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Abstract

The aim of this paper is to construct a fractal of generalized Θ-Hutchinson Operator with the help of a finite family
of Θ-contraction mappings, a class of mappings more general than contractions, defined on a complete metric space.
Our results unify, generalize and extend various results in the existing literature.
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1 Introduction and preliminaries

Banach’s contraction principle [6] is one of the pivotal results of nonlinear analysis and its applications, which estab-
lishes that, if g is a mapping from a complete metric space (X, d) into itself and there exists a constant k ∈ [0, 1) such
that

d(gx, gy) ≤ kd(x, y)

for all x, y ∈ X, then g has a unique fixed point in X. Furthermore, for any initial guess x0 ∈ X the sequence of simple
iterates {x0, gx0, g2x0, g3x0, ...} converges to a fixed point of g.

Due to its importance and simplicity, many authors have obtained a lot of interesting extensions and generalizations
of Banach’s contraction principle (see [1-12] and references therein).

Nadler [23] was the first who combined the ideas of multivalued mappings and contractions and hence initiated
the study of metric fixed point theory of multivalued operators, see also [5, 11, 14]. The fixed point theory of multi-
valued operators provides important tools and techniques to solve the problems of pure, applied and computational
mathematics which can be restructured as an inclusion equation for an appropriate multivalued operator.

Iterated function systems are based on the mathematical foundations laid by Hutchinson [17]. He showed that the
Hutchinson operator constructed with the help of a finite system of contraction mappings defined on an Euclidean
space Rn has closed and bounded subset of Rn as its fixed point, called attractor of iterated function system (see also
in [7] ). In this context, fixed point theory plays significant and vital role to help in construction of fractals.
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Fixed point theory is studied in an environment created with appropriate mappings satisfying certain conditions.
Recently, many researchers have obtained fixed point results for single and multi-valued mappings defined on metric
spaces.

Let (X, d) be a metric space and H(X) denotes the set of all non-empty compact subsets of X. For A,B ∈ H(X),
let

H(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)},

where d(x,B) = inf{d(x, b) : b ∈ B} is the distance of a point x from the set B. The mapping H is said to be the
Pompeiu-Hausdorff metric induced by d. If (X, d) is a complete metric space, then (H(X), H) is also a complete
metric space.

Very recently, Nazir et al. [24, 25] proved the following lemma which is also very useful in the proof of our main
results.

Lemma 1.1. Let (X, d) be a metric space. For all A,B,C,D ∈ H(X), the following hold:

(i) If B ⊆ C, then sup
a∈A

d(a,C) ≤ sup
a∈A

d(a,B).

(ii) sup
x∈A∪B

d(x,C) = max{sup
a∈A

d(a,C), sup
b∈B

d(b, C)}.

(iii) H(A ∪B,C ∪D) ≤ max{H(A,C), H(B,D)}.

A new approach in the theory of fixed points is Θ-contraction which was first introduced by Jleli and Samet [18].
They established some new fixed point theorems for such contraction in the context of generalized metric spaces.

Definition 1.2. Let Θ : (0,∞) → (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;

(Θ2) for each sequence {αn} ⊆ R+, limn→∞ Θ(αn) = 1 if and only if limn→∞(αn) = 0;

(Θ3) there exists 0 < h < 1 and l ∈ (0,∞] such that lima→0+
Θ(α)−1

αh = l;

A mapping g : X → X is said to be Θ-contraction if there exist the function Θ satisfying (Θ1)-(Θ3) and a constant
k ∈ (0, 1) such that for all x, y ∈ X,

d(gx, gy) > 0 =⇒ Θ(d(gx, gy)) ≤ [Θ(d(x, y))]k. (1.1)

Theorem 1.3. [18] Let (X, d) be a complete metric space and g : X → X be a Θ-contraction, then g has a unique
fixed point.

From (1.1), for all x, y ∈ X with d(gx, gy) > 0, we have

Θ(d(gx, gy)) ≤ [Θ(d(x, y))]k < Θ(d(x, y))

because k ∈ (0, 1). Since Θ is strickly increasing, so we have

d(gx, gy) < d(x, y),

for all x, y ∈ X, with gx ̸= gy. This implies that g is contractive and continuous.

To be consistent with Samet et al. [18], we denote by Ψ the set of all functions Θ : (0,∞) → (1,∞) satisfying the
above conditions.

Hussain et al. [12] extended and generalized the above result in this way:
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Theorem 1.4. [12] Let (X, d) be a complete metric space and g : X → X be a self-mapping. If there exist a function
Θ ∈ Ω and positive real numbers a1, a2, a3, a4 with 0 ≤ a1 + a2 + a3 + 2a4 < 1 such that

Θ(d(gx, gy)) ≤ [Θ(d(x, y))]a1 · [Θ(d(x, gx))]a2

·[Θ(d(y, gy))]a3 · [Θ((d(x, gy) + d(y, gx))]a4 (1.2)

for all x, y ∈ X, then g has a unique fixed point.

Recently, Ahmad et al. [1] applied the following simple condition on the function Θ :

(Θ4) Θ is continuous.

They established some new fixed point theorems in the context of complete metric space.

To be consistent with Ahmad et al. [1], we denote by Ω the set of all functions Θ : (0,∞) → (1,∞) satisfying the
conditions (Θ1)-(Θ4).

In this paper, we define a fractal of generalized Θ-Hutchinson Operator with the help of a finite family of Θ-
contractions in the setting of complete metric space.

2 The main results

In this section we define generalized Θ-contraction and establish some fixed point theorems for these contractions.

Theorem 2.1. Let (X, d) be a metric space, g : X → X be a Θ-contraction and Θ ∈ Ω. Then

(i) g maps the elements of H(X) to elements of H(X),

(ii) if for any A ∈ H(X),
g(A) = {g(x) : x ∈ A}.

Then g : H(X) → H(X) is also a Θ-contraction on (H(X), H).

Proof . (i). As Θ ∈ Ω, so Θ is continuous. Thus image of a compact subset under g : X → X is compact, that is,

A ∈ H(X) implies g(A) ∈ H(X).

(ii). Since g : X → X is Θ-contraction and Θ is strictly increasing, we obtain that

0 < d (gx, gy) < d (x, y) (2.1)

for all x, y ∈ X with gx ̸= gy. Let A,B ∈ H(X) with H (g (A) , g (B)) ̸= 0. Using (2.1), we have

d (gx, g (B)) = inf
y∈B

d (gx, gy) < inf
y∈B

d (x, y) = d (x,B) .

Also
d (gy, g (A)) = inf

x∈A
d (gy, gx) < inf

x∈A
d (y, x) = d (y,A) .

Now

H (g (A) , g (B)) = max{sup
x∈A

d(gx, g (B)), sup
y∈B

d(gy, g (A))}

< max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)} = H (A,B) .

Since Θ is strictly increasing, we have

Θ (H (g (A) , g (B))) < Θ(H (A,B)) .

Consequently, there exists some k∗ ∈ (0, 1) such that

Θ (H (g (A) , g (B))) ≤ [Θ (H (A,B))]k
∗
.

Hence g : H(X) → H(X) is a Θ-contraction. □
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Theorem 2.2. Let (X, d) be a metric space and {gn : n = 1, 2, ..., N} a finite family of Θ-contraction self-mappings
on X. Define F : H(X) → H(X) by

F (A) = ∪N
n=1gn(A),

for each A ∈ H(X). Then F is Θ-contraction on H (X).

Proof . We prove the above claim for N = 2. Let g1, g2 : X → X be two Θ-contractions. Take A,B ∈ H (X) with
H(F (A), F (B)) ̸= 0. By Lemma 1.1 (iii), it follows that

Θ (H(F (A), F (B))) = Θ (H(g1(A) ∪ g2(A), g1(B) ∪ g2(B)))

≤ Θ(max{H(g1(A), g1(B)), H(g2(A), g2(B))})
≤ [Θ (H(A,B))]k

for some k ∈ (0, 1) □

Theorem 2.3. Let (X, d) be a complete metric space and {gn : n = 1, 2, ..., N} a finite family of Θ-contractions on
X. Define F : H(X) → H(X) by

F (A) = ∪N
n=1gn(A),

for each A ∈ H(X). Then

(i) F : H(X) → H(X) is a Θ-contraction;

(ii) F has a unique fixed point U ∈ H (X) , that is U = F (U) = ∪k
n=1gn(U). Moreover, for any initial set A0 ∈ H (X),

the sequence of compact sets {A0, F (A0) , F
2 (A0) , ...} converges to a fixed point of F .

Proof . (i) Since each gi is Θ-contraction and F : H(X) → H(X) is defined as

F (A) = ∪N
n=1gn(A),

for each A ∈ H(X). It follows from Theorem 2.1 that F is a Θ-contraction

(ii) The completeness of (X, d) implies that (H (X) , H) is complete. Thus (ii) follows directly from Theorem 1.3.
□

Definition 2.4. Let (X, d) be a metric space. A mapping F : H (X) → H (X) is said to be a generalized Θ-
contraction if there exists some Θ ∈ Ω and k ∈ (0, 1) such that for any A,B ∈ H (X) with H(F (A), F (B)) > 0, the
following condition holds:

Θ (H (F (A) , F (B))) ≤ [Θ(RF (A,B))]k, (2.2)

where

RF (A,B) = max{H(A,B), H(A,F (A)), H(B,F (B)),
H(A,F (B)) +H(B,F (A))

2
,

H(F 2 (A) , F (A)), H(F 2 (A) , B), H(F 2 (A) , F (B))}. (2.3)

The operator F defined above is also called generalized Θ-Hutchinson operator. Note that if F defined in Theorem
2.2 is Θ-contraction, then it is trivially generalized Θ-contraction and so F is generalized Θ-Hutchinson operator. The
converse does not hold, see [22].

Definition 2.5. Let (X, d) be a metric space. If gn : X → X, n = 1, 2, ..., N are Θ-contraction mappings, then
(X; g1, g2, ..., gN ) is called generalized (Θ-contractive) iterated function system (IFS).
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Thus the generalized iterated function system consists of a metric space and finite family of Θ-contraction mappings
on X.

Definition 2.6. A nonempty compact set A ⊆ X is said to be an attractor of the generalized Θ-contractive IFS if
there exists F : H (X) → H (X) such that

(a) F (A) = A and

(b) there is an open set V ⊆ X such that A ⊆ V and lim
k→∞

F k(B) = A for any compact set B ⊆ V , where the limit

is taken with respect to the Hausdorff metric.

Now we state a fixed point theorem for generalized Θ- Hutchinson operator.

Theorem 2.7. Let (X, d) be a complete metric space and {X : gn, n = 1, 2,···, k} a generalized iterated function
system. Let F : H(X) → H(X) be defined by

F (A) = g1(A) ∪ g2(A) ∪ · · · ∪ gN (A) = ∪N
n=1gn(A)

for each A ∈ H(X). If F is a generalized Θ- Hutchinson operator, then F has a unique fixed point U ∈ H (X) , that is

U = F (U) = ∪k
n=1gn(U).

Moreover, for any initial set A0 ∈ H (X), the sequence of compact sets {A0, F (A0) , F
2 (A0) , ...} converges to a fixed

point of F .

Proof . Let A0 be an arbitrary element in H (X) . If A0 = F (A0) , then A0 is a fixed point of F and we have nothing
to prove more. So we assume that A0 ̸= F (A0) . Define

A1 = F (A0), A2 = F (A1) , ..., Am+1 = F (Am)

form ∈ N.We may assume that Am ̸= Am+1 for allm ∈ N. If not, then Ak = Ak+1 for some k implies Ak = F (Ak) that
is Ak is fixed point of F and this completes the proof. Take Am ̸= Am+1 for all m ∈ N. From (2.2), we have

Θ (H(Am+1, Am+2)) = Θ (H(F (Am) , F (Am+1)))

≤ [Θ (RF (Am, Am+1))]
k

where

RF (Am, Am+1) = max{H(Am, Am+1), H (Am, F (Am)) , H (Am+1, F (Am+1)) ,

H (Am, F (Am+1)) +H (Am+1, F (Am))

2
,

H(F 2 (Am) , F (Am)), H
(
F 2 (Am) , Am+1

)
, H

(
F 2 (Am) , F (Am+1)

)
}

= max{H(Am, Am+1), H (Am, Am+1) , H (Am+1, Am+2) ,

H (Am, Am+2) +H (Am+1, Am+1)

2
,

H(Am+2, Am+1), H (Am+2, Am+1) , H (Am+2, Am+2)}

≤ max{H(Am, Am+1), H (Am+1, Am+2) ,
H (Am, Am+1) +H (Am+1, Am+2)

2
}

= max{H (Am, Am+1) , H (Am+1, Am+2)}.

Thus, we have
Θ (H(Am+1, Am+2)) ≤ [Θ (max{H (Am, Am+1) , H (Am+1, Am+2)})]k.

If max{H (Am, Am+1) , H (Am+1, Am+2)} = H (Am+1, Am+2) , then

Θ (H(Am+1, Am+2)) ≤ [Θ (H(Am+1, Am+2))]
k
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a contradiction because k ∈ (0, 1). Thus we have

Θ (H(Am+1, Am+2)) ≤ [Θ (H(Am, Am+1))]
k

for all m ∈ N. Therefore

Θ (H(An, An+1)) ≤ [Θ (H(An−1, An))]
k

≤ [Θ (H(An−2, An−1))]
k2

≤ ... ≤ [Θ (H(A0, A1))]
kn

. (2.4)

So by taking limit as n→ ∞ in (2.4), we have

lim
n→∞

Θ(H(An, An+1)) = 1

which implies that
lim

n→∞
H(An, An+1) = 0 (2.5)

by (Θ2). From the condition (Θ3), there exist 0 < h < 1 and l ∈ (0,∞] such that

lim
n→∞

Θ(H(An, An+1))− 1

H(An, An+1)h
= l. (2.6)

Suppose that l <∞. In this case, let β = l
2 > 0. From the definition of the limit, there exists n1 ∈ N such that

|Θ(H(An, An+1))− 1

H(An, An+1)h
− l| ≤ β

for all n > n1. This implies that
Θ(H(An, An+1))− 1

H(An, An+1)h
≥ l − β =

l

2
= β

for all n > n1. Then
nH(An, An+1)

h ≤ αn[Θ(H(An, An+1))− 1] (2.7)

for all n > n1, where α = 1
β . Now we suppose that l = ∞. Let β > 0 be an arbitrary positive number. From the

definition of the limit, there exists n1 ∈ N such that

β ≤ Θ(H(An, An+1))− 1

H(An, An+1)h

for all n > n1. This implies that
nH(An, An+1)

h ≤ αn[Θ(H(An, An+1))− 1]

for all n > n1, where A = 1
B . Thus, in all cases, there exist A > 0 and n1 ∈ N such that

nH(An, An+1)
h ≤ αn[Θ(H(An, An+1))− 1] (2.8)

for all n > n1. Thus by (2.4) and (2.8), we get

nH(An, An+1)
h ≤ αn([Θ (H(A0, A1))]

kn

− 1). (2.9)

Letting n→ ∞ in the above inequality, we obtain

lim
n→∞

nH(An, An+1)
h = 0.

Thus, there exists n2 ∈ N such that

H(An, An+1)
h ≤ 1

n1/h
(2.10)

for all n > n2. Now for m,n ∈ N with m > n ≥ n2, we have

H (An, Am) ≤ H (An, An+1) +H (An+1, An+2) + ...+H (Am−1, Am)

≤
∞∑
i=n

1

i1/h
.
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By the convergence of the series
∑∞

i=1

1

i1/h
, we get H (An, Am) → 0 as n,m → ∞. Therefore {An} is a Cauchy

sequence in X. Since (H(X), H) is complete, we have An → U as n → ∞ for some U ∈ H(X). In order to show that
U is the fixed point of F, we contrary assume that Pompeiu-Hausdorff weight assigned to the U and F (U) is not zero.
Now again from (2.2), we have

Θ (H(An+1, F (U))) = Θ(H(F (An) , F (U))) ≤ [Θ (RF (An, U))]k (2.11)

where

RF (An, U) = max{H(An, U), H(An, F (An)), H(U,F (U)),
H(An, F (U)) +H(U,F (An))

2
,

H(F 2 (An) , F (An)), H(F 2 (An) , U), H(F 2 (An) , F (U))}

= max{H(An, U), H(An, An+1), H(U,F (U)),
H(An, F (U)) +H(U,An+1)

2
,

H(An+2, An+1), H(An+2, U), H(An+2, F (U))}.

Now we consider the following cases:

(i) If RF (An, U) = H(An, U), then we have

Θ (H(An+1, F (U))) ≤ [Θ (H(An, U))]k (2.12)

Taking limit as n→ ∞ in (2.12) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤ [Θ (H (U,U))]k,

a contradiction.

(ii) When RF (An, U) = H(An, An+1), then we have

Θ (H(An+1, F (U))) ≤ [Θ (H(An, An+1))]
k. (2.13)

Taking limit as n→ ∞ in (2.13) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤ [Θ (H (U,U))]k

gives a contradiction.

(iii) In case RF (An, U) = H(U,F (U)), then we have

Θ (H(An+1, F (U))) ≤ [Θ (H(U,F (U)))]k. (2.14)

Taking limit as n→ ∞ in (2.14) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤ [Θ (H (U,F (U)))]k < Θ(H (U,F (U))) ,

a contradiction.

(iv) If RF (An, U) =
H(An, F (U)) +H(U,An+1)

2
, then we have

Θ (H(An+1, F (U))) ≤
[
Θ

(
H(An, F (U)) +H(U,An+1)

2

)]k
. (2.15)

Taking limit as n→ ∞ in (2.15) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤
[
Θ(
H (U,F (U)) +H (U,U)

2
)

]k
=

[
Θ(
H (U,F (U))

2
)

]k
< Θ(

H (U,F (U))

2
)

a contradiction.
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(v) If RF (An, U) = H(An+2, An+1), then we have

Θ (H(An+1, F (U))) ≤ [Θ (H(An+2, An+1))]
k. (2.16)

Taking limit as n→ ∞ in (2.16) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤ [Θ (H (U,U))]k

gives a contradiction.

(vi) If RF (An, U) = H(An+2, U), then we have

Θ (H(An+1, F (U))) ≤ [Θ (H(An+2, U))]k. (2.17)

Taking limit as n→ ∞ in (2.17) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤ [Θ (H (U,U))]k

a contradiction.

(vii) Finally if RF (An, U) = H(An+2, F (U)), then we have

Θ (H(An+1, F (U))) ≤ [Θ (H(An+2, F (U)))]k. (2.18)

Taking limit as n→ ∞ in (2.18) and using the continuity of Θ, we have

Θ (H(U,F (U))) ≤ [Θ(H(U,F (U)))]k < Θ(H(U,F (U))),

a contradiction. Thus U is the fixed point of F .

To show the uniqueness of fixed point of F , assume that U and V are two fixed points of F with H (U, V ) is not zero.
Since F is a Θ-contraction map, we obtain that

Θ(H(U, V )) = Θ(H(F (U) , F (V )))

≤
[

Θ(max{H(U, V ), H(U,F (U)), H(V, F (V )), H(U,F (V ))+H(V,F (U))
2 ,

H(F 2 (U) , U), H(F 2 (U) , V ), H(F 2 (U) , F (V ))})

]k
=

[
Θ(max{H (U, V ) , H(U,U), H(V, V ), H(U,V )+H(V,U)

2 ,
H (U,U) , H(U, V ), H(U, V )})

]k
= [Θ (H(U, V ))]k < Θ(H(U, V ))

a contradiction as k ∈ (0, 1). Thus F has a unique fixed point U in H(X). □

Remark 2.8. In Theorem 2.4, if we take S(X) the collection of all singleton subsets ofX, then clearly S(X) ⊆ H(X).
Moreover, consider gn = g for each n, where g = g1 then the mapping F becomes

F (x) = g(x).

With this setting we obtain the following fixed point result.

Corollary 2.9. Let (X, d) be a complete metric space and {X : gn, n = 1, 2,···, k} a generalized iterated function
system. Let g : X → X be a mapping defined as in Remark 2.1. If there exists some Θ ∈ Ω and k ∈ (0, 1) such that
for any x, y ∈ H (X) with d(g(x), g(y)) > 0, the following condition holds:

Θ (d (gx, gy)) ≤ [Θ(Rg(x, y))]
k,

where

Rg(x, y) = max

{
d(x, y), d(x, gx), d(y, gy),

d(x, gy) + d(y, gx)

2
, d(g2x, y), d(g2x, gx), d(g2x, gy)

}
.

Then g has a unique fixed point x ∈ X, Moreover, for any initial set x0 ∈ X, the sequence of compact sets
{x0, gx0, g2x0, ...} converges to a fixed point of g.
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Corollary 2.10. Let (X, d) be a complete metric space and (X; gn, n = 1, 2,···, k) be iterated function system
where each gi for i = 1, 2, ..., k is a contraction self-mapping on X. Then F : H(X) → H(X) defined in Theo-
rem 2.3 has a unique fixed point in H (X) . Furthermore, for any set A0 ∈ H (X), the sequence of compact sets
{A0, F (A0) , F

2 (A0) , ...} converges to a fixed point of F .

Proof . It follows from Theorem 1.1 that if each gi for i = 1, 2, ..., k is a contraction mapping on X, then the mapping
F : H(X) → H(X) defined by

F (A) = ∪k
n=1gn(A), for all A ∈ H(X)

is contraction on H (X). Using Theorem 2.3, the result follows. □

Corollary 2.11. Let (X, d) be a complete metric space and (X; gn, n = 1, 2,···, k) an iterated function system where
each gi for i = 1, 2, ..., k is a mapping on X satisfying

d (gix, giy) ≤ k2d (x, y) ,

for all x, y ∈ X, gix ̸= giy, where k ∈ (0, 1). Then the mapping F : H(X) → H(X) defined in Theorem 2.3 has a unique
fixed point in H (X) . Furthermore, for any set A0 ∈ H (X), the sequence of compact sets {A0, F (A0) , F

2 (A0) , ...}
converges to a fixed point of F .

Proof . Consider the mapping Θ(t) = e
√
t, for t > 0 in Theorem 2.2. Then obviously Θ satisfies (Θ1)-(Θ4). Now

each mapping gi for i = 1, 2, ..., k on X satisfies

d (gix, giy) ≤ k2d (x, y) ,

for all x, y ∈ X, gix ̸= giy, where k ∈ (0, 1). Again from Theorem 2.2, the mapping F : H(X) → H(X) defined by

F (A) = ∪k
n=1gn(A),

for all A ∈ H(X), satisfies
H (F (A) , F (B)) ≤ k2H (A,B) ,

for all A,B ∈ H(X), with H (F (A) , F (B)) > 0. Using Theorem 2.3, the result follows. □

Theorem 2.12. Let (X, d) be a complete metric space and (X; gn, n = 1, 2,···, k) be iterated function system such
that each gi for i = 1, 2, ..., k is a mapping on X satisfying

2− 2

π
arctan(

1

d (gix, giy)
λ
) ≤ [2− 2

π
arctan(

1

d (x, y)
λ
)]k

for all x, y ∈ X, gix ̸= giy, where k ∈ (0, 1). Then the mapping F : H(X) → H(X) defined in Theorem 2.3 has a unique
fixed point in H (X) . Furthermore, for any set A0 ∈ H (X), the sequence of compact sets {A0, F (A0) , F

2 (A0) , ...}
converges to a fixed point of F .

Proof . Taking Θ(t) = 2− 2
π arctan( 1

tλ
), where 0 < λ < 1 and t > 0 in Theorem 2.2, we obtain that each mapping gi

for i = 1, 2, ..., k on X satisfies

2− 2

π
arctan(

1

d (gix, giy)
λ
) ≤ [2− 2

π
arctan(

1

d (x, y)
λ
)]k

for all x, y ∈ X, gix ̸= giy, where k ∈ (0, 1). Again it follows from Theorem 2.2 that the mapping F : H(X) → H(X)
defined by

F (A) = ∪k
n=1gn(A), for all A ∈ H(X)

satisfies

2− 2

π
arctan(

1

H (F (A) , F (B))
λ
) ≤ [2− 2

π
arctan(

1

H (A,B)
λ
)]k

for all A,B ∈ H(X), H (F (A) , F (B)) > 0. Using Theorem 2.3, the result follows. □
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Example 2.13. Let X = [0, 1]× [0, 1] and d be a Euclidean metric on X. Define g1, g2 : X → X as

g1(x, y) = (
1

x+ 1
,

y

y + 1
) and

g2 (x, y) = (
sinx

sinx+ 1
,

1

sin y + 1
).

Note that, for all x = (x1, y1) ,y = (x2, y2) ∈ X with x ̸= y,

d(g1 (x) , g1 (y))

= d((
1

x1 + 1
,

y1
y1 + 1

), (
1

x2 + 1
,

y2
y2 + 1

))

=

√
(x1 − x2)2

(x1 + 1)2(x2 + 1)2
+

(y1 − y2)2

(y1 + 1)2(y2 + 1)2

<
√
(x1 − x2)2 + (y1 − y2)2

= d((x1, y1), (x2, y2))

= d(x,y).

Also

d(g2 (x) , g2 (y))

= d((
sinx1

sinx1 + 1
,

1

sin y1 + 1
), (

sinx2
sinx2 + 1

,
1

sin y2 + 1
))

=

√
(sinx1 − sinx2)2

(sinx1 + 1)2(sinx2 + 1)2
+

(sin y1 − sin y2)2

(sin y1 + 1)2(sin y2 + 1)2

<
√

(sinx1 − sinx2)2 + (sin y1 − sin y2)2

≤
√
(x1 − x2)2 + (y1 − y2)2

= d((x1, y1), (x2, y2))

= d(x,y).

Now there exists k ∈ (0, 1) such that

d(g1 (x) , g1 (y)) ≤ k2d (x,y) and

d(g2 (x) , g2 (y)) ≤ k2d (x,y)

are satisfied. Consider the iterated function system {R2; g1, g2} with mapping F : H([0, 1]2) → H([0, 1]2) given as

F (A) = g1 (A) ∪ g2 (A) for all A ∈ H([0, 1]2).

For all A,B ∈ H([0, 1]2) with H(F (A) , F (B)) ̸= 0, by Theorem 2.1, we have

H(F (A) , F (B)) ≤ k2H (A,B)

holds.
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Math. 3 (1922), 133–181

[7] M.F. Barnsley, Fractals Everywhere, 2nd ed., Academic Press, San Diego, CA, 1993.

[8] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464

[9] M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7–10.

[10] HA. Hancer, G. Minak and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point
Theory 18 (2017), no. 1, 229–236.
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