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In this paper, a computationally simple approach for damage 

localization and quantification in beam-like structures is 

proposed. This method is in consonance with applying modal 

flexibility curvature (MFC) and particle swarm optimization 

(PSO) algorithm. Analytical studies in the literature have 

revealed that changes in the modal flexibility curvature can 

be considered as a sensitive and suitable criterion for 

identifying damage in the beam-like structures. Modal 

flexibility curvature can be calculated utilizing central 

difference approximation, based on entries of the modal 

flexibility matrix. The PSO algorithm, as a powerful 

optimization tool, is employed in order to minimize the error 

function which is formulated as an error function between 

the measured modal flexibility curvatures of the damaged 

structure and those calculated from the analytical structure. 

To demonstrate the efficiency of the method, two beam-like 

structures under different damage scenarios are studied. In 

addition, the robustness of presented method is investigated 

only when the first several modal data are available. It is 

observed that the proposed approach is able to localize and 

quantify various damage cases only by a few lower 

vibrational modes and also, it is low-sensitive to 

measurement noise. 

Keywords: 
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1. Introduction 

In recent years, the problem of health 

monitoring in beam-like structures has 

become an important research issue in the 

different areas of mechanical, aerospace and 

civil engineering [1-8, 11, 15, 18]. Different 

approaches for damage localization and 

https://dx.doi.org/10.22075/jrce.2019.553.1081
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quantification has been developed which are 

confirming to the static and/or dynamic 

responses of the beam-like structural system. 

Abdo [1] conducted a research for localizing 

of single and multiple damage patterns in 

beam-like structures employing displacement 

curvatures derived from static responses. 

Despite the simplicity of static loading-

response-based damage identification 

approaches, they have drawbacks, such as 

susceptibility to the loading cases, and also 

presenting less information about the damage 

characteristics compared with other damage 

identification methods which are based on 

dynamic and vibration theory. Therefore, 

vibration-based techniques are deliberated as 

more promising tools for damage 

identification in beam-like structures. Such 

methods have received a considerable 

attention in the past decades. Pandey et al. 

[2] explored the curvature of mode shape 

vectors to reveal damage in beam-like 

structures. According to the obtained results 

from this method, if the absolute difference 

between the mode shape curvatures of the 

damaged and undamaged beams are plotted, 

not only does a peak value appear at the 

damaged element(s), but also some small 

peaks at different undamaged locations for 

the higher modes are observed. To overcome 

this drawback, Wahab and De Roeck [3] 

proposed a damage indicator, called 

curvature damage factor (CDF), to apply 

only the first few mode shape curvatures for 

damage prognosis. Lin and Cheng [4] used a 

frequency change index and mode shape 

curvature to detect crack in beams. Lu et al. 

[5] presented a two-step approach pursuant to 

mode shape curvature and response 

sensitivity analysis for both single and 

multiple crack identification in different 

types of beam-like structures. The impacts of 

the statistical errors on damage detection by 

means of the structural flexibility and mode 

shape curvature in beam-like structures are 

evaluated by Tomaszewska [6]. Lu et al. [7] 

developed a procedure to identify multiple 

damage patterns with modal flexibility 

curvature and relative frequency change in 

the beam-like structures. Their studies 

demonstrated that changes in the modal 

flexibility curvature can be considered as a 

sensitive and suitable criterion for damage 

identification in the beams. Hence, seeking 

the way to increase the capabilities of the 

damage identification approach based on 

modal flexibility curvature in the beam-like 

structures is a promising topic. 

Recently, some researchers have explored 

damage identifications of the different kinds 

of structures applying soft computing 

techniques such as artificial neural networks 

[8-10], conventional optimization algorithms 

[11] and evolutionary optimization 

algorithms [12-20]. The utilization of an 

artificial neural network needs data-training 

phase requiring large amount of data while it 

can be contemplated as a drawback of these 

methods [14]. Unlike the traditional 

optimization algorithms, the evolutionary 

algorithms are not sensitive to the initial 

guess of the solution and only use objective 

function’s value (instead of its derivatives) 

for seeking the solution domain for global 

minimization. Another important feature of 

the evolutionary methods is seeking the 

solution domain by means of multiple point 

routes rather than only a single point route. 

Therefore, model updating-based approaches 

via evolutionary optimization algorithms can 

be efficiently used for finite element model 

updating and damage detection by following 

a minimization strategy through defining an 

objective function to minimize the errors 

between the experimental data and those 

related to the analytical model. Sahin et al. 
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[8] presented a damage detection method 

using artificial neural networks in 

consonance with changes in natural 

frequencies and curvature mode shapes for 

localization and quantification of damage in 

beam-like structures. Lee [11] identified the 

crack locations and quantities in beams using 

the Newton–Raphson method and the 

singular value decomposition strategy. A new 

damage model with a single transverse edge 

crack, in arbitrary position of beam element, 

is developed by Mehrjoo et al. [15]. They 

evaluated parametric model of the cracked 

Euler–Bernoulli beam element within an 

optimization procedure to identify the depth 

and location of the crack(s) in beams. 

The aim of this paper is to develop an 

effective vibration-based method for damage 

localization and quantification in beam-like 

structures by means of the modal data. The 

proposed approach utilizes modal flexibility 

curvature indicator (MFCI) and particle 

swarm optimization (PSO) algorithm to 

perform the finite element model updating 

using the data acquired from a damaged 

beam-like structure. Confirming to the 

existing rich literature review, changes in the 

MFC can be considered as a sensitive 

criterion for damage identification in the 

beam-like structures due to this fact that 

damage can result in changes in the MFC [7]. 

The PSO algorithm is a global search 

strategy that was firstly introduced by 

Kennedy and Eberhart [21] which simulates 

social behavior of animals such as bird 

flocking, fish schooling and insect swarming 

in nature. Fast convergence and suitable 

performance are the major advantages of the 

PSO algorithm in comparison to the other 

optimization algorithms [22]. Hence, the 

algorithm is employed to minimize the error 

between the measured modal flexibility 

curvatures (from the damaged structure) and 

those calculated from the baseline structure 

through the optimization process. 

The rest of the paper is organized as follows. 

In Section 2, a concise description of the 

mathematical model of proposed approach 

containing modeling of damage and modal 

flexibility curvature indicator is presented. A 

brief summary of the PSO algorithm is 

provided in Section 3. Section 4 presents the 

numerical studies to illustrate the efficiency 

and robustness of the proposed approach 

utilizing both exact and noisy modal 

parameters. The paper ends with conclusion 

remarks presented in Section 5. 

2. Mathematical Model of the 

Proposed Approach 

2.1. Damage Modeling 

In general, when damage occurs in a 

structure, the physical properties of structure 

will change. In this paper, it is assumed that 

damage changes the stiffness of the structure. 

Therefore, this change can be simulated by 

decreasing one of the parameters that have 

contribution in the stiffness of the beam-like 

elements, such as the modulus of elasticity 

(E), cross sectional area (A), moment of 

inertia (I) and so on. Moreover, it is assumed 

that no change would occur before and after 

damage in the mass matrix, which is 

acceptable in most real applications. The 

stiffness changes are small and would not 

cause a change in the connectivity of the 

structure. The proposed approach would be 

feasible to a lightly damped structure where 

changes in stiffness would not affect 

significantly the damping property of the 

structure. These assumptions are common in 

linear damage simulation and have been 

intensively employed in the related literature 

[17-20]. In the present study, damage is 
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simulated by a relative reduction of the 

elasticity modulus of the damaged element 

as: 

(1 )d

i i iE x E                                     (1)                                                                                                      

where, Ei and Ei
d
 are the modulus of 

elasticity for the ith element in the 

undamaged and damaged cases, respectively, 

and  0,1ix   is a damage index to represent 

the damage severity of the ith element. If the 

damage index is zero for an element, it will 

be concluded that the element is healthy. 

However, damage index of 1 will be returned 

if an element is completely damaged. 

2.2. Modal Flexibility Curvature Indicator 

Selection of the suitable objective function is 

a key step in model updating-based structural 

damage identification procedure, since it can 

influence the performance of the proposed 

approach in terms of converging to false-

positive/negative results. In general, the 

objective function should reflect the amount 

of error between the behavior of the 

analytical and monitored models. To form a 

suitable objective function, damage-sensitive 

parameters should be selected. Among 

vibrational characteristics, the natural 

frequencies as well as the mode shape 

vectors and their derivatives can be 

contemplated as sensitive parameters to 

damage occurrence. The dynamic 

characteristics equation for a multi-degrees 

of freedom un-damped system is as follows: 

      M K                             (2) 

in which, [K] and [M] are the stiffness and 

mass matrices, respectively, and [Ψ] is the 

non-mass-normalized mode shape matrix 

obtained from output-only modal analysis, 

and    2 2 2 2

1 2, ,..., ,...,j dofdiag       is the 

diagonal matrix of the jth squared natural 

frequency and dof stands for the number of 

degrees of freedom. When the non-mass 

normalized mode shape [Ψ] is scaled to the 

mass-normalized mode shape ([Φ]), the 

stiffness matrix [K] can be written in modal 

form as: 

      
1T

K
 

                                     (3) 

The first reported idea of the flexibility 

approach was presented by Pandey and 

Biswas [23], in which the flexibility matrix 

[MF] were basically defined as the inverse of 

the stiffness matrix: 

      
1 2

1

dof
T T

j j j

j

MF   
 



               (4) 

where,    1 2 ... ...
T

j dof     is 

the mass-normalized mode shapes matrix, ϕj 

is the jth mode shape. As mentioned in [23], 

the local damage not only affects the local 

structural stiffness, but also it can change the 

local flexibility. This claim can be obviously 

proved if Eq. (3) and Eq. (4) are inspected. 

Therefore, these characteristics can become 

indicators for structural damage detection. 

Generally, the structural damages result in 

reduction in the stiffness which can be 

interpreted as increase in the flexibility of the 

damaged elements. Taking into the account 

the global format of the flexibility matrix, its 

diagonal members can implicitly return 

valuable information about change in the 

physical properties of the monitored structure 

[18]. Therefore, in this study, the modal 

flexibility curvature is calculated by 

contemplating the diagonal elements of the 

modal flexibility matrix applying the central 

differential equation [7]: 
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1, 1 , 1, 1

2

2

2,..., 1

dn dn dn

k k k k k kdn

k

e

MF MF MF
MFC

L

k dof

    


 

     (5) 

where, MFk,k
dn

 and MCFk
dn

 are diagonal term 

of the numerical modal flexibility matrix 

(corresponding to the kth degree of freedom) 

and the kth term of the numerical modal 

flexibility curvature vector in the damaged 

state, respectively; and Le is the length of the 

elements. Similarly, the experimental modal 

flexibility curvature (MFC
de

) in the damaged 

state can be calculated by considering the 

diagonal elements of the experimental modal 

flexibility matrix (MF
de

) using the central 

differential equation: 

1, 1 , 1, 1

2

2

2,..., 1

de de de

k k k k k kde

k

e

MF MF MF
MFC

L

k dof

    


 

     (6) 

The difference between the experimental and 

numerical (or analytical) modal flexibility 

curvature can then be applied to form an 

objective function for damage quantification:  

 
1

1 2

2

, ,...,

: 0 1

de dndof

k k
N de

k k

i

MFC MFC
MFCI x x x

MFC

subjected to x








 



 (7) 

where, MFCI is the proposed objective 

function which should be minimized, || || is 

the sign of the Frobenius norm, and N is the 

number of the elements in the finite element 

model of the studied structure. 

3. Particle Swarm Optimization 

(PSO) Algorithm 

The optimization problem can be easily 

defined as a logical and step-by-step 

procedure to find an argument X whose 

relevant cost F(X) is optimum, and it has 

been broadly applied in many various areas 

such as pattern recognition, scheduling, 

building design, optimal vibration control, 

structural damage identification, structural 

shape and size optimization, industrial 

planning, resource allocation, and so on. 

Unlike the traditional optimization 

techniques, metaheuristic techniques attempt 

to mimic some characteristics of natural 

phenomena or social behavior. These 

optimization techniques can increase the 

overall computational efficiency and 

capability in solving complex and ill-posed 

inverse problems. Among evolutionary 

algorithms, particle swarm optimization 

(PSO) technique generally outperforms in 

term of solution accuracy and convergence 

rate. In this paper, PSO algorithm is 

employedfor solving structural damage 

detection problem. PSO is a global search 

strategy that was first introduced by Kennedy 

and Eberhart [21] and it simulates social 

behavior of animals (like bird flocking, fish 

schooling and insect swarming) in nature. In 

comparison with genetic algorithm (GA), 

PSO does not require the operators like 

crossover and mutation to manipulate the 

individuals, and this is the main reason of 

fast performance of PSO in comparison with 

GA. 

Similar to the other evolutionary algorithms, 

PSO begins with generating a random 

population of individuals (called a swarm). 

Any individual of a population is called a 

particle. This algorithm utilizes swarm 

intelligence to achieve the goal of the 

optimization. Besides individual intelligence, 

it also develops some social behavior and 

harmonizes the particles’ movement towards 

the best position to find the swarm’s best 

position with some random perturbation. In 

this algorithm, the particles move through the 
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solution space and each particle has a 

velocity which is dynamically adjusted 

according to both their own experience and 

the population’s experience. 

In an N dimensional optimization problem, 

ith particle in the PSO algorithm is defined 

by three vectors namely current position 

vector of the ith particle Pi={pi1,pi2,…,piN}, 

velocity vector of the ith particle 

Vi={vi1,vi2,…,viN} and the obtained best 

position vector of the ith particle 

Pi
best

={pi1
best

,pi2
best

,…,piN
best

}. In the damage 

identification problem, N represents the 

number of structural elements (the number of 

the variables) and the values of each variable 

describe the position of the particle which is 

a possible solution of the optimization 

problem. The particle’s new position can be 

calculated in consonance with the current 

position of particle modified by its current 

velocity and the distance between the current 

position and its previous best position, and 

also the best global position among all the 

particles in the swarm. Therefore, the 

updating of particle position and velocity can 

be mathematically defined as follow: 

    

    

[ 1] [ ] best

i i c c i i

gbest

s s i

V t wV t C r P t P t

C r P t P t

   

 
      (8) 

[ 1] [ ] [ 1]i t iP t P t V t                                  (9) 

where, P
gbest

={p1
gbest

,p2
gbest

,…,pN
gbest

} is the 

best previously visited global position among 

all the particles in the swarm; Cc and Cs are 

two positive constants to control the 

information flowing and social learning 

factors, respectively; rc and rs are random 

numbers uniformly distributed between 0 and 

1; t represents the number of current 

iteration; and w is inertia weight introduced 

by Shi and Eberhart [23] to modify the 

original version of PSO to control the effects 

of the local and global searches during the 

evolution process. The appropriate selection 

of w will provide a balance between global 

and local searches during the evolution 

process, and this results in a condition in 

which less iteration (on average) is required 

to find an optimal solution. This parameter 

reduces linearly from a maximum value wmax 

to a minimum value wmin, that has been 

introduced by Shi and Eberhart [24] and it 

can be defined as follow: 

 max max min max/w w t w w t                   (10) 

in which, tmax is the maximum allowable 

iterations. From Eq. (10), it is obvious that 

the particles use a relatively large inertia 

weight during the initial exploration though 

they use relatively low inertia weight as the 

iterations successfully go forward. The main 

purpose of this modification is to avoid 

premature convergence in the early search 

stages. Moreover, improving the rate of 

convergence to the global optimal solution 

during the latter search stages can be listed as 

another important benefits of this 

modification. Furthermore, in order to 

control any change in the particle’s velocities 

(the step length of the algorithm), the 

velocity vector Vi is limited to a minimum 

value Vmin and a maximum value Vmax.  

In this algorithm the continuation of the 

optimization steps will hopefully cause the 

particles to converge to the global minimum 

point of the objective function and finally the 

algorithm stops if the maximum number of 

iteration is reached. 

The Flowchart of the proposed approach for 

structural damage localization and 

quantification using PSO algorithm is 

portrayed in Fig. 1. 
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Fig. 1. Flowchart of PSO algorithm and its 

interaction with the proposed method. 
 

 

Fig. 2. A ten-element cantilever beam. 

4. Numerical Examples 

In order to demonstrate the performance of 

the proposed method for structural damage 

identification, a cantilever beam and a simply 

supported beam are considered as the test 

examples. Moreover, the effectiveness of the 

proposed approach is investigated by 

considering both exact and noisy modal 

parameters (i.e., frequencies and mode 

shapes). In all the examples, first, first two 

and first three vibrational modes are utilized 

for damage localization and quantification. 

The proper control of local exploitation and 

global exploration is the important feature of 

PSO algorithm which depends on the 

selected parameters. Therefore, selection of 

PSO parameters can considerably influence 

the convergence and performance of the 

optimization procedure. In this study, the 

PSO’s parameters were selected as follows 

applying trial-and-error approach: cognition 

learning factor Cc is 2; social learning factor 

Cs is 2; minimum of the inertia weight wmin is 

0.4; maximum of the inertia weight wmax is 

0.9; population size is 100; and maximum 

number of iterations is 1000. It was observed 

that these values are suitable for the 

presented numerical examples in this study. 

Furthermore, in order to deliberate the 

stochastic nature of the optimization process, 

the mean values of ten independent runs are 

contemplated as the damage detection results 

for each damage case. 

4.1. A Cantilever Beam 

The first numerical example for validation of 

the proposed identification approach is a 

cantilever beam with 5 m length and 

rectangular cross section with an area equal 

to 0.0250 m
2
. The finite element model of 

this beam consisting of 10 two-dimensional 

elements and 20 degrees of freedom (two 

degrees of freedom in each free node) is 

shown in Fig. 2. The mass density, the 

elasticity modulus and the moment of inertia 

for this example are considered as 7590 

kg/m
3
, 120 GPa and 4.0×10

-6 
m

4
, 

respectively. It is assumed that all elements 

of the beam have uniform cross sections and 

the length of each of these elements is 0.5 m. 

Set best of 𝑃𝑖
𝑏𝑒𝑠𝑡s as best global position 

(𝑃𝑔𝑏𝑒𝑠𝑡) among all the particles in the swarm 

 

Update position and velocity vectors for 
all the particles 

 

Stop condition satisfied? 

Create finite element model 

Initialize particles with random 
position and velocity vectors 

 

If particle’s current position (𝑃𝑖) is better than its 

best position (𝑃𝑖
𝑏𝑒𝑠𝑡), set 𝑃𝑖

𝑏𝑒𝑠𝑡 equal to 𝑃𝑖 
 

Evaluate the objective function, based 

on the modal flexibility curvature 

Acquisition of data from 

monitored (damaged) structure 

Result of damage identification 

(location and severity of damage) 

Yes 

No 

Begin 
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In this example, two different damage 

scenarios were simulated as follows:  

Scenario-A: 20% reduction in the elasticity 

modulus of element 5.  

Scenario-B: 30% and 15% reductions in the 

elasticity modulus of elements 3 and 7, 

respectively.  

Here, both exact and noisy modal parameters 

(frequencies and mode shapes) are fed to the 

method as input data.  

4.1.1. Damage Identification without Noise 

Effect 

The damage identification results for the 

damage scenarios of the cantilever beam 

employing exact modal parameters (i.e., 

there is no measurement error) are depicted 

in Fig. 3. In this figure, M represents number 

of the vibrational mode(s) which are used for 

damage identification procedure. It is 

observed that the location and severity of 

damage are identified accurately employing 

the proposed approach. 

The convergence curves of the PSO 

algorithm for the damage scenarios of the 

cantilever beam (under exact modal 

parameters) are illustrated in Fig. 4 for all the 

studied states. A complete convergence to the 

global extremums can be seen in all states. 

Therefore, it is concluded that the proposed 

approach is a robust and effective method for 

localizing and quantifying of damage in the 

cantilever beam when exact (i.e., noise free) 

modal parameters are employed. Another 

point that can be concluded from the 

convergence curves is that, by increasing the 

number of the employed modal data (i.e., M), 

the objective function can converge to a 

number which is very close to zero. In noisy 

states, this issue is of vital importance: In 

such cases, the obtained results are 

considered as the global extremums if the 

associated objective function’s value is very 

close to zero.  

 

 
Fig. 3. Damage identification results for the 

cantilever beam under exact modal parameters. 

 

   
Fig. 4. The convergence history of the PSO 

algorithm for the cantilever beam under exact 

modal parameters. 

 
Fig. 5. Damage identification results for the 

cantilever beam under noisy modal parameters. 
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Fig. 6. The convergence history of the PSO 

algorithm for the cantilever beam under noisy 

modal parameters. 

 
Fig. 7. Fourteen-element simply supported beam. 

4.1.2. Damage Identification with Noise 

Effect 

In order to evaluate the noise effects on the 

performance of the proposed method, a 

normally distributed random error is added to 

the modal parameters. The noise was 

simulated applying the approach proposed by 

Ghodrati Amiri et al. [18] and the noise level 

was 1.5%. The damage identification results 

for single damage scenario (Scenario-A) of 

the cantilever beam under noisy modal 

parameters are portrayed in Fig. 5. As it is 

evident the location and severity of the 

structural damage can be identified 

reasonably accurate using the proposed 

approach. The convergence curve of the PSO 

algorithm for this case is depicted in Fig. 6. It 

can be seen that the convergence 

performance of the method for damage 

identification in the cantilever beam is quiet 

acceptable. In this example, it was illustrated 

that the proposed approach is a robust and 

effective method for localizing and 

quantifying of the damage in the cantilever 

beam even when modal parameters are 

contaminated with noise. 

4.2. A Simply Supported Beam 

A simply supported bam with below 

mentioned property is contemplated as the 

second numerical example for evaluating the 

efficiency of the proposed identification 

approach. The length and cross section of 

this beam are 7 m and 0.0500 m
2
, 

respectively. Its finite element model consists 

of 14 two-dimensional elements and 28 

degrees of freedom (see Fig. 7). The mass 

density, elasticity modulus and moment of 

inertia for this beam are equal to 2500 kg/m
3
, 

32 GPa and 1.667×10
-4

 m
4
, respectively.  

In general, the identification problem has two 

unknown parameters, location and severity of 

damage in the elements. However, the 

identified damage severities can also return 

information about the damage existence (or 

location). Elements with damage severity of 

zero (or very close to zero) are considered as 

healthy elements. In this example, three 

different damage scenarios are simulated: 

Scenario-A: 15% reduction in the elasticity 

modulus of element 8.  

Scenario-B: 30% and 20% reduction in the 

elasticity modulus of elements 4 and 10, 

respectively.  
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Fig. 8. Damage identification results for 

scenario-A of the simply supported beam under 

exact modal parameters. 

Scenario-C: 20%, 30% and 15% reduction in 

the elasticity modulus of elements 2, 7 and 

12, respectively. 

It is note-worthy to mention that the damage 

in the damaged elements was simulated by 

defining reduction in the modulus of 

elasticity. Moreover, in all the simulated 

damage scenarios, the damage severities of 

the damaged elements are considered smaller 

than 40% to make sure that the behavior of 

the damaged structure is in the linear range.  

4.2.1. Damage identification without noise 

effect 

Fig. 8 shows the obtained results for damage 

identification of the simply supported beam 

 

 

 
Fig. 9. The convergence history of the PSO 

algorithm for the simply supported beam under 

exact modal parameters. 

for Scenarios-A to C, when the noise free 

modal data are employed. It is observed that 

the proposed method identifies the location 

and extent of damage in all the elements with 

high level of accuracy, without any error. 

Moreover, it is noticed that the method has 

acceptable level of sensitivity to different 

level of damages (small, moderate and 

severe) and also, their combinations (see 

Scenario-C). Fig. 9 shows the mean of the 

convergence curves obtained in ten 

independent runs. Similar to the previous 

example, it is concluded that the PSO 

algorithm is able to find the optimal solution 

with fast speed and high level of accuracy. 

Moreover, it is observed that by increasing 

M, the objective function converges to a 

number which is so close to zero. 

 
Fig. 10. Damage identification results for 

Scenario-A of the simply supported beam under 

noisy modal parameters. 
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Fig. 11. The convergence history of the PSO 

algorithm for Scenario-A of the simply supported 

beam under noisy modal parameters. 

4.2.2. Damage identification with noise 

effect 

In this section, the noise effect on the 

performance of the proposed method for 

structural damage identification in the simply 

supported beam is investigated. The damage 

identification results for single damage 

scenario (Scenario-A) in the noisy state (with 

1% noise in the modal data) are demonstrated 

in Fig. 10. It is observed that location and 

severity of the structural damage are 

correctly identified using the proposed 

approach. The convergence curve of the PSO 

algorithm for this damage scenario is shown 

in Fig. 11. As it can be observed, the method 

converges to the optimal solution after ~100 

iterations and this an support this claim that 

PSO algorithm is well-suited for the 

proposed objective function, even if the noisy 

data are fed in the method as the input data. 

5. Conclusions  

A model updating-based approach to identify 

damages in beam-like structures applying 

modal flexibility curvature and optimization 

algorithm was proposed. The PSO algorithm 

was used to minimize the difference between 

the measured modal flexibility curvatures of 

the monitored structure and those calculated 

from the analytical structure (with unknown 

damage severities). To demonstrate the 

applicability of the method, two numerical 

examples of beams with different damage 

patterns are studied. For each damage 

scenario, the mean values of ten independent 

runs was reported to consider existing the 

uncertainties in the evolutionary optimization 

algorithms. The results indicated that 

changes in the modal flexibility curvature 

can be considered as a sensitive and suitable 

criterion for damage prognosis in the beam-

like structures. Moreover, it was concluded 

that the proposed approach is able to localize 

and quantify different levels of damages only 

by a few lower vibrational modes and also, it 

has low level of sensitivity to unavoidable 

noises in input data. 
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