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Abstract

In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically
complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for
nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some
examples to discuss the assumptions and support our results.
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1. Introduction and preliminaries

The well-known fixed-point theorem of Banach [3] is a very important tool for solving existence
problems in many branches of mathematics and physics. There are a large number of generalizations
of the Banach contraction principle in the literature. One can generalize this theorem by altering
the action spaces. In one of these ways, the action spaces are replaced by metric spaces endowed
with an ordered or partially ordered structure. Ran and Reurings [11], O’Regan and Petrusşel [9]
and others started the investigations concerning a fixed point theory in ordered metric spaces. Later,
many authors followed this concept by introducing and investigating the different types of contraction
mappings. Some interesting fixed point theorems concerning partially ordered metric spaces can also
be found in [1, 5, 6].

In this paper, motivated by the work of Ran and Reurings[11], Kirk and Shahzad [4] we introduce
two new conditions for nonexpansive mappings on spherically complete ultrametric spaces and non-
Archimedean normed spaces and, using these conditions, obtain some fixed point theorems. That’s
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why, we first recall some basic notions in ultrametric spaces and non-Archimedean normed spaces.
For more details the reader is referred to [12].

Let (X, d) be a metric space. The metric space (X, d) is called an ultrametric space if the metric
d satisfies the strong triangle inequality, i.e., for all x, y, z ∈ X:

d(x, y) ≤ max{d(x, z), d(y, z)},

in this case d is said to be ultrametric. We denote by B(x, r), the closed ball

B(x, r) = {y ∈ X : d(x, y) ≤ r},

where x ∈ X and r ≥ 0 (B(x, 0) = {x}). A known characteristic property of ultrametric spaces is
the following:

If x, y ∈ X, 0 ≤ r ≤ s and B(x, r) ∩B(y, s) 6= ∅, then B(x, r) ⊂ B(y, s).

An ultrametric space (X, d) is said to be spherically complete if every shrinking collection of balls in
X has a nonempty intersection [12]. Let K be a non-Archimedean valued field. A norm on a vector
space X over K is a map ‖ · ‖ from X into [0,∞) with the following properties:

1) ‖x‖ 6= 0 if x ∈ E \ {0};

2) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X);

3) ‖αx‖ = |α|‖x‖ (α ∈ K, x ∈ X).

In1993, Petalas and Vidalis in [8] presented a generalization of a well-known fixed point theorem
for the class of spherically complete non-Archimedean normed spaces, and in 2000 Priess-Crampe
and Ribenboim in [10] obtained similar results in ultrametric space, but the proofs of these theorems
weren’t constructive. In 2012 Kirk and Shahzad in [4] gave more constructive proofs of these theorems
and strengthened the conclusions as follow:

Theorem 1.1. ([4]). Suppose that (X, d) is a spherically complete ultrametric space and T : X −→
X is a nonexpansive mapping. Then every closed ball of the form

B(x, d(x, Tx)) (x ∈ X)

contains either a fixed point of T or a minimal T -invariant closed ball. Where A ball B(x, r) in X is
called T -invariant if T (B(x, r)) ⊂ B(x, r) and is called minimal T -invariant if B(x, r) is T -invariant
and d(u, Tu) = r for all u ∈ B(x, r).

We also recall that a partial order on a nonempty set X is a binary relation � over X which satisfies
the following conditions:

1) x � x for all x ∈ X (reflexivity);

2) x � y and y � x imply x = y for all x, y ∈ X (antisymmetry);

3) x � y and y � z imply x � z for all x, y, z ∈ X (transitivity).

The set X with a partial order � is called a partially ordered set and it is denoted by the pair (X,�).
If (X,�) is a partially ordered set and x, y ∈ X, then x and y are said to be comparable elements of
X if either x � y or y � x.
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2. Main results

In this section, first, we give two theorems that investigate the existence of a fixed point for
nonexpansive mappings defined on partially ordered ultrametric spaces and non-Archimedean normed
spaces. In general, these theorems do not hold in metric spaces.

Definition 2.1. Let (X,�) be a partially ordered set and suppose that there exists an ultrametric
d in X such that (X, d) is an ultrametric space. We would say that a B(x, r) is partially f -invariant
if for any u ∈ B, that u compare with x,

fu ∈ B(x, r).

Also, the ball B(x, r) is minimal partially f -invariant if fu ∈ B(x, r) and d(u, fu) = r for any u ∈ B
that u compare with x.

Theorem 2.2. Let (X,�) be a partially ordered set and suppose that there exists an ultrametric d
in X such that (X, d) is an ultrametric space, and f : X → X satisfying the following statements:

(M1) If x, y ∈ X and x � y, then fx � fy;

(M2) d(fx, fy) ≤ d(x, y) for all x, y ∈ X, x � y;

(M3) If {xn} is a nonincreasing sequence in X and {B(xn, rn)} is a descending collection of closed
balls in X, then there is a subsequence {xnk

} of {xn} and an upper bound z ∈ X of sequence
{xnk
} in

⋂∞
n=1B(xnk

, rnk
) such that z � fz.

Then for any x ∈ X with x � fx, B(x, d(x, fx)) contains either a fixed point of f or a minimal
partially f -invariant ball.

Proof . First, we assert that for all z ∈ X, the ball B(z, d(z, fz)) is partially f - invariant. To see
this, let z ∈ X, r = d(z, fz) and let u ∈ B(z, r) such that u and z are comparable, then

d(fu, z) ≤ max{d(fu, fz), d(z, fz)}
≤ max{d(u, z), d(z, fz)}
= r.

Now let x0 ∈ X and x0 � fx0, and let x1 = x0, r1 = d(x1, fx1), and

λ1 = inf{d(x, fx) | x ∈ B(x1, r1) : x1 � x � fx}.

fnx1 belongs to B(x1, r1) and fnx1 � fn+1x1 for all n ∈ N, so
d(fnx1, f

n+1x1) ≤ r1 . Therefore, λ1 ≤ r1. Now, if λ1 = r1, then B(x1, r1) is a minimal par-
tially f -invariant ball. Otherwise, let εn be a sequence of positive numbers such that limn→∞ εn = 0.
We can choose x2 ∈ B(x1, r1) such that

x1 � x2 � fx2, and r2 = d(x2, fx2) < min{r1, λ1 + ε1}.

Let
λ2 = inf{d(x, fx) | x ∈ B(x2, r2) : x2 � x � fx}.

As seen above, we have λ2 ≤ r2. Again, if λ2 = r2, then B(x2, r2) is a minimal partially f -invariant
ball. Otherwise, we select x3 ∈ B(x2, r2) with

x2 � x3 � fx3, r3 := d(x3, fx3) < min{r2, λ2 + ε2}.
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Having defined xn ∈ X, let

λn = inf{d(x, fx) | x ∈ B(xn, rn) : xn � x � fx}.

In a similar way, we have λn ≤ rn , if λn = rn, then B(xn, rn) is a minimal partially f -invariant ball.
Otherwise, we select xn+1 ∈ B(xn, rn) with

xn � xn+1 � fxn+1, rn+1 := d(xn+1, fxn+1) < min{rn, λn + εn}.

Now, if there exists n0 ∈ N such that λn0 = rn0 , then B(xn0 , rn0) is a minimal partially f -invariant
ball. Otherwise, we obtain a nonincreasing sequence {xn} in X and a descending sequence of balls
{B(xn, rn)}. Thus there exists a subsequence {xnk

} of {xn} and a z ∈
⋂∞

k=1B(xnk
, rnk

) such that
z � fz and xnk

� z for all k ∈ N. Now since {rn} is nonincreasing, r := limn→∞ rn exists. Also λn
is nondecreasing and bounded above, so λ := limn→∞ λn also exists. Then for each n,

d(z, fz) ≤ max{d(z, xnk
), d(xnk

, fz)} ≤ rnk
.

Moreover,
λnk
≤ d(z, fz) ≤ r ≤ rnk+1

≤ λnk
+ εnk

, (k ∈ N).

Letting k →∞ we see that d(z, fz) = λ = r. Set

a = inf{d(x, fx) | x ∈ B(z, d(z, fz)) : z � x � fx}.

Since z ∈ B(xnk
, rnk

) and xnk
� z for all k ∈ N, we conclude that if x ∈ B(z, d(z, fz)) and

z � x � fx, then
d(x, fx) ≤ d(z, fz) ≤ rnk

,

hence, a ≤ rnk
. Moreover, λnk

≤ a since every closed ball in X is partially f -invariant. Thus

a = inf{d(x, fx) | x ∈ B(z, d(z, fz)) : z � x � fx} = r = d(z, fz).

Now if r = 0, then z is a fixed point of f in B(x0, d(x0, fx0). Otherwise, B(z, d(z, fz)) is minimal
partially f -invariant. �

Corollary 2.3. Theorem 2.2 remains valid if the ultrametric space (X, d) is replaced by a non-
Archimedean normed space (X, ‖ · ‖).

Now we give two examples to support our results.

Definition 2.4. Let X be the space l∞ over a non-Archimedean valued field K and x, y ∈ X. We
say y is a sub-member of x, if y = (0, 0, . . . , 0, xn, 0, . . . , 0, xm, . . .), where x = (x1, x2, x3, . . .). If y is
a sub-member of x, then we denote, y ⊂ x.

Example 2.5. Let X be the space c0 over K with the valuation of K discrete. Let e ∈ K with
0 < |e| < 1 and u = (e, 0, 0, 0, . . .). Fix z ∈ B(u, |e|). For all x, y ∈ X, define

x � y ⇐⇒ {x, y ∈ B(u, |e|), PM(y) ⊂ (e, e, e, . . .), PN(x) ⊂ (e, e, e, . . .)}

and
{(xN ⊂ yM ⊂ z) ∨ (x = y)},
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where N and M are the smallest positive integers such that xN = (xN+1, . . .) ⊂ z, yM = (yM+1, . . .) ⊂
z and PN(x) = (x1, x2, x3, . . . , xN , 0, 0, 0, . . .), PM(y) = (y1, y2, y3, . . . , yM , 0, 0, 0, . . .). Suppose f :
c0 −→ c0 is the mapping defined by

f(x) =

{
(e, x1, x2, x3, . . .) x ∈ B(u, |e|),
2x therwise.

If x � y, then x = y or x, y ∈ B(u, |e|), thus ‖fx − fy‖ = ‖x − y‖ and since x is a sub-member of
y, hence fx is a sub-member of fy, hence fx � fy. Therefore (M1) and (M2) hold. Now, we want
to show that the condition (M3) holds. Let {xn} be a sequence of nonincreasing points in X and
{B(xn, rn)} be a collection of nonincreasing balls. If for each n ∈ N, xn = xn+1, then we are done.
Otherwise, set

N0 = min{Nn ∈ N : Nn is the smallest positive integer that x
n
Nn
⊂ z}.

Let i ≥ N0. If there exists n ∈ N such that ith coordinate of xn is non-zero, then define vi := xni
and otherwise vi = 0. For i < N0, take vi = e. Put v = (v1, v2, . . .). For each n ∈ N0, x

n � v, this
means that v is an upper-bound for {xn}, so it is enough to show that v ∈ ∩B(xn, rn). Let n ∈ N0

be arbitrary. Select m ∈ N such that m > n, we have

‖xn − xm‖ ≤ max{‖xn − xn+1‖, ‖xn − xn+1‖, . . . , ‖xm−1 − xm‖}
≤ max{rn, rn+1, . . . , rm} = rn.

Thus for each n < m ∈ N, ‖xn−xm‖ ≤ rn. If there exists n ∈ N such that ‖xn− v‖ > rn, then there
exists i ∈ N such that |xni − vi| > rn. We have two case:

case 1 If i < N0, then vi = e and xni = e, which is a contradiction.

case 2 If i ≥ N0, then there exists m ≥ n such that xmi = vi, therefore |xni − xmi | > rn. Which is a
contradiction.

Hence, ‖xn − v‖ ≤ rn for each n ∈ N, so v ∈ ∩B(xn, rn). It is clear that v � fv. Therefore, M3

holds. f is fixed point free. Now we show that for each x ∈ B(u, |e|), d(x, fx) = |e|. Note that
d(u, fu) = |e|. Let x ∈ B(u, |e|). Then

‖x− u‖ = sup{|x1 − e|, |x2|, |x3|, . . .} ≤ |e| = d(u, fu).

Therefore |x2| ≤ |e|, |x3| ≤ |e|, . . . and |x1| ≤ max{|x1 − e|, |e|} ≤ |e|. Since K is a valuation field,
hence |x1| = |e| or |x1 − e| = |e|. If |x1 − e| = |e|, then ‖x− fx‖ = |e| = d(u, fu), because

‖x− fx‖ = sup{|x1 − e|, |x2 − x1|, |x3 − x2|, . . .}.

Otherwise, |x1| = |e|, similarity |x2 − x1| = |e| or |x2| = |e|. If |x2 − x1| = |e| then ‖x− fx‖ = |e| =
d(u, fu) and otherwise |x2| = |e|. Because (xn) ∈ c0, thus there exist n ∈ N such that |xn| < |e|,
let n0 be the smallest positive integer such that |xn0| < |e|, therefore |xn0 − xn0−1| = |e|, hence
‖x− fx‖ = |e| = d(u, fu). So for each x ∈ B(u, |e|),

d(x, fx) = d(u, fu).

Example 2.6. Let X be the space c0 over K with the valuation of K discrete. Define

x � y ⇐⇒ {x, y ∈ B(0, 1), PM(y) ⊂ (0, 0, 0, . . .), PN(x) ⊂ (0, 0, 0, . . . )}
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and
{(xN ⊂ yM ⊂ z) ∨ (x = y)},

and let e ∈ K with 0 < |e| < 1 and u = (e, 0, 0, 0, . . .). Consider the following mapping on c0

f(x) =

{
(0, x1, x2, x3, . . .), x ∈ B(u, |e|),
2x, o.w,

f is a nonexpansive mapping with fixed point 0. One can show that (M1), (M2) and (M3) hold.
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