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Graphene sheets are combined of Honeycombs lattice carbon-carbon bonds which have high 

natural frequencies, high strength, and high conductivity. Due to important applications of the 

graphene sheets particularly at higher frequencies, the study of their dynamic behavior is 

important in this frequency range. From Molecular Dynamics (MD) point of view as the 

dimensions of graphene sheet incline, the number of atoms increases, and as a result, its 

modeling becomes more time-consuming. Besides the experimental methods in small dimensions 

are difficult to conduct and not economical. In this research Finite Element Method (FEM) is used 

for frequency analysis of graphene sheets in various dimensions in order to study the capability 

of FEM in simulating the dynamic behavior of graphene sheets at small scales. In this research, 

the objective function is to find the minimum size of the sheet in which both methods have good 

convergence. Also, the time-consuming for the simulation is investigated. The time-consuming for 

analysis in the Finite Element Method is less than other methods, including Molecular Dynamics 

(MD), Generalized Differential Quadrature (GDQ), etc. Also, The results indicated that for circular 

single-layer graphene sheets simulation, using Finite Element Method (FEM) is in good 

agreement with the results obtained from the Molecular Dynamics (MD) simulation, in the radius 

more than 100 nm. In this research, the ABAQUS has been used for Finite Element Method (FEM) 

simulation. 
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1. Introduction 

Graphene, as one of the main allotropes of carbon 
in the single-layer state, is made of honeycombs 
lattice carbon-carbon bonds. This lattice has a very 
high natural frequency and also high strength and 
conductivity and can have higher properties in an 
electric field. The recent applications of graphene 
have been in different fields such as large scale 
measurement devices, sensors, transparent 
electrodes, solar cells, energy storage devices, 
polymer composites, and nanocomposites. 
Regarding the widespread applications of graphene 
at higher frequencies, the study of its different 
features particularly its dynamic behavior at this 

frequency range is important [1]. Recently, several 
studies have been conducted to clarify the dynamic 
behavior of graphene. In some of these 
investigations, the analytical methods have been 
used to study the vibrations of graphene sheets 
while in some others Molecular Dynamics 
simulations have been applied to derive the 
dynamic behavior of graphene. Leissa and Narita [2] 
studied the effect of Poisson's coefficient on the 
natural frequencies of a simply supported circular 
plate. Yongqiang and Jian [3] considered the effect 
of the different boundary conditions and different 
degrees of freedom on the natural frequencies of 
graphene. Aghababaei and Reddy [4] studied the 
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vibrational properties of a single layer graphene 
sheet using third-order non-local shear deformation 
theory. Arash and Wang [5] used both non-local 
continuum mechanics theory and molecular 
dynamics simulation to study the free vibrations of 
single layer and bi-layer graphene sheet and 
compared the results. Murmu and Pradhan [6] 
performed non-local elasticity theory to study the 
vibrational properties of single-layer graphene 
sheets and determined the effect of elastic 
circumstances on the first mode frequency of single-
layer graphene sheets. Neek-Amal and Peeters [7] 
investigated the effect of radial loads on buckling 
and stiffness properties of circular graphene single-
layer sheet using Molecular Dynamics model. 
Mahmoudinezhad and Ansari [8] modeled the 
vibrational properties of circular and square single-
layer graphene sheet using Finite Element Method 
(FEM). Asemi and Farajpour  [9] studied the effects 
of thermal changes on vibrational behavior of 
circular graphene sheets. Gong et al. [10] modeled 
the circular graphene sheets and studied the 
vibrations of mass sensors. They also compared the 
natural frequencies of these sheets with the results 
of the Rayleigh method and investigated the effects 
of temperature and stress on the natural 
frequencies. Natsuki et al. [11] obtained the natural 
frequencies of bilayer graphene sheets. Mohammadi 
et al. [12] modeled the circular and annular 
graphene sheets with various boundary conditions 
by deriving their analytical equations. Mortazavi et 
al. [13] investigated the thermal conductivity of 
graphene epoxy nanocomposites using a hybrid 
method of FEM and molecular dynamics. Ansari et 
al. [14] used a non-local model in small dimensions 
to determine the characteristics of Multi-layer 
graphene sheet vibrational properties in the elastic 
area for different boundary conditions. In this 
simulation, FEM was used to investigate the effect of 
length and modulus of elasticity on the vibrational 
behavior of graphene laminated sheets. Rouhi and 
Ansari [15] designed an atomic model of single-
layer graphene sheet using FEM in order to study its 
vibrational behavior. Based on their model, the 
natural frequencies of the graphene sheet was 
obtained with different boundary conditions and 
various dimensions. This study indicated that the 
vibrational behavior of graphene sheet could be 
modeled by using Molecular Dynamics simulation, 
numerical solution of the governing equations or 
analytical methods. The implementation of these 
methods requires the various stages, such as: 
extracting governing equations, a computational 
method and analyzing the vibrational signals. 
Molecular Dynamics (MD) method is commonly 

used to simulate the vibrational behavior of nano-
scale sheets. Based on the literature [12], the 
accuracy of MD method is verified. When the size of 
the sheet is enlarged (for example, a circular sheet 
with a radius of more than 10 nanometer), the CPU 
time is usually prolonged, due to the increase in the 
number of particles. Based on the other researches 
[16], it is possible to simulate nano-sheets in nano-
scale by a Finite Element (FE) method (without 
considering non-local coefficients in the FE 
simulation). Although, the main problem is to find 
the minimum dimension of nano-sheet, which the 
results of Finite Element method would have good 
agreement with Molecular Dynamics method. The 
main objective of this paper is to find the minimum 
size of the circular sheet in which both methods 
have good convergence. Furthermore, the solving 
time is presented in both finite element and 
molecular dynamics method. For this purpose, At 
the First, the theory of this problem is explained, 
then the effect of mesh resizing on the convergence 
of the solutions for the natural frequency values is 
checked and the best mesh size is suggested. Finally, 
the simulation results are verified. The result of FE 
modeling in various dimensions with those of the 
Molecular Dynamics modeling and the results 
obtained by other researchers would be compared. 
Furthermore, the simulation CPU time is studied. 

2. Theory and Governing Equations 

2.1. Free vibrations of a single-layer circular sheet 
based on the non-local theory 

The graphene single-layer sheet displacement 
equation based on the non-local method is given by 
Eq. (1) [12]:  

(1) 

D∇2(∇2w) + 𝐾𝑤w − 𝐾𝐺∇2w
− 𝐾𝑤(𝑒0a)2∇2w
+ 𝐾𝐺(𝑒0a)2∇2(∇2w)

− ρh(𝑒0a)2∇2 (
∂2𝑤

𝜕𝑡2
) + ρh

∂2𝑤

𝜕𝑡2
= 0 

In this equation, 𝑤 is the transverse 
displacement, 𝑒0a is the non-local coefficient, 
𝐾𝑤  and 𝐾𝐺  are the Winkler modulus, and ∇2 is the 
laplacian operator. It is worth to mention that if 
𝑒0a = 0, Eq. (1) transforms into a classic one. Also, D 
is the flexural strength calculated according to Eq. 
(2) [12]; 

(2) 𝐷 =
𝐸ℎ3

12(1 − 𝜐2 )
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where E is the modulus of elasticity, h is the sheet 
thickness and υ is the Poisson coefficient. The 
displacement of the sheet can be calculated from Eq. 
(3) [12]:  

(3) 𝑤(𝑟, 𝜃, 𝑡) = 𝑤(𝑟, 𝜃)𝑒𝑖𝜔𝑡 

where 𝑖 = √−1 and 𝜔 indicates the natural 
frequency. 

By inserting Eq. (2) into Eq. (1) and using Eq. (3), 
the following would be derived [12]:  

(4) D∇2(∇2w) + γ2∇2w − λ4 = 0 

In which γ2 and λ4 are obtained as follows [12],  

(5) γ2 =
(

ρh(𝑒0a)2ω2

𝐷
−

𝐾𝐺

𝐷
−

𝐾𝑤(𝑒0a)2

𝐷
)

(1 +
𝐾𝐺(𝑒0a)2

𝐷
)

 

(6) λ4 =
(

ρhω2

𝐷
−

𝐾𝑤

𝐷
)

(1 +
𝐾𝐺(𝑒0a)2

𝐷
)
 

By solving the eigenvalue problem given by Eq. 
(4), the values of the dimensionless natural 
frequencies are obtained as Eq. (7) [12]:  

(7) 𝛺 = √
ρh

𝐷
 𝜔𝑅1

2 

2.2. Finite Element Model 

FEM is one of the numerical solution methods of 
Partial Differential Equations (PDEs) and also 
integral equations. In this method, the numerical 
solution of equations is given by converting the 
partial differential equations into Ordinary 
Differential Equations (ODEs). The aim of solving 
partial differential equations is to achieve a simple 
and stable equation so that it does not lead to 
inaccurate and unreasonable results. This method 
solves the problem by dividing a continuous domain 
into subdomains called elements. Researchers have 
invented various types of element especially 
triangular and quadrilateral elements, some of them 
are very complex. According to the Kirchhoff law, 
shear deformation is neglected in thin plates. Using 
equilibrium relations and assuming that the flexural 
strength, D, and the force, q, are constant, the 
differential equation of the fourth order is obtained 
as [17]:  

(8)  D (
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+

∂4w

∂y4
) − q = 0 

If the mechanical behavior of the material is 
homogeneous, the flexural stiffness can be obtained 
from Eq. (2) [17].  

In this research, square elements with 4 nodes are 
used. This element has 12 degrees of freedom in each 
node; therefore in order to approximate the free-
motion of 𝐰, a polynomial with 12 parameters are 
implemented (Eq. (9)) [17].  

(9) 

w = α1 + α2x + α3y + α4x2 + α5xy + α6y2

+ α7x3 + α8x2y + α9xy2

+ α10y3 + α11x3y
+ α12xy3 

where α  coefficients are constant and are obtained 
considering the boundary conditions. Also, 
considering the deflection, w, in each of four nodes of 
the element, the shape function is determined as 
follows (10):  

(10) 

Ni
T

=
1

8
(1 + ξ0)(1

+ η0) {

2 + ξ0 + η0 − ξ2 − η2

bηi(1 − η2)

−aξi(1 − ξ2)

} 

In this Equation, a and b are constant coefficients 
and depend on the type of element [17]. Also, ξi and ηi 
are the local coordinates of each element node, and ξ 
and η are local coordinate axes and are defined as Eqs. 
(11) and (12).  

(11) ξ0 = ξξi 

(12) η0 = ηηi 

Considering the above equations, the stiffness 
matrix of each element can be calculated as Eq. (13) 
[17]:  

(13) 
Ke = ∫ BT DBdxdy 

B Matrix is defined as follows:  

(14) B = [Bi] = [B1, B2, B3, B4] = (L∇)N 

In this equation, L is the Lagrangian and N is a 
shape function of the element [17]. 
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3. Simulation 

At first, according to the mechanical properties 
of graphene, the sheet is modeled by ABAQUS. In the 
present work, the vibrational properties of the 
circular graphene sheet are examined in different 
dimensions. This result is compared with those of 
other studies. Another simulation is implemented 
using molecular dynamics (MD) model. Taking into 
account intermolecular forces, MD model has a high 
degree of accuracy in calculating the behavior of 
nano-scale sheets. In this research, MD and FE 
methods are compared. As a result, the best 
simulation method is represented, based on 
accuracy and CPU time. In order to model in terms 
of Finite Element (FE), square element with 4 nodes 
has been selected in this research. In this type of 
element, each node has 3 degrees of freedom. 
Therefore, the square element has 12 degrees of 
freedom. It is worth to mention that the strain 
matrix is not fixed in linear square elements; 
therefore this type of element, gives more accurate 
results for the stress and strain matrices. Also, the 
governing equations are simpler due to their regular 
and symmetrical geometry. Therefore, the CPU time 
of analysis decreases.  

3.1. Mechanical Properties of the Circular Sheet 

In order to calculate the natural frequencies and 
mode shapes of the circular graphene sheet, 
ABAQUS is implemented. The properties of this 
sheet are given in Table 1. In this table, 𝛒 refers to 

mass density, E is elasticity modulus, h is the thickness of 

graphene sheet and 𝝊 is Poisson’s ratio. 

3.2. Mesh Convergence 

The circular sheet is simulated using ABAQUS, 
according to the properties listed in Table 1. In 
order to achieve the desired accuracy, the optimum 
number of elements is selected. After choosing the 
best type of element, the simulation is done. The 
meshed graphene sheet is shown in Fig. 1. This 
figure is a sample. The optimum number of 
elements should be selected. 

Table 1. Mechanical properties of the single-layer graphene 

sheet [12]. 

υ h(nm) E(TPa) ρ(
𝐾𝑔

𝑚3⁄ ) 

0.33 0.34 1.06 2300 

 

 

Fig. 1. Graphene Elemental Model. 

In order to ensure that the results of the Finite 
Element (FE) Model are accurate, the convergence 
analysis is implemented, and the effect of change in 
number of elements on natural frequencies in the 
simulated model was checked. Obviously, as the 
number of elements increases, the size of the 
elements becomes smaller. This study has been 
carried out for various sheet size. For example; the 
variations diagram of the third and sixth natural 
frequencies of the circular sheet with a radius of 20 
nm have been presented in Figs. 2 and 3. The most 
suitable mesh size of 8400 elements has been 
suggested for the computation of natural 
frequencies by taking into account the lowest error 
value.  

 
Fig. 2. Study the Effect of  number of elements on the third 

natural frequency. 

 

Fig. 3. Study the Effect of  number of elements on the sixth 
natural frequency. 
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4. Results and Discussion 

4.1. Results of Finite Element Model 

In this section, after achieving desire accuracy, 
the results of a circular graphene sheet analysis, 
with the properties given in Table 1, are presented. 
The natural frequencies and mode shapes of this 
sheet are shown.  

For validation, the comparison of the results of 
this work with those of another study is indicated in 
Table 2. The value of the non-local coefficient is set 
according to the desired frequencies. This 
comparison is executed for sheets with the radius of 
6, 7, 8, 10, 15 and 20 nm. 

Table 2. Comparison of natural frequencies (GHz) of the circular 

sheet with simply support boundary conditions. 

error 
(%) 

Finite 
Element 
(present 

study) 

Mohammadi et 
al. [12]  

Number 
of 

modes 

radius 
(nm) 

Frequency  𝑒0a 

0.292 49.0878 49.232 0 1 

6 

0.433 136.828 136.2383 0.5 2 
0.433 136.828 136.2383 0.5 3 
0.821 249.741 247.7065 0.5 4 
1.764 251.037 255.5455 0 5 
1.635 291.667 296.5175 0 6 

0.165 36.1107 36.1705 0 1 

7 

0.768 100.863 100.0935 0.5 2 
0.768 100.863 100.0935 0.5 3 
1.393 184.524 181.9884 0.5 4 
1.114 185.655 187.7477 0 5 
1.037 215.590 217.8496 0 6 

0.33 27.7846 27.693 0 1 

8 

0.092 78.0700 77.9978 0 2 
0.395 78.3064 77.9978 0 3 
0.211 143.440 143.7443 0 4 
1.608 146.056 143.7443 0 5 
1.485 169.268 166.7911 0 6 

0.041 17.7308 17.7235 0 1 

10 

0.398 49.7199 49.9186 0 2 
0.279 49.7792 49.9186 0 3 
0.723 91.3311 91.9964 0 4 
0.206 92.1862 91.9964 0 5 
0.262 107.027 106.7463 0 6 

0.856 7.85775 7.791 0 1 

15 

0.049 21.9545 21.9436 0 2 
0.049 21.9545 21.9436 0 3 
0.286 40.3246 40.4404 0 4 
0.286 40.3246 40.4404 0 5 
0.168 46.8451 46.9243 0 6 

0.894 4.4217 4.3825 0 1 

20 

0.182 12.3658 12.3433 0 2 
0.183 12.3660 12.3433 0 3 
0.062 22.7334 22.7477 0 4 
0.021 22.7447 22.7477 0 5 
0.050 26.4083 26.3949 0 6 

Table 3. Comparison of natural frequencies (GHz) of the simply 

supported sheet with radius 20 (nm) with other references. 
Finite 

Element 
(presen
t study) 

Referenc
e [18] 

Referenc
e [2] 

Reference 

[12] 

Numbe
r of 

modes 

4.4217 4.38308 4.38308 4.3825 1 

12.3658 12.3432 12.3432 12.3433 2 
12.3660 12.3432 12.3432 12.3433 3 
22.7334 22.7493 22.7476 22.7477 4 
22.7427 22.7493 22.7476 22.7477 5 
26.4083 26.3942 26.3951 26.3949 6 

 

   
c- mode 3 b- mode 2 a- mode 1 

   
f- mode 6 e- mode 5 d- mode 4 

Fig. 4. Mode shape of a circular sheet with the radius of 20 nm 

from FEM model: a) Mode 1, b) Mode 2, c) Mode3, d) Mode 4, e) 

Mode 5 and f) Mode 6. 

In order to ensure the accuracy of the results, the 
natural frequencies of the circular sheet with the 
radius of 20 nm are validated against several 
previous works which are summarized in Table 3. 

In addition to the natural frequencies, the mode 
shapes of the single-layer graphene sheet are also 
obtained, which are shown in Fig. 4, for a sheet with 
the radius of 20 nm. 

4.2. Results of Molecular Dynamics Model 

The aim of this section is to find the lowest 
radius of the circular single-layer graphene sheet, 
which corresponds to the natural frequency 
calculated by FEM compared to the natural 
frequency obtained from the MD method. Molecular 
Dynamics (MD) has been suggested in studies that 
are costly and time-consuming. This method has 
often been applied in very small dimensions by 
researchers. According to the physical laws, 
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simulation using Molecular Dynamics (MD) has 
been conducted by determining the type, position, 
properties of atoms and the force between them. In 
the following, the Molecular Dynamics (MD) model 
of the circular graphene sheet is also carried out, 
and its results are compared with those of FEM. A 
circular graphene sheet that is modeled by 
Molecular Dynamics method is shown in Fig. 5. 

For simulating the graphene sheet in the 
Molecular Dynamics (MD) model, Carbon-Carbon 
bonds are simulated by Tersoff potential model. The 
simulation is executed in room temperature. As the 
initial condition, a pulse is applied to graphene sheet 
by step-time of 0.001 ps. In this method, the particle 
displacement is considered as an output [19]. In the 
frequency decomposition method that is presented 
by Brincker et al. [20], the natural frequencies and 
mode shapes are extracted after estimation of 
spectral density matrix and applying the 
decomposition method for the singular values on it. 
For this purpose, after ABAQUS simulation, the first 
natural frequency of the sheet with different radius 
is compared with MD Model and the results are 
summarized  in Table 4. Also, the CPU time of 
simulation using both methods is presented in this 
table. The configuration of the system that is utilized 
for the simulation is Intel® Xeon® Processor X5675 
(12M Cache, 3.06 GHz, 6.40 GT/s Intel® QPI) FC-
LGA10) with Random Access Memory as 64 GB. 

 

Fig. 5. A circular Graphene sheet with the radius of 8 nm that is 

modeled by Molecular Dynamic Method in LAMMPS software. 

Table 4. Comparison of the  first mode frequency (GHz) of the 

sheet with simply supported boundary condition in two Finite 

Element (FE) Models and Molecular Dynamics (MD) Models. 

ref. 
[14] 

MD FEM 
Radius 
(nm) 

Time-
consuming 

(min) 

Frequency 
(GHz) 

Time-
consuming 

(min) 

Frequency 
(GHz) 

27.693 372 39.0625 0.11 27.7846 8 
4.3825 1254 13.4277 0.23 4.4263 20 
1.8234 4856 8.5449 0.43 1.9674 30 
0.9576 6249 7.3242 0.64 1.1062 40 
0.4365 7203 4.8828 0.82 0.49161 60 

 

As a result of the comparison, the first natural 
frequency of FE and MD models versus radius of the 
graphene sheet is plotted in Fig. 6. According to this 
figure, the predicted radius that results of FE and 
MD models are matched is 100 nm. In low radius, 
the non-local effects are high. The Finite Element 
Model does not consider these effects. Therefore, 
the difference between MD and FE models in low 
radius is high. This difference in the radius greater 
than 100 nm is reduced to a desirable level. Also, 
according to table 4, the CPU time for MD simulation 
is more than FE simulation. Simulation time for 
graphene sheets with radius of higher than 20 nm, 
take long more than one day, although this time for 
FE simulation is less than one minute. According to 
table 4 in comparison with table 2, the non-local 
coefficient by increasing the radius of the sheet 
tends to zero. In other words, by increasing the 
sheet size, the effects of intermolecular forces 
decrease as well as the difference between natural 
frequencies of MD and FE simulation decreases. 
According to Table 2 and 3, the second and third 
modes, as well as the fourth and fifth modes, are 
doubled modes. As shown in Fig. 6, whatever the 
radius of the sheet increased, the FE and MD results 
became closer together. It’s due to a reduction in the 
non-local effects in Molecular Dynamics (MD) 
model, Also the model is approached to the classic 
model. Therefore, due to the time-consuming 
simulation by Molecular Dynamics (MD) model, 
results larger than 60 nm radius is predicted by 
extrapolation. Consequently, in large dimensions, 
graphene single-layer circular sheet, due to a large 
number of atoms, simulation by Molecular 
Dynamics (MD) is very time consuming, and 
ABAQUS can be used for this modeling.  

5. Conclusions 

In this article, the dynamic behavior of circular 
graphene sheets has been investigated using FE and 
MD methods. In order to guarantee the accuracy of 
the results of the FE method, the natural frequencies 
of the nano-sheet are verified by those of other 
studies [12]. Also, the effect of sheet size on the 
accuracy of simulation by Finite Element is studied. 
This research aimed to find the minimum size of 
nano-sheet, which the results of finite element 
method would have good agreement with molecular 
dynamics method. The main objective of this paper 
is to find the minimum size of the circular sheet in 
which both methods have good convergence. 
Furthermore, the solving time is presented in both 
finite element and molecular dynamics method. 
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Generally, the results of this study can be 
summarized as follows: 
1. The results showed that the Finite Element 

results in the radius of 8 nm are a better adapted 
to the classic sheet model. 

2. The CPU time of simulation in the molecular 
dynamics method in large scales is very high, due 
to the increase in the number of atoms. 

3. The results of the frequency analysis of the 
ABAQUS with a radius of 100 nm and greater are 
close to the Molecular Dynamics results. 
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