.7 1.03 
C50-2-2 1.19 1.85 0.228 0.48 188 172 0.9 C25-2-2 1.19 1.85 0.228 0.48 124 128.7 1.03 
C50-3-2 1.19 1.85 0.228 1.25 204 175 0.86 C25-3-2 1.19 1.85 0.228 1.25 133 132 0.99 
C50-4-2 1.19 1.85 0.228 0.98 216 188.5 0.87 C25-4-2 1.19 1.85 0.228 0.98 138 146 1.06 
C50-1-3 1.19 1.85 0.228 0.79 153 163 1.06 C25-1-3 1.19 1.85 0.228 0.79 115 123.7 1.08 
C50-2-3 1.19 1.85 0.228 0.765 207 181.3 0.88 C25-2-3 1.19 1.85 0.228 0.76 129 141 1.09 
C50-3-3 1.19 1.85 0.228 2 232 194.5 0.84 C 25-3-3 1.19 1.85 0.228 2 146 145.5 1 
C50-4-3 1.19 1.85 0.228 1.56 227 204 0.9 C 25-4-3 1.19 1.85 0.228 1.56 158 163.2 1.03 

C50 1.34 1.46 0.245 - 121 119.5 0.99 C25 1.34 1.46 0.245 - 84 83.4 1 
C50-1-1 1.34 1.46 0.245 0.23 138. 139.5 1 C25-1-1 1.34 1.46 0.245 0.23 96 98.5 1.02 
C50-2-1 1.34 1.46 0.245 0.26 158 148.2 0.94 C25-2-1 1.34 1.46 0.245 0.26 107 112.2 1.04 
C50-3-1 1.34 1.46 0.245 0.737 162 155.5 0.96 C25-3-1 1.34 1.46 0.245 0.74 117 119 1.01 
C50-4-1 1.34 1.46 0.245 0.58 191 164.5 0.86 C25-4-1 1.34 1.46 0.245 0.58 119 128.5 1.08 
C50-1-2 1.34 1.46 0.245 0.39 142 134.5 0.95 C25-1-2 1.34 1.46 0.245 0.39 101 103 1.02 
C50-2-2 1.34 1.46 0.245 0.43 164 158.5 0.96 C25-2-2 1.34 1.46 0.245 0.43 114 122 1.07 
C50-3-2 1.34 1.46 0.245 1.22 185 165.5 0.89 C25-3-2 1.34 1.46 0.245 1.22 127 129 1.02 
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Fig.9. Correlation between the experimental results and predicted strength by proposed model 

 
According to Table 2 and Figs.9, it can be 
concluded that the proposed model is reliable 

and accurate. Table 3 summarizes the 
statistical results obtained from comparison: 

 

 

Table 3.  Summarizes statistical analysis of predicted shear strength-to- experimental ratio for proposed method   

COR Mean VAR STD Refrence 

0.98 0.995 0.0015 0.0387 Arabzade, A 

0.76 1.04 0.0156 0.125 Sim, J 

0.98 1.07 0.00388 0.062 AL. Tersawy 

0.99 1 0.0016 0.04 Shin, S  

STD: Standard diviation 
VAR: The value of variation 

Mean: The mean of ቀ
ೄಾ
ೠ
ቁ for specimens 

COR: Correlation between experimental and predicted results
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9. Final design expression  

Based on the above findings (Table 2 and 3) 

it is obvious that in the proposed model, as 

the mean of the predicted shear strength-to-

experimental ratio is equal to 1.0, it cannot 

be applied for the design and therefore must 

be modified. For this purpose, this formula is 

a modified form of Eq.24 by multiplying the 

coefficient 0.95, hence the new predicted 

design expression becomes; 

V୳ ൌ
ౙᇲ
బ.ళ

.ଷା.ଵହ଼ቀ
ౚ
ቁ
మ Aୱ୲୰. sinθ 

0.34ρୈୖି.ସହAf୷cosθ 
.଼

ஞ
ρୈି.ହAfcosθ                              (27) 

10.   Proposed solution procedure 

The algorithm starts with a selection of the 

vertical beam shear ܄ and can be divided into 

6 major steps as follows: 

1. Determining the geometric properties of an 

alternative truss (θ, ୟ
ୢ
, aୱ, lୱ, Aୱ୲୰) 

2. The calculation of the strength provided by 

the concrete without considering 

reinforcement and FRP 

(Vେ ൌ
ౙᇲ
బ.ళ

.ା.ଵହቀ
ౚ
ቁ
మ Aୱ୲୰. sinθ) 

 

3.Determining the shear capacity provided by 

shear reinforcement and layers FRP (Vୱ 

V ൌ V െ Vୡ). Determination of shear 

reinforcement arrangement and pattern 

installed FRP and also to determine the 

estimated value ρୈୖ and   ρୈ. 
 

4. Calculate the shear capacity of deep beams 

(V୳) by Eq.27 
 

 

5. If  V୳  determined in step 4 is less than the 

required Shear capacity (V), iteration 

continues from step 3 by increasing the value 

of Vୗ, V 
 

6. If  Tୗ 

୲ୟ୬

  the failure of beam is 

governed by compression stress of concrete 

and diagonal cracking, otherwise, failure 

moment is dominant. 
 

11. Conclusions 

The Strut-and-tie method was implemented 

to predict the load capacity of CFRP shear-

strengthened RC deep beam. The STM was 

calibrated by 104 beams with different 

scheme of FRP modelled through the Non 

Linear finite elements method and analyzed 

according under Push over load. After 

comparison with 24 specimens available in 

the literature, the following conclusions can 

be drawn, 
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1. The study demonstrated the ability of the 

STM to predict the capacity of FRP shear-

strengthened deep beams. 
 

2.The calculated capacities by the proposed 

method are both accurate and conservative 

with little scatter or trends for deep beams 

over a wide range in concrete strengths, 

values of a/d that ranged from 0.7 to 2, 

various combinations and amounts of web 

reinforcements, various amount and FRP 

scheme. The predictions by the proposed 

method are sufficiently conservative and 

accurate to conclude that it provides a safe 

and reliable means of calculating the capacity 

of deep beams. 
 

3. consistent model to predict the shear 

capacity of CFRP shear-strengthened RC 

deep beams is obtained by superposing three 

independent factor in the shear resisting of 

the deep beams, namely diagonal concrete 

strut action due to strut-and-tie mechanism 

(STM), resisting equivalent force 

perpendicular to diagonal cracks resulted by 

web reinforcements and resisting equivalent 

force perpendicular to diagonal cracks 

resulted by CFRP sheet.  

4. The carried shear strength by CFRP sheets 

was estimated based on their average stress. 

The average stress depends on the amount 

and pattern of FRP. 
 

5. The FRP shear strengthening system was 

found more effective when the fibers were 

oriented in a direction perpendicular to the 

potential diagonal shear cracks. 
 

6. According to the proposed model and 

experimental observations due to decreasing 

the inclination angle of the strut or increasing 

the span-to-depth ratio of a deep beam, the 

efficiency of horizontal web reinforcements 

and horizontal layer FRP are reduced because 

in this case diagonal cracks concrete to be 

horizontal position and in this case vertical 

reinforcement and vertical layer of FRP are 

placed perpendicular to crack and are more 

effective. 

 7. The design approach is based on the model 

proposed, the area of main reinforcement can 

be selected so that there are the possibility of 

simultaneous failure of flexural and shear 

beam reinforced.  

8. The proposed STM analysis approach has 

very conservative to predict the experimental 

results. 
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Notations 

The following symbols are used in this paper: 

a = the shear span, mm 

d= the width of the loaded point bearing 
plate, mm 

b = the width of beam, mm 

 the length of strut mm = ܁ۺ
 
 the compression force in the diagonal = 
strut, N 

 the angle between strut and longitudinal = ࣂ 
reinforcements 

 the tension force on longitudinal = ࡿࢀ 
reinforcements, N 

 the cross sectional area of strut, mm2 = ܚܜܛۯ

 the uniform width of strut which can be = ࢙ࢇ
estimated, mm 

 depth of the top node, mm = ࢈

 depth of the bottom node, mm = 

 width of the support bearing plate, mm = ࢚࢝

 ሻ=the maximum equivalent resisting࢞ࢇሺࡾࡼࡲ
force perpendicular to splitting crack by web 
reinforcement, N   

 the tensile yield stress in the =	ࢎ࢟ࢌ ,࢜࢟ࢌ
vertical and horizontal bars, MPa 
 
 the total area of horizontal and =	ܞۯ ,	ܐۯ
vertical web reinforcements crossing the 
crack, mm2 
 
ૉܐ, ૉ܄ = horizontal and vertical web 
reinforcement ratio 
  
ૉ܀۾ =equivalent reinforcement ratio 
perpendicular to splitting crack  
 
 ሻ =the maximum equivalent resistingܠ܉ܕ۴ሺ۾۴
force perpendicular to splitting crack by FRP 
layer, N  
 
 the tensile yield stress in the =	ܐ ,ܞ
vertical and horizontal FRP layer, MPa 
 
 the total area of horizontal and =	ܞۯ ,	ܐۯ	
vertical FRP layer crossing the crack, mm  
 
ૉܐ, ૉ܄ = horizontal and vertical FRP layer 
ratio 
 
ૉ۲۴ = equivalent FRP ratio perpendicular to 
splitting crack  
 
 the shear strength provided by the STM = ܋܄
due to the diagonal concrete compression 
strut, N  

 the shear strength resulted by resisting = ܛ܄
mechanism of web reinforcements, N 

 the shear strength resulted by resisting = ܄
FRP, N 


