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Nowadays, functionally graded materials (FGM) are widely used in many industrial, 

aerospace and military fields. On the other hand, the interest in the use of shrink-fitted 

assemblies is increasing for designing composite tubes, high-pressure vessels, rectors and 

tanks. Although extensive researches exist on thick-walled cylindrical shells, not many 

researches have been done on shrink-fitted thick FGM cylinders. In this paper, an 

analytical formulation for shrink-fitted of axisymmetric thick-walled FGM cylinders based 

on the linear plane elasticity theory is presented. The stresses and displacement fields in 

thick cylindrical shells are calculated using the real, Repeated and complex roots of 

characteristic equation. The displacements and stresses resulted are depicted for a case 

study. The results show that the material composition variation had evident effects on 

shrink-fit pressure in the intersection area of two fitted tubes. The value of this pressure 

affects radial and hoop stress distribution in FG circular cylinders walls. 

 

1. Introduction 

Functionally Graded Materials (FGMs) are 
advanced composite materials in which two or 
more different material ingredients change 
continuously and gradually. This results in 
elimination of interface problems, and 
consequently, uniformity of stress and 
temperature distribution. FGM materials are 
made from ceramic and metal. Usually, the 
composition varies from a ceramic surface to a 
metal surface. These changes are considered as 
power or exponential functions in the thickness 
directions [1-3]. 

To date many theorists and practitioners have 
intensively studied shell structures (e.g., 
cylindrical, spherical, etc.). Axisymmetric thick-
walled cylindrical shells are common structural 
elements in many engineering applications, 
including pressure vessels, submarine hulls, 
rocket chambers, fuel storage tanks and many 
other structures. In order to optimize the weight, 
mechanical strength, displacement and stress 
distribution of a shell structure one approach is 
to use shells with functionally graded materials 
[4-8]. 

Shrink fitting is a process in which an 
interference fit is achieved by a relative size 
change after assembly. This is usually achieved 
by heating or cooling one component before 
assembly and allowing it to return to the ambient 
temperature after assembly [9, 10]. Heating the 
outer part may take a long time, and in some 
cases metallurgical reasons may prevent heating 
altogether. However, cooling the inner part will 
not affect the property of the material, and can be 
achieved much faster. Shrink fitting is a method 
used in making mechanical joints when axles, 
bushings and similar are to be fitted inside a part 
with a hole. Shrink-fitting is an effective way of 
assembling machine elements such as a gear to a 
shaft to transmit torque. In addition, shrink-fitted 
assemblies are widely used for steel rolling in the 
production of I-beams and rail sections. The 
advantage of a shrink-fitted assembly is that it is 
simple to manufacture, has high integrity and is 
capable of being subject to high loads. Shrink 
fitting of layered cylinders is a way of extending 
the fatigue lifetimes [11-15]. 

In 1852 for the first time, lame’ proposed the 
exact solution of axisymmetric thick-walled 
cylindrical shells made of homogeneous and 
Isotropic material [16]. He used plain elasticity 
theory to obtain the stress distribution. 
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Lechnitsky in 1950 formulated the elasticity 
theory of composite structures [17]. In 1984, 
Niino et al. presented the concepts of FGM 
materials [18]. In 2006 Hongjun et al. derived the 
exact solution of FGM hollow cylinders in the 
state of plane strain with exponential function of 
elasticity modulus along the thickness of the 
cylinder [8]. In 2012, Ghannad and Zamani Nejad 
proposed a complete elastic solution of 
pressurized thick cylindrical shells made of 
heterogeneous FG materials [6]. They used plane 
elasticity theory. In 2018, Pourasghar et al. 
analyzed the three‐dimensional thermoelastic 
deformation of FGM cylindrical shells subjected 
to thermal load [19]. 

During the past years, many scholars have 
studied the stress and strain distributions in 
hollow cylindrical shells made of FG materials but 
to the best of our knowledge, there is no complete 
analytical formulation for shrink-fitted thick FGM 
cylinders with a power variation of material 
properties. In 2006, Jehed et al. [13] studied the 
fatigue life time of multi-layer shrink-fitted 
cylinders made of homogenous materials. In 
2012, Sharifi et al. investigated optimum design 
of shrink-fit multi-layer compound cylinders 
made of homogenous materials employing an 
analytical method [15]. In 2015, Arslan and Mack 
[20] presented an analytical formulation for 
rotating shrink fitted cylinders with considering 
thermal effects. In their study the outer cylinder 
is made of FG material and the inner part is a 
homogenous shaft. They only considered the real 
distinct roots of the characteristic function. In 
2017, Apatay et al. [21] investigated elastic–
plastic design of a rotating shrink fit with 
functionally graded hub using semi-analytical 
formulation. Motivated by the aforementioned 
remarks the focus of this research is to develop a 
complete analytical formulation for the behavior 
of shrink-fitted thick FGM cylinders based on 
linear plain elasticity theory. The final 
formulation is a closed-form solution of the 
differential equations therefore a purely 
analytical discussion of the problem is possible. 
The presented formulation is general as it 
considers all the possible roots of the 
characteristic function. So it can be used for any 
grading index and any end boundary condition. 
The remaining of this article is organized as 
follows: In section ‘‘2,’’ analytical model is 
derived. In section ‘‘3,’’ a case study is presented. 
Finally, in section ‘‘2,’’ concluding remarks are 
made. 

2. Formulation 

According to the plane elasticity theory, it is 
assumed that all the plane sections perpendicular 
to the central axis of cylinder, after applying 
pressure, remain flat and perpendicular to the 

central axis. The resultant deformations are 
symmetric with respect to the central axis and 
their values do not change along the length of the 
cylinder. Thus, the radial displacement ur is only 
a function of radius r and both longitudinal stress 
σx and strain εx have constant values and normal 
stresses are principal stresses [22]. 

(1) x r   

The stress equation in the absence of body 
forces is defined by Eq. (2). 

(2) 0rrd

dr r
 

  

Moreover, strain-displacement relation for 
axisymmetric case is defined as 

(3)    r r
r

du u
,

dr r
 

And for isotropic and heterogeneous material 
the stress is related to the strain as 

(4)  
 

        
    

        

r rA B
E r

B A
 

where A and B are functions of Poisson’s ratio and 
they are defined based on boundary conditions. 
In this paper, we assume that the Young’s 
modulus is a power function of radius [23]. 

(5)  
 

   
 

n
n

i i
i

r
ˆE r E E r

r
 

where Ei and ri are Young’s modulus and radius at 
inner side of the cylinder. n is heterogeneity 
constant of material. 

Substituting Eqs. (3) and (4) in Eq. (2), one can 
obtain 

(6)  
2

2

2
1 1 0

 
     

 

r r
r

d u du B
r n r n u

dr Adr
 

Eq. (6) is a homogeneous, linear second order 
ODE (Cauchy-Euler equation), in which the roots 
of the characteristic polynomial 

(7) 
2 1 0

B
m nm n

A

 
    

 
 

could be real distinct, repeated and complex. The 
roots of the characteristic polynomial are 

(8) 2
1 2 4 1

2
,

n B
m , n n

A

    
     

 
 

2.1. Real distinct roots 

In this case, Δ > 0, the general solution of Eq. 
(6) is: 
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(9)   1 2
1 2

m m
ru r C r C r  

Using Eqs. (3) and (4), we get 

(10)  
 

 

11
1 1

12
2 2





  
  
 

  

m

n
i m

C Am B r
ˆr E r

C Am B r

 

The general equations of FGM cylindrical 
shells subjected to external and internal uniform 
pressure can be found in [6]. In this study, the 
derived equations for σr and σθ are simplified 
version of those equations as the outer cylinder is 
only subjected to internal pressure and the inner 
cylinder is subjected to external pressure. 
According to Fig. 1, we can consider the following 
loading conditions. It is assumed that both 
members have the same length. 

 
Outer cylinder: 

(11) 
2 1

0r r r r r r r ri o
P ,        

Inner cylinder: 

(12) 
3 2

0r r r r r r r ri o
, P        

Therefore, based on Eqs. (10), (11) and (12), 
the constants C1 and C2 can be obtained. Eqs. (13) 
and (14) show the constants C1 and C2 for outer 
and inner cylinders respectively. 

(13) 

 

 

 

 

1 12
1 2

1
2 1

2 1 1 1

1 21
1 2

2
2 1

2 2 1 1





 
 

  
 

 
 

  
 

mm

m m

mm

m m

Pk r
C

E Am B k k

Pk r
C

E Am B k k

 

 

(14) 
 

 

2
1

1 2 1
3 2 13 2 2

2
2

2 1 2
3 2 23 2 2

 
 

  
 

 
 

  
 

m m mn

m m mn

Pr
C

E k r Am B k k

Pr
C

E k r Am B k k

 

 
where 

(15) 
1 2

1 2
2 3

 
r r

k , k
r r

 

Substituting C1 and C2 in Eqs. (4) and (9), we 
have the following equations. 

 
 
 

Outer cylinder: 

(16) 
1

2 11 2
1 1

1 2
1 1


 

   
 

n
m mm m

r m m

ˆPr
ˆ ˆk r k r

k k
 

(17) 

1
2 11

1
1 2

1
1 1

1 22
1

2





 
   






n
m m

m m

m m

ˆ A BmPr
ˆk r

Am Bk k

A Bm
ˆk r

Am B

 

(18)  

2 1
1

12
O

1 21 2
12 1 1

2

 
 
 
 

         
 

m m

r m mm m

ˆk r

Am BPr
u r

ˆk rE k k

Am B

 

Inner cylinder: 

(19) 
1 2

2 1 1
22 2

 



    
  

 
 

n m n m
r m m n

P
ˆ ˆr r

ˆk k rk

 

(20) 

1
11

2 1
1

2 2

22

2








 
   






n
n m

m m

n m

ˆ A BmPr
r̂

Am Bk k

A Bm
r̂

Am B

 

(21)  

1

12
I

22 1
3 2 2 2

2

 
 
 

  
         

 

m

r mm mn

r̂

Am BPr
u r

r̂E k k k

Am B
 

Now we should deal with the contact pressure 
P. Prior to assembly, the outer radius of the inner 
cylinder was larger than the inner radius of the 
outer cylinder by the radial interference δ. For 
Shrink-fitting the input of the problem is the 
radial interference, therefore the contact 
pressure is the result of δ. 

(22)    2 I 2 Ou r r u r r     

Substituting Eqs. (18) and (21) into (22), the 
contact pressure can be obtained. 

 

Fig 1. Schematic model of inner and outer cylinders and 
their notations 
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2.2. Repeated roots 

In this case, Δ = 0, the general solution of Eq. 
(6) is 

(23)    1 2
m

ru r C C lnr r  

Following the same steps as section 2.1, we 
achieve to the Eqs. (24) to (31). 
 
Outer cylinder: 

(24) 

 

   

  

1
1 2 1

2 1 2

2 1
2 1 2





    





m

m

P A Am B lnr
C

E Am B lnk r

P
C

E Am B lnk r

 

 

(25) 
 1

1

1

 
 

    
 

m n

r

ˆ kPr
ln

ˆlnk r
 

(26) 
 

 

1 2 2
1

2
1

 



 
    

  

m nˆ kPr B A A Bm
ln

ˆlnk Am B rAm B
 

(27)  
 

2 1
O

2 1

 
  

  

m

r

ˆPr r kA
u r ln

ˆE Am B lnk Am B r 
 
Inner cylinder: 

(28) 

 

   

  

3
1 2 1

3 2 2 2

2 1
3 2 2 2





    





n m

n m

P A Am B lnr
C

E k Am B lnk r

P
C

E k Am B lnk r

 

(29) 

 

     

1
2

1
22

 

 

 
    

   

m n

r n m

AˆPr r

ˆAm B lnrk Am B lnk

 

(30) 

 

   

 

1 2

1
22

 

  

 
  

 

   

m n

m n

ˆPr A ABm

Am Bk Am B lnk

ˆAm B lnr B

 

(31)  
   

2
I

3 22



 
   
   

m

r m n

A
ˆPr r

u r Am B
E k Am B lnk ˆlnr  

2.3. Complex roots 

In this case, Δ < 0, so we have 

(32) 
1 2

2 2

,m z iy

n
z , y

 


  

 

Therefore, the general solution of Eq. (6) is 

(33)      1 2cos sin z
ru r C ylnr C ylnr r    

Again following the same steps as section 2.1, 
we achieve to the Eqs. (34) to (42). 

 
Outer cylinder: 

(34) 

     

 

     

 

1
12

1
2 1

1
12

2
2 1

sin

cos

cos

sin





  
  
  

  
 
  

z

z

Az B y lnrPr
C

E D Ay y lnr

Az B y lnrPr
C

E D Ay y lnr

 

where 

(35)    
2 2 2

1sin   
  

D Az B A y ylnk 

(36) 
 

 

1
1

1sin

 
 

    
 

z n

r

ˆ kPr
y ln

ˆy lnk r
 

(37) 

 

 

   

1
2 2 1

2 2 2 2

1

cos

1

sin

 



  
     

  

    
  

 
   

  

z nˆ kPr
A B y y ln

ˆD r

AB z y A B z

k
y ln

r̂

 

(38)  
  1

2
O

2 1

sin

cos

  
   

  
  
  
   

z

r

k
Az B y ln

ˆˆ rPr r
u r

E D k
Ay y ln

r̂
 

 
Inner cylinder: 

(39) 

     

 

     

 

1
32

1

33 2

1
32

2

33 2

sin

cos

cos

sin





  
  
  

  
 
  

z

n

z

n

Az B y lnrPr
C

Ay y lnrE k D

Az B y lnrPr
C

Ay y lnrE k D

 

where 

   
2 2 2

2sin   
  

D Az B A y ylnk (40) 

(41) 
 

   
 

1

1
2 2

sin

sin

 

 
  

z n

r z n

ˆPr
ˆy lnr

y lnk k
 

(42) 

 

     

     

1
2 2

1

2

2 2 2 2

cos

1 sin

 

  
   

     
  

z n

z n

ˆPr
ˆB A y y lnr

k D

ˆAB z y A B z y lnr

 

(43)  
 

   

 
2

I

3 2

sin

cos

  
 
 
 

z

r z n

ˆAz B y lnrˆPr r
u r

ˆAy y lnrE k D 
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3. Results and discussions 

In this section as a case study, we consider 
two thick cylinders, which their characteristics 
are tabulated in table 1. Here we consider that for 
both of the cylinders the end boundary 
conditions are free-free. Eq. (44) shows the 
constants A and B for these boundary conditions. 
The analytical solution is carried out by writing 
an appropriated program in MATLAB. 

(44) 
2 2

0 0

1

1 1

x x,

A , B

   


 

 

 

Figure 2 shows the distribution of the 
elasticity modulus along the cylinder's thickness. 
In this case study the inner surface of both 
cylinders is softer. Fig. 3 shows the distribution of 
radial stress along the thickness of both inner and 
outer cylinders. It can be seen from Fig. 3 that by 
increasing the heterogeneity constant n from -2 
to 2 the radial stress increases, which means that 
the contact pressure value, is increasing too. 

Figure 4 shows the distribution of the hoop 
stress along the thickness of both cylinders. It is 
obvious that the distribution of the hoop stress in 
both cylinders strongly depends on the value and 
sign of the heterogeneity constant n. According to 
Fig. 4 for negative values of heterogeneity 
constant n, the behavior of FG material is similar 
to homogeneous material. Next, we investigate 
the radial displacement in both cylinders. Fig.5 
shows the radial displacement for the inner and 
outer cylinders. It can be concluded from Fig. 5 
that as the heterogeneity constant n increases the 
radial displacement of the outer cylinder 
increases too. According to this Fig the behavior 
of the inner cylinder is complicated. For n≤1 the 
behavior of FG material is similar to the 
homogeneous material but for n>1 the behavior 
is completely different. 

It is worth noting that in the case of 
homogeneous material (n=0) we can achieve to 
the conventional relations [22, 24] for hollow 
thick-walled cylinders under uniform internal 
and external pressure. Our present results for 
homogenous and isotropic material are in 
coincidence with reference [25]. 

Table 1. Geometrical and mechanical characteristics 

Parameter Value 
Ei 200 GPa 
r1 60 mm 
r2 40 mm 
r3 20 mm 
ν 0.3 
δ 0.1 mm 
n n  2 2  

 
 
 

 
Fig 2. Distribution of elasticity modulus in the outer 

cylinder 
 

 
Fig 3. Continues distribution of radial stress 

 
Fig 4. Continues distribution of hoop stress 

4. Conclusions and Future Work 

In this paper, based on plane elasticity theory, 
an analytical solution has been obtained for 
shrink-fitted axisymmetric hollow thick-walled 
cylindrical shells made of FG materials and the 
effects of compositional gradient exponent n of 
FG circular cylinder were investigated. The 
variation of FGM properties is supposed to be a 
power function along the thickness of cylinders. 
The results show that with increasing the 
softness (elastic module) of intersection area of 
fitted cylinders, the shrink-fit pressure reduced. 
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Fig 5. Continues distribution of radial displacement 

Radial stress in inner surface of outer cylinder 
and outer surface of inner cylinder are equal to 
the shrink-fit pressure and in free internal and 
external surfaces of each cylinder are equal to 
zero. Hoop stress distribution is also dependent 
to the shrink-fit pressure. This stress has a 
variable direction and magnitude in cylinders. 
For n=-2,-1, 0 and 1 the hoop stress in inner and 
outer cylinders have values close together while 
for n=2 the hoop stress in inner cylinder is much 
larger than outer one. Future work will involve 
the effects of the temperature on the elastic 
behavior of shrink-fitted thick FGM cylinders. 
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