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The main objective of this paper is concentrated on presenting a 

new two-stage method for damage localization and quantification 

in the linear-shaped structures. A linear-shaped structure is defined 

as a structure in which all elements are arranged only on a straight 

line. At the first stage, by employing Grey System Theory (GST) 

and diagonal members of the Generalized Flexibility Matrix 

(GFM), a new damage index is suggested for damage localization 

using only the first several modes’ data. It is followed by the 

second stage which is devoted to damage quantification in the 

damaged elements by proposing an optimization-based procedure 

to formulate fault prognosis problem as an inverse problem, and it 

is solved by the Pattern Search Algorithm (PSA) to reach the 

optimal solution. The applicability of the presented method is 

demonstrated by studying different damage patterns on three 

numerical examples of linear-shaped structures. In addition, the 

stability of the presented method in the presence of random noises 

is evaluated. The obtained results reveal good and acceptable 

performance of the proposed method for detecting damage in 

linear-shaped structures. 
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1. Introduction 

Since maintenance concerns influence the 

decision whether a structure needs 

rehabilitation or minor repairs, health 

monitoring of structures has always been of 

vital importance to the engineers. In this 

regards, a great deal of attention has been 

drawn to detect and quantify structural 

damages. Most of the recently developed 

damage identification methods are based on 

using vibrational properties of structures. The 

main idea for vibration-based damage 

detection is that the damage-induced 

variations in physical properties (such as 

structural stiffness) will cause detectable 

changes in the vibrational features (such as 

natural frequencies and mode shape vectors). 

Consequently, damages can be identified by 

inspecting changes in the vibrational 
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characteristics [1]. For instance, different 

direct vibration-based methods have been 

developed for identifying damage locations 

based on the natural frequencies [2, 3], mode 

shape vectors [4-8] and/or their derivatives 

[9-11]. Although these methods can localize 

damage, most of them cannot estimate 

damage severity. 

One of the well-known strategies for 

detecting damage severities as well as 

damage locations is those methods which 

formulate the problem as an optimization 

task [12-16]. In these methods, the cost 

function is defined using analytical model of 

the damaged structure with unknown damage 

severities in all elements. Then, an iterative 

strategy is employed to find optimal solution 

as damage detection results. Ghodrati Amiri 

et al. [13] proposed a model-based method 

for damage prognosis in plates by 

introducing modal data-based cost function. 

They solved the optimization problem via 

pattern search and genetic algorithms. Kang 

et al. [14] employed an improved version of 

the particle swarm optimization to detect 

structural damage and illustrated its 

efficiency by presenting a comparative study 

with other evolutionary optimization 

algorithms. Saada et al. [15] developed an 

optimization-based strategy for damage 

identification in beams using finite element 

model updating and particle swarm 

optimization. Ghodrati Amiri et al. [17] 

utilized democratic particle swarm 

optimization to detect structural damages in 

engineering structures using a new 

geometrical-based cost function. Kaveh and 

Zolghadr [18] suggested an improved version 

of the charged system search optimization 

algorithm and used it for damage localization 

and quantification in truss structures. 

Recently, Zare Hosseinzadeh et al. [16] 

identified structural damage by means of 

estimated static deflections and cuckoo 

optimization algorithm. 

Despite good performance of the 

optimization-based approaches in real cases, 

the complexity of the solution domain (due to 

the number of unknown damaged elements 

which is considered equal to the number of 

elements) and its ill-posed conditions can 

cause some difficulties in finding global 

extremums. In addition, researchers prefer 

approaches which need only a few lower 

modes’ data for detecting structural damages. 

This paper presents a new two-stage 

framework for damage identification in 

linear-shaped structures. The first stage is 

related to damage identification using Grey 

System Theory (GST) and Generalized 

Flexibility Matrix (GFM). At this stage, a 

novel damage index is suggested to localize 

damages by allocating only one parameter to 

each element of a linear-shaped structure. In 

the second stage, an optimization-based 

approach is proposed to quantify damages at 

the damaged elements. So, the complexity of 

the solution domain decreases because of 

decreasing the number of unknown 

parameters. The Pattern Search Algorithm 

(PSA), a derivative-free optimization 

strategy, is used for solving the optimization 

problem. Finally, the presented method is 

validated by studying several damage 

patterns on three numerical examples of 

linear-shaped structures under different 

conditions. 

2. Proposed method 

In this section the details of the suggested 

method are presented. At first, the proposed 

damage index for damage localization is 

introduced. Then, the optimization-based 

procedure for damage quantification in the 

detected elements is explained. 
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2.1. Damage localization 

This section presents details of the first stage 

of the proposed method which is devoted to 

damage localization in linear-shaped 

structures. Generally, a linear-shaped 

structure is defined as a structure in which all 

elements are arranged only on a straight line. 

In addition, the structure is fixed by one 

support (at one end). In other words, each 

member or each element of a linear-shaped 

structure is introduced by two nodes and each 

free node has only one degree of freedom 

(DOF). Shear frames are the best example of 

linear-shaped structures. Fig. 1 shows the 

finite element model of an N story shear 

frame in which each story can be defined as 

an element. From this figure, it is obvious 

that in a shear frame, there are N elements (or 

DOFs) and (N+1) nodes (= N free nodes + 

one fixed node). 

By considering these conditions, the free 

vibration problem for a structure with N 

DOFs and Ne elements can be presented as 

below: 

, 1, 2,...,i i i i N Kφ Mφ                    (1) 

where K and M are global stiffness and mass 

matrices, respectively. In addition, λi and φi 

are the i-th eigenvalue and related mass-

normalized eigenvector, respectively. 

By utilizing the first m modes’ data (i.e. the 

first m eigenvalues and related eigenvectors), 

the flexibility matrix (Fm) can be estimated as 

follows: 

1 T

m m m m

F Φ λ Φ                                           (2) 

in which Фm is a matrix which consists of the 

first m modes’ mass-normalized eigenvectors 

and λm is a diagonal matrix of the first m 

eigenvalues. 

 

Fig 1. Finite element model of a shear frame 

Based on Eq. (2), the flexibility matrix 

depends inversely on λi. Therefore, the higher 

modes’ contribution to the flexibility matrix 

decreases as the number of utilized modes 

increases. Although an acceptable estimation 

for inverse of the global stiffness matrix can 

be achieved by employing only the first m 

modes’ data, Li et al. [19] presented 

Generalized Flexibility Matrix (GFM) as an 

effort to strongly decrease the effects of 

higher modes’ data on calculating the 

flexibility matrix. By multiplying of 

flexibility matrix (Fm) in the expression 

(MFm)
l
, and doing some mathematical 

simplifications, the l-th order of GFM using 

the first m modes’ data is defined as below: 

( ) 1g l l T

m m m m

 F Φ λ Φ                                      (3) 

This paper uses the second-order of the GFM 

(l=2): 

(2) 3g T

m m m m

F Φ λ Φ                                        (4) 

Therefore, it can be inferred that the GFM 

decreases the impacts of the natural 

h

2

3

4

(N +1)

2nd story

3rd story

N th story

1

1

2

3

N

E
le

m
en

t 
N

o
. 
3

Node Number

Fixed Node

DOF Number

E
le

m
en

t 
N

o
. 
1

h
h

h

1st story



48 G. Ghodrati Amiri et al./ Journal of Rehabilitation in Civil Engineering 3-2 (2015) 45-58 

frequencies of higher modes, significantly 

and a suitable estimation of the flexibility 

matrix can be provided by utilizing only the 

first lower modes’ data. 

As mentioned before, the first stage of the 

presented method is aimed at proposing a 

damage localization index based on Grey 

System Theory (GST). GST is defined as a 

criterion for measuring amount of correlation 

between two regular sequences by means of 

some geometrical-based concepts using 

differences between baseline and test 

sequences [20]. Readers can find more 

details about GST in [21, 22]. Since changes 

in the diagonal members of the flexibility 

matrix between damaged and healthy states 

reveal a good range of sensitivity to 

damages, it seems that a sensitive damage 

index could be extracted by applying GST on 

the diagonal members of the flexibility 

matrix. Vectors D
u
 and D

d
 are defined by 

considering the diagonal members of the 

calculated GFM for intact structure (Fm
g(2),u

) 

and damaged structure (Fm
g(2),d

), respectively: 

(2), (2),

(2), (2),

{ (1,1) (2,2) ...

( , ) ... ( , )}

u g u g u

m m

g u g u T

m mi i N N

D F F

F F
   (5) 

(2), (2),

(2), (2),

{ (1,1) (2,2) ...

( , ) ... ( , )}

d g d g d

m m

g d g d T

m mi i N N

D F F

F F
  (6) 

If vectors D
u
 and D

d
 are considered as 

reference and test sequences, respectively, 

the Grey Relation Coefficients (GRC) can be 

calculated as below: 

min( ) max( )
( )

( ) max( )
GRC n

n



 






β β

β
                   (7) 

in which GRC(n) is GRC in the n-th point. α 

is defined as distinguishable coefficient to 

adjust the limit of the comparison domain, 

and is a number between 0 and 1. In the 

present study α is selected 0.5. Moreover, β is 

the grey variant vector defined as follows: 

 (1) (2) ... ( )
T

N  β                   (8) 

where; 

( ) ( ) ( )u dn n n  D D                               (9) 

Using calculated GRCs for all points, the 

GRC’s vector can be assembled as: 

{ (1) (2) ...

( ) ... ( )}T

GRC GRC

GRC i GRC N

GRC
             (10) 

Generally, GRC(n)>0.9 shows a complete 

relation for n-th point between the baseline 

and test sequences [21]. By considering this 

fact, vector T is proposed as: 

. T 1 0 GRC                                          (11) 

in which: 

1.0 ( ) , 1, 2,...,iT GRC i i N               (12) 

It should be noticed that Ti is considered zero 

for fixed nodes. So, for a linear-shaped 

structure (see Fig. 1), T has (N+1) members. 

The Ti can be normalized as below: 

, 1,2,..., , ( 1)
max( )

i
i

T
T i N N  

T
       (13) 

Finally, for the j-th element, the proposed 

damage index is defined as: 

( ) ( 1) , 1, 2,...,
j th element j jDI T T j N
      (14) 

where jT  is the normalized T in the j-th 

node. 

As mentioned before, this method is 

applicable to linear-shaped structures. The 

performance of the proposed damage index 

can be summarized as below:
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Fig 2. Flowchart of the Pattern Search Algorithm

“Since DI allocates a scalar to each element, 

the j-th element will be introduced as a 

damaged element if the calculated DIj is 

distinguishably bigger than zero.” 

2.2. Damage quantification 

The second stage of the proposed method is 

aimed at quantifying damage extents in the 

damaged elements by defining damage 

detection problem as an inverse problem. The 

main strategy in formulating cost function is 

based on evaluating different possible 

combination of damage severities in the 

damaged elements to find an appropriate 

arrangement of structural properties in the 

analytical model which can generate the 

vector D
d
 of the monitored structure. 

The stiffness matrix for the analytical model 

of the damaged structure is defined as: 

1 2

1

( , ,..., ) (1 )
e

e

N

u

N i i

i

x x x x


 K K              (15) 

where Ki
u
 is the stiffness matrix for the i-th 

element in the healthy state, and Ne is the 

number of elements. In addition, xi is the 

damage severity of the i-th element, which is 

a number between 0 and 1 for undamaged 

and fully damaged elements, respectively. 

Since the undamaged elements are 

recognized based on the results of the first 

stage of the presented method, x is equal to 

zero for undamaged elements, however, it is 

an unknown parameter for damaged 

elements. If the second order of GFM for the 

analytical model and related diagonal 

members are shown with Fm
g(2),x 

and D
x
, 

respectively, the proposed cost function can 

be written as below: 

( ) x dCost  x D D                                  (16) 

where || || is a sign for showing Euclidean 

length, and x is the vector of damage 

severities (with zero or unknown values for 

healthy or damaged elements) as follows: 

Define the cost function

Determine the pattern vector

Suggest the starting point

Evaluate the fitness at the starting point

Apply the pattern vectors to the given

point and establish a new set of points

Evaluate fitness at mesh points

Are there any improvements

in the cost function?

Check if stopping
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Yes
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Fig 3. Damage localization results for damage pattern (1) in the fifteen-story shear frame using (a) the 

first one mode’s data and (b) the first three modes’ data 

 

Fig 4. Damage localization results for damage pattern (2) in the fifteen-story shear frame using (a) the 

first one mode’s data and (b) the first three modes’ data

 1 2 ... , 0 1.0
e

T

N ix x x x  x     (17) 

Finally, the Pattern Search Algorithm (PSA) 

is employed for solving the presented 

optimization problem and finding optimal 

solution. PSA is a derivative-free, subclass of 

direct search methods [23] which has been 

utilized by different researchers to find global 

extremums in optimization problems. The 

flowchart of this algorithm is shown in Fig. 

2. This method can briefly be described in a 

way that initiates by establishing set of points 

called mesh around the given point which 

could be obtained from the previous iteration 

or from the first starting point provided by 

the user. The mesh is generated by adding a 

scalar multiple set of vectors called a pattern 

to the current point, afterwards, it explores a 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

D
I

(a)

 

 

0% Noise

3% Noise

5% Noise

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

D
I

Story Number

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

D
I

(a)

 

 

0% Noise

3% Noise

5% Noise

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

D
I

Story Number

(b)



 G. Ghodrati Amiri et al./ Journal of Rehabilitation in Civil Engineering 3-2 (2015) 45-58 51 

set of points (i.e. mesh) around the current 

point of parameters to locate a point where 

cost function has a lower value. When a point 

with a lower cost function value is identified, 

the algorithm assigns the point as its current 

position and the iteration is considered 

successful. After that, the algorithm 

continues through the next iteration with 

extended mesh size. For the PSA, there are 

different stopping conditions and by 

occurring each of them, the optimization 

procedure will be stopped. Reaching the 

maximum number of iterations, for instance, 

is one of the stopping conditions for PSA. 

Readers can find more information about 

PSA and its stopping conditions in [13, 24]. 

3. Numerical studies 

3.1. Fifteen-story shear frame 

The first example is concentrated on damage 

localization and quantification in a fifteen-

story shear frame. Table 1 presents the 

physical properties of this structure. Three 

studied damage patterns have been listed in 

Table 2. The patterns are simulated using 

presented strategy with Eq. (15). In this 

example, only the first -one and -three 

modes’ data are utilized for calculating GFM. 

The obtained damage localization results for 

free noise state are shown in Figs. 3-5 for the 

mentioned damage patterns. It can be seen 

that the proposed DI is able to identify 

damage locations efficiently, without any 

false results. By detecting damage locations, 

the second stage of the method is employed 

for damage quantification only at the 

damaged stories. The selected parameters for 

PSA are summarized in Table 3. It should be 

noticed that these parameters are selected by 

a trial and error scheme. As it is mentioned 

before, the PSA follow an iterative approach 

to find global extremums of the problem.  

Table 1. Physical properties of fifteen-story shear 

frame 

Story No. Mass (ton) Stiffness (MN/m) 

1~6 80 8.0 

7~9 50 8.0 

10~15 35 5.5 

 

Table 2. Simulated damage patterns in the 

fifteen-story shear frame 

Pattern (1) Pattern (2) Pattern (3) 

Story Damage 

(%) 

Story Damage 

(%) 

Story Damage 

(%) 

8 5 5 10 4 10 

 10 5 7 15 

   12 20 

 

Table 3. Input parameters for the Pattern Search 

Algorithm 

Bind tolerance 0.001 

X tolerance 1E-06 

Function tolerance 1E-06 

Maximum function evaluations 2000-8000 

Maximum number of iteration 200-1200 

Initial values zero 

 

Predicted damage severities for the simulated 

patterns are summarized in Table 4. It is 

obvious that the presented method can find 

damage severities with high level of accuracy 

when free noise data (i.e. ideal input data) are 

fed. 

Despite accurate performance of the 

presented method for damage identification 

using ideal input data, investigation its 

robustness in the presence of random noises 

is necessary to generalize its reliability for 

real SHM programs. Here, this issue is 

addressed by polluting natural frequencies 

with random noises as below [17]: 

(1 )n
i i iz                                            (18) 
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in which ωi
n
 and ωi are the i-th natural 

frequency with and without noise, 

respectively. In addition, η is the noise level, 

and zi is a random number between [-1 1]. In 

this section, natural frequencies are polluted 

with 3% and 5% of random noises. For the 

simulated damage patterns, Figs. 3-5 and 

Table 4 presents obtained results for damage 

localization and quantification, respectively. 

Although different levels of noises are added 

to input data, DIs are considerably bigger 

than zero for the damaged stories, therefore, 

judgment about the health of the stories can 

be made easily. Moreover, the predicted 

damage severities in the damaged stories 

show a good accordance with the simulated 

damages. This claim can be proved by 

evaluating amount of comparative errors 

between predicted and simulated damages. 

For instance, comparative errors for the third 

damage pattern (in the noisy states) have 

been presented in Table 4. These errors are 

justifiable by considering not only the 

absolute amount of the predicted damage 

severities, but also the severity of the 

simulated faults.  

 

Fig 5. Damage localization results for damage pattern (3) in the fifteen-story shear frame using (a) the 

first one mode’s data and (b) the first three modes’ data 

Table 4. Predicted damage severity (%) in the damaged stories of the fifteen-story shear frame 

Damage 

Pattern 

Damaged 

Story 

m=1 m=3 

η=0% η=3% η=5% η=0% η=3% η=5% 

(1) 8 5.00 5.17 5.40 5.00 6.02 6.38 
 

(2) 
5 10.00 9.84 11.62 10.00 10.17 11.70 

10 5.00 5.31 6.34 5.00 5.73 5.39 

 

(3) 

4 10.00 10.60 (6.0%)* 11.27 (12.7%) 10.00 11.53 (15.3%) 12.13 (21.3%) 

7 15.00 15.36 (2.4%) 15.70 (4.7%) 15.00 16.06 (7.1%) 14.91 (-0.6 %) 

12 20.00 20.57 (2.8%) 19.17 (-4.1%) 20.00 20.82 (4.1%) 21.35 (6.7%) 
 

m: number of utilized modal data for damage detection. 

η: noise level. 

*: comparative error [= 100{(predicted damage severity–actual damage severity)/actual damage severity}] 
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In addition, it can be concluded that by 

increasing the number of utilized modes the 

impacts of the noise is increased on the 

predicted damages and some differences may 

be appeared between simulated and obtained 

damage severities. 

3.2. Asymmetrical ten-story shear frame 

The second example is devoted to damage 

identification in a ten-story shear frame in 

which there is not any regularity in the 

material properties. The mass and stiffness 

for each story of this structure can be found 

in Table 5. In this example, two different 

damage patterns which are described in Table 

6 are studied to investigate the applicability 

of the suggested method. Similar to the 

previous example not only free noise case, 

but also noisy state is simulated by 

contaminating natural frequencies with 3% 

and 5% of random noises. It is assumed that 

only the first two modes’ data is available for 

constructing GFM. The obtained results for 

damage localizations are shown in Fig. 6 for 

both simulated patterns. By inspecting this 

figure, it can be concluded that the presented 

method is able to properly localize damages 

in the free noise and noisy states. After 

detecting damaged elements, the second 

stage of the method is performed to estimate 

damage severity in the damaged stories. The 

optimization parameters are similar to those 

which are listed in Table 3. The obtained 

results for damage quantification are 

summarized in Table 7. Although because of 

using noisy input data some differences can 

be seen between predicted and simulated 

damages, all damage severities are estimated 

with an acceptable accuracy. Therefore, this 

conclusion can be drawn that the method is 

able to effectively estimate damage locations 

as well as damage severities in irregular 

shear frames. 

Table 5. Physical properties of ten-story shear 

frame 

Story No. Mass (ton) Stiffness (MN/m) 

1~3 90 7.0 

4 50 4.5 

5~7 46 8.0 

8, 10 80 4.5 

9 35 6.0 

 

Table 6. Simulated damage patterns in the ten-

story shear frame 

Pattern (1) Pattern (2) 

Element Damage 

(%) 

Element Damage 

(%) 

4 10 2 15 

 6 20 

 

Table 7. Predicted damage severity (%) in the 

damaged stories of the ten-story shear frame 

Damage 

Pattern 

Damaged 

Story 

m=2 

η =0% η =3% η =5% 

(1) 4 10.00 9.84 10.21 
 

(2) 
2 15.00 15.34 16.22 

6 19.99 20.49 19.05 

m: number of utilized modal data for damage 

detection. η: noise level. 

 

As it is mentioned before, one of the main 

advantages of the proposed damage index is 

its ability in allocating only one value to each 

story (or element). This feature can avoid any 

mistake in localizing damages in comparison 

with those index-based methods which detect 

damages by reporting two indices for each 

element. In this section, this claim is 

numerically investigated by applying another 

damage localization index, named Modal 

Residual Force (MRF). MRF is one of the 

well-known damage indices which can 

localize structural damage by allocating non-

zero values to all free nodes of a damaged 

element.
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Fig 6. Damage localization results in the ten-story shear frame using the first two modes’ data for (a) 

damage pattern (1) and (b) damage pattern (2) 

 
 

Fig 7. Damage localization results based on MRF [25], in the ten-story shear frame using the first two 

modes’ data for damage pattern (2)

Here, MRF-based damage index which is 

proposed by Ge et al. [25] is employed for 

damage localization in the studied damage 

pattern (2) using those modal data which 

were fed in the above mentioned studies. The 

obtained results are shown in Fig. 7. From 

this figure, the 1st, 2nd, 5th and 6th DOFs 

are related to the damaged stories, so, the 

first, second and sixth stories are reported as 

damaged stories. As it is obvious, the first 

story has been detected as damaged story, 

mistakenly and this is because of the 

mentioned strategy in the MRF for 

considering a story as a damaged one. 

Therefore, it can be proved that the suggested 

damage index can be performed better than 

MRF to identify damage location in linear-

shaped structures. 

Table 8. Simulated damage patterns in the five-

story shear frame 

Pattern (1) Pattern (2) 

Element Damage 

(%) 
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(%) 
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Fig 8. Mean and one standard deviation values of the obtained DIs for damage pattern (1) of the five-

story shear frame using (a) the first one mode’s data and (b) the first two modes’ data. 

 
 

Fig 9. Mean and one standard deviation values of the obtained DIs for damage pattern (2) of the five-

story shear frame using (a) the first one mode’s data and (b) the first two modes’ data 

3.3. Five-story shear frame 

In the previous examples, different studies 

were carried out to investigate the 

applicability of the suggested method in 

detecting simulated damages. Despite 

acceptable performance of the presented 

method in the presence of noisy natural 

frequencies as input data, in the studies of 

this section, the sensitivity of the method in 

the presence of random noises in both natural 

frequencies and mode shape vectors is 

evaluated using statistical-based concepts to 

exactly judge on the applicability of the 

method in real cases. A five-story shear 

frame is considered. The mass and stiffness 

for all stories are equal to 50000 kg and 

200000 N/m, respectively. 

Two different damage patterns which are 

listed in Table 8 are simulated. To generate 

noisy input data, the natural frequencies and 

mode shape vectors are contaminated with 

2% and 1% noises, respectively, using the 

presented approach with Eq. (18). Since in 

the real programs there is not any regular 

scheme about noise levels and sources, in the 

present example the related modal data for 

each damage pattern is generated three times 

using different random numbers and then, the 

presented damage identification approach is 

applied by utilizing the first -one and -two 

modes’ data. For the first scenario, the mean 

and one standard deviation value of the 

obtained DIs are shown in Fig. 8. Because of 

feeding noisy input data, DIs are bigger than 

zero for all elements. However, the 
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calculated DI is considerably bigger than 

others for the damaged story, so the damaged 

story can be detected precisely. In this figure 

the mean value of all DIs has been shown as 

a ‘Threshold’ which can cause more 

convenience for finding damaged stories, 

especially in the real SHM programs. In this 

scenario, since the DIs are so close to the 

threshold in undamaged stories, therefore, the 

healthy elements can be detected easily. 

Similar to Fig. 8, Fig. 9 shows the mean and 

one standard deviation values of the damage 

localization results for the second damage 

pattern. In this figure, not only the first and 

fourth stories’ DIs are considerably bigger 

than zero, but also they are bigger than the 

threshold. So, it can be concluded that the 

first and fourth stories are damaged elements. 

By identifying damaged stories, the second 

stage of the method is employed for 

estimating damage severity. The optimization 

parameters are same as those which were 

selected in the previous examples (see Table 

3). The mean and one standard deviation 

value of the obtained damage severities are 

shown in Figs. 10 and 11 for damage patterns 

(1) and (2), respectively. The results have a 

good and acceptable accordance with the 

actual simulated damages, whether the first 

one mode’s data is used or the first two 

modes’ data. Therefore, it can be concluded 

that the presented method is a viable method 

for damage localization and quantification in 

linear-shaped structures. 

4. Conclusions 

A two-stage approach for damage 

localization and quantification in linear-

shaped structures was presented in this paper. 

Using Grey System Theory (GST) and 

diagonal members of the Generalized 

Flexibility Matrix (GFM), a new damage 

index was proposed at the first stage for 

damage localization. Then, damage severity 

was estimated by defining an optimization-

based procedure using Pattern Search 

Algorithm (PSA) to quantify damage at those 

damaged members which are localized at the 

first stage. The applicability of the suggested 

method was demonstrated by studying three 

different examples of shear frames, as 

common examples of linear-shaped 

structures, under different damage patterns. 

Based on the obtained results, some of the 

main advantages of the proposed method are 

summarized as below: 

• The proposed method can detect damage 

locations by allocating only one non-zero 

index to each element, so, it can perform 

better than those indices which need two 

non-zero values on the relative nodes to the 

damaged elements, 

• It can detect damages using only the first 

several lower modes’ data, which can be 

easily extracted in real SHM programs, 

• It reveals high level of sensitivity to 

damage as well as low level of sensitivity to 

noisy input data,  

 
 

Fig 10. Mean and one standard deviation values 

of the obtained damage severities in the damaged 

story (i.e. the second story) for damage pattern 

(1) of the five-story shear frame using (a) the first 

one mode’s data and (b) the first two modes’ data 
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Fig 11. Mean and one standard deviation values of the obtained damage severities in the damaged stories 

(i.e. the first and fourth stories) for damage pattern (2) of the five-story shear frame using (a) the first one 

mode’s data and (b) the first two modes’ data 

• It can detect single and multiple damage 

cases with high level of accuracy. 
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